농업생명과학연구 49(2) pp.17-26 Journal of Agriculture & Life Science 49(2) pp.17-26 Print ISSN 1598-5504 Online ISSN 2383-8272 http://dx.doi.org/10.14397/jals.2015.49.2.17 Headspace GC-MS 법에의한삼채의휘발성화합물및아미노산성분분석 김용덕 1 정유석 1 서영롱 2 김종철 1 송현진 2 최명석 2* 1 ( 재 ) 하동녹차연구소, 2 경상대학교산림환경자원학과 접수일 (2015 년 2 월 18 일 ), 수정일 (2015 년 4 월 13 일 ), 게재확정일 (2015 년 4 월 16 일 ) Analysis of Volatile Compounds by Headspace GC-MS and Amino acid of Allium hookeri Yong Duck Kim 1 Yu Seok Jeong 1 Yeong Rong Seo 2 Jong Cheol Kim 1 Hyun Jin Song 2 Myung Suk Choi 2 * 1 Institue of Hadong Green Tea, Hadong-gun, Gyeongnam, 667-804, Republic of korea 2 Department of Forest Environmental Resources, Gyeongsang National University, JinJu, Gyeongnam, 660701, Republic of Korea Received: FEB. 18. 2015, Revised: APR. 13. 2015, Accepted: APR. 16. 2015 초록 삼채의잎과뿌리로부터휘발성화합물과아미노산을분석하였다. 휘발성향기성분은 Headspace GC-MS 방법으로분석하였다. 잎조직으로부터 18 종의휘발성화합물이검출되었고, 21 종의화합물은뿌리조직으로부터분석되었다. 주요향기성분은 diallyl disulphide 였고, 잎 (27.9%) 과뿌리 (17.41) 에서가장많이함유하고있었다. 또다른주요황화합물은 methyl 2-propenyl disulfide, dimethyl disulfide, methyl 1-propenyl disulfide 과 methyl 2-propenyl trisulfide 이잎과뿌리에모두함유하고있었다. 전체 46 종화합물중가장많이함유하고있는물질군은황화합물이었다. 황화합물은엽조직에 6 종, 뿌리조직에는 5 종이함유되어있었다. 또한유리아미노산과 polyphenol 성화합물은잎과뿌리조직에서분석하였다. 잎과뿌리조직에서아미노산은 20 종과 19 종이각각검출되었다. 총아미노산의함량은잎에서 0.134 mg/g, 뿌리조직에서 0.105 mg/g 함유하고있었다. 총 polyphenol 성화합물함량은잎에서 0.28 mg/g, 뿌리에서 1.08 mg/g 함유하고있었다. 이결과는삼채의이용과효율적인재배에기초자료를제공할수있다. 검색어 - 삼채, Headspace GC-MS, 휘발성화합물, 황화합물, 아미노산 ABSTRACT The volatile aroma components and amino acids were analyzed from leaf and root tissues of Allium hookeri Thwaites. The volatile aroma components were collected by Headspace apparatus and identified by gas chromatography-mass spectrometry (Headspace GC-MS). The 18 volatile compounds were identified in the leaf tissue, on the other hand, the 21 compounds were identified in the root tissue in this experiments. The most abundant aroma compound was diallyl disulphide, which composed mainly on leaf and root tissues, 27.9% and 17.41%, respectively. Also other sulfur-containing compounds such as methyl 2-propenyl disulfide, dimethyl disulfide, methyl 1-propenyl disulfide and methyl 2-propenyl trisulfide were contained in both tissues. Among total of 46 components, the most abundant compound group was sulfur-containing compounds. Sulfur-containing compounds were identified 6 kinds in leaf tissue and 5 kinds in * Corresponding author: Myung Suk Choi Tel: +82-55-772-1856 Fax: +82-55-772-1859 E-mail: mschoi@gnu.ac.kr
18 Journal of Agriculture & Life Science 49(2) root tissue. In addition, free amino acid and total polyphenolic compounds were analyzed in the leaf and root tissues. Amino acids in leaf and root tissues were identified 20 and 19 kinds, respectively. Content of amino acid contained 0.134 mg/g in leaf and 0.105 mg/g root tissue. Content of total polyphenolic compounds were highest in leaf (0.28 mg/g) compared to root tissue (1.08 mg/g). These results can be served as basic data for efficient cultivation and utilization of A. hookeri Thwaties. Key words - Allium hookeri Thwaties, Headspace GC-MS, Volatile compounds, Sulfur-containing compounds, Amino acid Ⅰ. 서론 마늘, 양파, 파, 삼채등이포함되어있는 Allium속은그독특한맛과향으로식욕증진을목적으로이용되어왔다 (Lee et al., 1995). Allium속의독특한향은황함유휘발성물질에기인한다. Allium속의향은식물조직중에무취의전구체인 alliin의형태로존재하다가조직이파괴되면가수분해효소인 alliinase에의해분해되어강한향성분이생성되는것으로알려져있다 (Leustek & Saito, 1999; Mellouki et al., 1994; Block, 1992). Allium속에많이함유된황화합물은항균성, 항암성, 항혈전성, 항산화성등의기능성을가지고있으며, 건강보조식품및의약품의소재로도널리활용되고있다 (Pinto & Rivlin, 2001; Chung, 1999; Shenoy, 1992; Chun & Paik, 1997; Borek, 2001). 삼채 (Allium hookeri Thwaties) 는 Allium속에속하는식물로써, 뿌리부추라고도불린다. 히말라야해발 1,400m 이상초고랭지에서자생하며, 미얀마, 인도등지에서주로이용되고있는채소이다. 뿌리와잎부위의섭취가가능하며, 단맛, 매운맛, 쌉쌀한맛등세가지맛을모두가지고있다. 히말라야현지에서는야채와조미료외에다양한염증질환및암질환치료등민간요법으로이용되고있다. 최근에삼채는국내로도입되어하동, 담양, 예천등지에서특용작물로재배하고있다 (Bae & Bae, 2012). 삼채는단백질, 당, 섬유소, 칼슘함량뿐아니라유황성분이매우높은것으로알려져있다 (Lee & Chung, 2001). 그러나삼채의주요성분및생리활성에대한연구는아직초기단계이며, 특히국내로도입되어재배되고있는재배삼채에대한연구는전무한실정이다. 삼채성분의함량및특성구명은향신, 조미및다양한생리활성을가진채소로의개발을위해반드시필요하다. 그동안마늘등 Allium속식물의휘발성성분의분석은 MS detector 를이용한 GC-MS분석이주로행하여졌다. 그러나이러한 scan mode의분석시스템은광학적민감성으로말미암아올바른분석이되지못하는것으로인식되고있으며, 선택적이온모니터링 (SIM) 방법등보다효과적인분석법의채택이필요하다 (Rosenfelder et al., 2010). Headspace GC-MS 법은다양한화합물들로구성되어있는복잡한시료의휘발성유기화합물을측정하는데있어신속하고간편한전처리방법을제공하며, MS와연계하여미지의시료의동정과정확한정보를얻을수있는장점이있다 (Colina-Coca et al., 2013). 따라서본연구에서는 Headspace GC-MS법을이용하여국내도입삼채의잎과뿌리에함유되어있는휘발성성분을조사하였고, 아미노산과폴리페놀의함량을분석하였다.
Kim et al : Analysis of Volatile Compounds by Headspace GC-MS and Amino acid of Allium hookeri 19 Ⅱ. 재료및방법 2.1 실험재료본실험에서사용한삼채는경남하동군악양면소재 A농원에식재된것으로써, 구근식재약 3주후채취하여사용하였다 (Fig. 1). 채취한삼채는흐르는물에여러번수세하였고, 즉시분석에사용하였다. 2.2 향기성분의 Headspace 포집채취한삼채를잎, 뿌리로각각나누고 1 g을취 해 20 ml headspace sampler 용 vial에넣은다음증류수 1 ml를첨가하였다. 이를 Turbomatrix headspace sampler(perkinelmer, CA, USA) 를이용하여 headspace oven 130 에서 25분간 heating 한후, headspace 500 µl 를 Clarus 600 GC (Perkinelmer, CA, USA) 로분석하였다. 2.3 GC-MSD 분석포집된향기성분은 GC/MSD를이용하여분석하였다. 컬럼은 Elite-1 (30 m x 0.25 mm, 0.25 µm, Perkinelmer, CA, USA) 으로 40 에서 3분간유지한후, 분당 3 의속도로 220 까지승온한후 4 분간유지한뒤분석하였다. Injector 는 250 에서 split ratio 5:1로하였으며, 운반기체는헬륨 (He) 으로분당 0.8 ml의유속으로분석하였다. 시료의이온화는 EI(Electron Impact Ionization) mode로, ionization voltage 를 70 ev로하였고, mass range는 50-300 으로하였다. MS의온도는 interface 250, ion source 230 로하였다. 각성분은 NIST Library를사용하여확인하였다. Fig. 1. Tissues used to extract of volatile components from A. hookeri Thwaites : (A) Leaf and (B) Root 2.4 아미노산분석아미노산정량은 Heresztyn et al. (2004) 의방법에의하여 HPLC로분석하였다. 삼채가루 0.1 g 에 10 ml의 3% trichroloacetic acid(sigma, MO, USA) 를가하여 30 에서 2시간동안 Sonicator (XD350H, Korea) 에서추출한후 4,500 rpm에서 15분간원심분리하였고, 상동액을 0.45 µm CA membrane filter (MFS-25, Advantec, MFS, Inc., CA, USA) 로여과하였다. HPLC용 300 µl vial에여과된삼채추출용액을 40 µl 를넣고, borate buffer 50 µl 와유도체화시약 (AccQFlour 10 µl 를가하여유도체화하였으며, 균일한유도체화를위하여 55 에서 10분간열처리를행하였다. 형광검출을위한유도체시약으로 6-aminoquinoly -N-hydroxy-succinimidyl carbamate(accq- Flour) 를사용하였다. AccQ Tag C18 Column (3.9 mm 150 mm, Waters Co. USA) 으로분석하였으며,
20 Journal of Agriculture & Life Science 49(2) 분석조건은다음과같다. 이동상 A와 B는 0.1M sodium acetate(ph 6.8) 에각각 4% 와 30% acetonitrile 를섞은용매를사용하였으며, gradient 조건은 A:B = 94:6 (20분), 84:16(20.2 분 ), 84:16 (35분), 15:85(38 분 ), 94:6(38.5 분 ), 94:6(44.5 분 ) 이었고, 유속은 1 ml/min 로해주었다. 형광검출기의조건은 250 nm와 395 nm에서 glutamic acid, γ -aminobutyric acid, arginine, theanine 을분리하였고, 분석결과인아미노산농도는 Millenium 32 program 을이용하여정량화하였다. 분석에사용된표준품 (Sigma-Aldrich Chemical Co. MO, USA) 용액을농도별로분석한표준곡선을만들어각아미노산의함량을구하였다. 2.5 폴리페놀화합물분석삼채의부위별총폴리페놀함량은 Folin-Denis 법으로측정하였다 (Folin & Denis, 1921). 삼채의잎, 뿌리를열수추출하여추출시료용액 0.2 ml에증류수 2 ml을첨가한후, Folin-Ciocalteu's phenol reagent 0.2 ml를넣고혼합하여실온에서 3분간반응시켰다. 반응용액에 20% Na 2CO 3 용액 0.4 ml 를넣어다시혼합한다음 3차증류수로최종농도를 4 ml로맞추었다. 이혼합용액을 23 에서 1시간동안정치한후 725 nm에서흡광도를측정하였다. 총폴리페놀화합물은 tannic acid를이용하여작성한표준곡선으로부터함량을구하였다. 표준곡선은 tanninc acid를 50% 메탄올용액에녹여최종농도가 0, 50, 100, 150, 200 µg/ml 용액이되도록취하여위와같은방법으로 725 nm에서흡광도를측정하였다. Ⅲ. 결과및고찰 3.1 잎과뿌리의휘발성화합물함량및종류삼채부위별시료로부터휘발성화합물을분석하였다 (Fig. 2, Table 1). 잎과줄기간휘발성화합물은약간의차이를보였다. 삼채의휘발성향기성 Table 1. The volatile components of A. hookeri Thwaites identified by Headspace GC-MS Peak No Compound Peak area (%) Leaf Root 1 Hexanal 0.16 0.14 2 4-Hexen-1-ol 5.78 12.65 3 6-(Methylthio)Hex-5-en-3-ol 1.27-4 Heptanal 0.11 0.13 5 3-Hexen-1-ol 1.09 17.01 6 3-Methyl-Butanal - 0.94 7 2-Hexen-1-ol - 0.43 8 1-Hexanol - 0.47 9 Nonanalb - 0.20 10 2-Hexen-1-ol - 0.84 11 2-Pentyl-Furan 0.10 0.09 12 (S)-3,4-Dimethyl Pentanol 0.47-13 1-Octen-3-ol 0.24 0.21 14 5-Methyl-3-Heptanone 0.12 0.10 15 3-Octanol 0.12-16 Hexyl Ester Acetic Acid 0.12 1.11 17 2-Penten-1-ol - 1.37 18 Diallyl Disulphide 29.90 17.41 19 Methyl 2-Propenyl Disulfide 3.91 3.43 20 Methyl 1-Propenyl Disulfide 0.21 0.20 21 Methyl 2-Propenyl Trisulfide 0.33 0.25 22 Dimethyl Disulfide 0.18 0.20 23 4,4-Dimethyl-1,2-Pentadiene 12.00-24 4-Methoxymethoxy-3-Nitro-Pentan-2-ol 0.12 0.10 Total 56.23 57.28 분은잎에서 18 종, 뿌리에서 20 종으로확인되었다. 휘발성화합물의총함량은뿌리의함량 (57.8%) 이 잎의함량 (56.23%) 에비해약간높았다.
Kim et al : Analysis of Volatile Compounds by Headspace GC-MS and Amino acid of Allium hookeri 21 Fig. 2. Headspace GC-MS chromatograms of volatile components from the A. hookeri Thwaites : (A) Leaf and (B) Root 잎에서휘발성성분의대부분은 1% 미만의극소량이검출되었으며, 7개의성분만이 1% 이상검출되었다. 잎에서가장많이함유되어있는성분은 diallyl disulphide 로 29.9% 였으며, 4,4-dimethyl-1, 2-pentadiene 12%, 4-hexen-1-ol 5.78%, methyl 2-propenyl disulfide 3.91%, 6-(methylthio)hex -5-en-3-ol 1.27% 그리고 acetate 3-hexen-1-ol 1.09% 이었다. 뿌리의휘발성성분중가장많이함유하고있는화합물은 diallyl disulphide 로 17.41% 였으며, 3-hexen-1-ol 17.01%, 4-hexen-1-ol 12.65%, methyl 2-propenyl disulfide 3.43%, hexyl ester acetic acid 1.11%, (Z)-2-penten-1-ol 1.37% 순으로나타났다. 뿌리에함유되어있는대부분의성분은 1% 미만이었으며, 6개의성분만이 1% 이상검출 되었다. 삼채의휘발성화합물은부위간약간의차이를보였다. 총 24종의화합물중 14개의성분이잎과뿌리에서모두검출되었다. 6개휘발향기성분, 즉 (3-methyl-butanal, (Z)-2-penten-1-ol, (Z)-2- hexen-1-ol, 1-hexanol, nonanal, (Z)-acetate, 2-hexen-1-ol) 은뿌리에서만검출되었다. 또한 4,4- dimethyl-1,2-pentadiene, 6-(methylthio) hex- 5-en-3-ol, (S)-3,4- dimethyl pentanol, 3- octanol 등 4종의화합물은잎에서만검출되었다. 휘발성화합물분석을통해잎과뿌리에서가장많이검출된성분은 diallyl disulphide 로써잎과뿌리에서각각 27.9%, 17.41% 검출되었다. Diallyl disulphide 는마늘, 파, 양파등에많이함유되어있는 Allium속의대표적인자극적향미성분이다
22 Journal of Agriculture & Life Science 49(2) (Jeon et al., 2012). 조직이파괴될때 alliin이 allinase에의하여 allicin과 pyruvic acid로분해되고, allicin이다시 diallyl disulphide 로분해되며, 이들이 pyruvic acid와서로작용하여더욱복잡한황화합물및 carbonyl 화합물을생성하는것으로알려져있다 (Yu et al., 1989; Cavallito et al., 1976). Diallyl disulphide 는세포막이나세포질의 -OH기를함유하고있는물질을변화시켜대장암, 식도암, 폐암, 피부암, 위암, 유방암및신장암 (Takahashi & Hakoi, 1992) 의발생을억제하는것으로알려져있다. Methyl-2-propenyl disulfide 는마늘, 부추에서도검출되는냄새가강한산류이다 (Cho et al., 2002). 이물질은삼채에서도다량존재하는바 diallyl disulphide 와더불어삼채의향을좌우하는것으로사료된다. 뿌리의주성분인 3- hexen-1-ol 은무색의지용성성분으로식물체에는소량함유되어있으면서주로곤충매개역할을하는것으로알려져있다. 그러나이성분이삼채의뿌리에다량함유되어있는것은특이할만하다. 그외에도소량이지만, 삼채에서동정된 hexanal 및 (Z)-2-Hexen-1-ol 은 C 6 화합물의일종으로엽록체의이중막 (thylakoid membrane) 에존재하며, 향료산업에이용되는 alkyl aldehyde 물질이다 (Kim et al., 2003; Jeon et al., 2012). 휘발성화합물분석결과를종합하여볼때삼채의향기성분은휘발성황화합물이주를이루고있다. 이들황화합물들이삼채의고유한향을나타내는물질로사료된다. 삼채의황화합물은유사한채소인부추와는다소다르다. 두메부추를연속수증기증류추출장치로추출하면총 65종의휘발성물질이검출되는데, 그중 dimethyl disulfide 가가장많이함유되어있고, dimethyl trisulfide, trans- 1-propenyl methyl disulfide, trans-2-hexenal, methyl allyl disulfide 순이었다고보고하였다 (Park et al., 1998). 삼채의향기성분중에서가장많은비중을차지하는물질군은황화합물로나타났다 (Table 2). 잎의향기성분은황화합물류 6종 (46.53%), aldehydes Table 2. Relative concentration of functional groups in volatile components of A. hookeri Thwaites Functional group Counts of peak Peak area (%) Leaf Root Aldehydes 10 8.41 32.81 Hydrocarbons 1 0.10 0.09 Alcohols 4 0.95 0.31 Acids 1 0.12 1.11 Alkane 1-1.37 Sulfur 6 46.53 21.49 others 1 0.12 0.10 Total 24 56.23 57.28 류 3 종 (0.39%), alcohol 류 5 종 (7.7%), alkyl 류 2 종 (0.22%), acid 1 종 (0.12%) 및기타 1 종 (1.27%) 으로 구성되어있었다. 뿌리에서확인된주요휘발성성 분으로는황화합물류 5 종 (21.49%), aldehydes 류 4 종 (1.41%), alcohol 류 8 종 (32.08%), alkyl 류 2 종 (0.19%) 및 acid 1 종 (1.11%) 으로확인되었다. 그외에도휘발 성화합물의추출방법에따라서도다소차이를보일 수있다. 즉휘발성화합물추출시에주로사용하 는증류법은휘발성화합물의소실을초래할수있 으며, 유기용매의사용에따라서도화합물의종류 및함량에도차이를보일수도있다 (Oh et al., 2012). 또한기후, 토양등재배환경조건에따라서 도구성성분이나함량에차이를보일수도있다 (Lee et al., 2007; Hwang et al., 2013). 이와관 련된연구도필요할것으로사료된다. 3.2 잎과뿌리의아미노산함량 삼채의부위별로아미노산함량을조사하였다 (Fig. 3). 총아미노산함량은다른작물에비해낮 았지만, 잎에서는 20 종, 뿌리에서는 19 개의아미노 산이검출되었다. 아미노산의함량은잎에서는 0.134 mg/g, 뿌리에서는 0.105 mg/g 으로나타나 잎에많이함유되어있는것으로나타났다. 그러나 아미노산조성은두조직간에는큰차이를보이지
Kim et al : Analysis of Volatile Compounds by Headspace GC-MS and Amino acid of Allium hookeri 23 Table 3. Content of amino acid in leaf and root of A. hookeri Thwaites Number Amino acids Content (mg/g) Leaf Root 1 Phosphoserine 0.003 0.003 2 Taurine - - 3 Pho - - 4 Urea - - 5 Aspartic Acid 0.005 0.004 6 Hydroxyproline - - 7 Threonine 0.004 0.004 8 Serine 0.005 0.006 9 Asparagine - - 10 Glutamic Acid 0.018 0.019 11 Theanine - - 12 a-aminoadipic - - 13 Proline - - 14 Glycine 0.002 0.003 15 Alanine 0.01 0.01 16 Citrulline - - 17 a-amino-butyri - - 18 Valine 0.003 0.005 19 Cystine - - 20 Methionine 0.001 0.001 21 Isoleucine 0.004 0.004 22 Leucine 0.011 0.006 23 Tyrosine 0.005-24 Phenylalanine 0.006 0.004 25 b-alanine - - 26 B-Amino isobut 0.002 0.001 27 GABA - 0.001 28 Histidine 0.002 0.002 29 1-Methylhistid - - 30 2-Methy - - 31 Tryptophan - - 32 Carnosine 0.003-33 Ornithine 0.001 0.001 34 Lysine 0.016 0.003 35 Ammonia 0.016 0.017 36 Arginine 0.017 0.011 Total 0.134 0.105 않았다. 잎과뿌리에서가장함량이높은아미노산 은 glutamic acid 였으며, alanine, leucine, ornithine, ammonia 그리고 arginine 으로나타났다 (Table 3). 특이한것은함황아미노산인 methionine 이소량함 유되어있지만식물의 glutamic acid 로부터합성되 는 proline 은검출되지않았다. 이러한결과는부추 의결과와약간의차이를보인다. Lee & Chung (2001) 는두메부추잎의아미노산함량분석에서 proline 과 glutamine 과황아미노산인 cysteine 과 methionine 도비교적많이함유되어있는것으로 보고한바있다. 3.3 잎과뿌리의폴리페놀화합물함량 페놀성화합물은천연물에많이함유되어있는 성분으로항산화활성에매우중요한인자로작용 한다 (Jeong et al., 2009). 삼채의잎과뿌리조직 에함유되어있는폴리페놀함량을측정하였다. 그 결과폴리페놀은잎보다는뿌리에서 4 배많이함유 하고있었다 (Table 4). 즉폴리페놀은잎에서 0.28 mg/g, 뿌리에서 1.08 mg/g 의함량을보였다. 삼 채의폴리페놀함량은감잎 (5.80 mg/g), 율피 Fig. 3. Chromatograms of amino acid in leaf and root of A. hookeri Thwaites. (A) leaf and (B) root; (1) serine, (2) taurine, (3) phosphoethanolamine, (4) aspartic acid (5) threonine, (6) serine, (7) glutamic acid, (8) glycine, (9) alanine, (10) valine, (11) methionine, (12) isoleucine, (13) leucine, (14) tyrosine, (15) phenylalanine, (16) alanine, (17) b-aminoisobutyric acid, (18) butyric acid and (19) histidin
24 Journal of Agriculture & Life Science 49(2) Table 4. Content of total polyphenolic compound in leaf and root of A. hookeri Thwaites 1) Tissue Total polyphenolic compounds (mg/g extract) Leaf 0.28 ± 0.02 1) Root 1.08 ± 0.06 Each value represents the mean ± standard error of at three replicates. Polyphenol content analyzed by Folin-Denis method. (2.10 mg/g), 칡뿌리 (2.00 mg/g) 보다는낮았으나 (Lee & Lee, 1994), 당귀 (0.52 mg/g), 흑두 (0.55 mg/g), 백지 (0.75 mg/g), 소회향 (0.81 mg/g) 및 창출 (1.04 mg/g) 의결과와비교하면높다 (Moon et al., 2004). 상기결과로보면삼채는비교적강한 항산화효능을가질것으로판단된다. 본연구를통해유망채소자원인삼채에는 24 종의 향기성분과 21 종의아미노산을함유하고있으며, 1.08 mg/g 이상의비교적높은폴리페놀함량을가 지고있는것으로나타났다. 또한이들성분들은유 사한채소자원인부추, 마늘등의성분및함량과는 다소상이한특성을지닌것으로나타났다. 하지만, 향후삼채의이용성을증대시키기위해서는재배환 경에따른생리활성물질의파악과특성을구명하여 야할것으로판단된다. 본연구결과는삼채재배 및상품화개발에기초자료로활용될수있을것으 로사료된다. Ⅳ. 감사의글 본연구는산림청 산림과학기술개발사업 ( 과제번 호 : S211314L010140) 의지원에의하여이루어진 것입니다.» Literature cited Bae, G. C., and D. Y. Bae. 2012. The anti- inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Kor. J. herbol. 27: 55-61. Block, E. 1992. The organosulfur chemistry of the genus allium/implications for the organic chemistry of sulfur. Angew, Chem. Int. Ed. Engl. 31: 1135-1178. Borek, C. 2001. Antioxidant health effects of aged garlic extract. J. Nutr. 131: 1010-1015. Cavallito, C. J., J. H. Bailey, and J. S. Buck. 1976. The antibacteral principle of Allium sativum, Ⅲ, It's precusor and essential oil garlic. J. Amer. Chem. Soc. 67: 1032-1037. Cho Y. B., W. P. Park, E. J. Jung, M. J. Lee, and Y. B. Lee. 2002. Analysis of Volatile compounds in Kimchi-Flavored steak sauce. Kor. J. Food Sci. Technol. 34: 351-355. Chun, H. J., and J. E. Paik. 1997. Effect of heat treatment if garilc added diet on the blood of spontaneously hypertension Rat. Kor. Soc. Food Sci. Nutr. 26: 103-108. Chung, J. G. 1999. Effects of garlic components diallyl sulfide and diallyl disufied on arylamine N-acetyltransferase activity in human bladder tumor cells. Drug Chem. Toxicol. 22: 343-358. Colina-Coca, C., D. Gonza lez-pen a, E. Vega, B. deancos, and C. Sa nchez-moreno. 2013. Novel approach for the determination of volatile compounds in processed onion by headspace gas chromatography mass spectrometry (HS GC MS). Talanta 103: 13-144. Folin, O., and W. Denis. 1912. On Phosphotungstic phosphomolybdic compounds ad colour regents. J. Biolog. Chem. 12: 239-243. Heresztyn, T., M. I. Worthley, and J. D. Horowitz. 2004. Determination of Larginine and NG, NG - and NG, NG'-dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent
Kim et al : Analysis of Volatile Compounds by Headspace GC-MS and Amino acid of Allium hookeri 25 derivatives. J. Chromatography B. 805: 325-329. Hwang, S. H., S. J. Choi, Y. S. Hwang, and S. S. Lim. 2013. Comparison analysis of essential oils composition in difference parts from Lindera obtusiloba BL. according to the season by Gas Chromatography-Mass Spectrometry (GC-MS). Kor. J. Pharmacol. 44: 30-40. Jeon, D. B., S. I. Lee, J. S. Kim, Y. S. Hong, I. S. Jeong, S. H. Choi, E. Y. Noh, J. Y. Choi, I. K. Na, H. Y. Seo, and G. S. Kim. 2012. Comparison of Volatile components among fresh and semi-fermented leave of Zukro tea. Kor. Tea Soc. 18: 28-36. Jeon, S. Y., J. H. Baek, E. J. Jeong, and J. Y., Cha. 2012. volatile flavor compounds in commercial black garlic extracts. J. Kor. Soc. Food Sci. Nutr. 41: 116-122. Jeong, C. H., S. T. Kang, O. S. Joo, S. C. Lee, Y. H. Shin, K. H. Shim, S. H. Cho, S. G. Choi, and H. J. Heo. 2009. Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial green, puer, oolong, and black teas. Kor. Soc. Food Preserv. 16: 230-237. Kim, H. J., J. G. Ryu, J. C. Noh, S. S. Lee, and S. Park. 2003. Changes in lipoxygenase activity and volatile compounds of fresh tea leaves during early growing season. J. Kor. Soc. App. Biolog. Chem. 46: 23-27. Lee, B. W., H. C. Kim, J. G. Park, Y. J. Yoo, and M. Y. Yoo. 1995. Changes of microorganism during the storage of spices as affected by irradiation. Kor. J. Food Preserv. 2: 203-207. Lee, J. H., and S. R. Lee. 1994. Aanlysis of phenolic substances content of Korea plant foods. Kor. Soc. Food Sci. Technol. 26: 310-316. Lee, J. Y., L. F. Wang, J. H. Baik, and S. K. Park. 2007. Changes in volatile compounds of green tea during growing season at different culture areas. Kor. Soc. Food Sci. Technol. 39: 246-254. Lee, M. S., and M. S. Chung. 2001. Analysis of volatile flavor components from Allium senescens. Kor. Soc. Food Sci. Technol. 17: 55-59. Leustek, F., and K. Saito. 1999. Sulfate transport and assimilation in plants. J. Plant Physiol. 120: 637-643. Mellouki, F., A. Vannereau, J. Auger, J. L. Marcotte, and L. Cosson. 1994. Flavor production in tissue cultures of chive (A. schoenoprasum L.): callus structure and flavor production. Plant Sci. 95: 165-173. Moon, J. S., S. J. Kim, Y. M. Park, I. S. Hwang, E. Y. Kim, J. W. Park, I. B. Park, S. W. Kim, W. G. Kang, Y. K. Park, and S. T. Jung. 2004. Antimicrobial effect of methanol extracts from some medicinal herbs and content of phenolic compounds. Kor. J. Food Preserv. 11: 207-213. Oh, M., S. Y. Bae, and M. S. Chung. 2012. Allium senescens L. var. senescens, dumebuchu, essential oils, hydrodistillation, sulfur- containing compounds. Kor. Soc. Food Cook. Sci. 28: 143-148. Pinto, J. F., and R. S. Rivlin. 2001. Antiproliferative effects of allium derivatives from garlic. J. Nutr. 131: 1058-1060. Park, E. R., J. O. Jo, S. M. Kim, M. Y. Lee, and K. S. Kim. 1998. Volatile flavor component of leek (Allium tuberosum Rottler). J. Kor. Soc. Food Sci. Nutr. 27: 563-567. Rosenfelder, N., N. J. VanZee, J. F. Mueller, C. Gaus, and W. Vetter. 2010. Development and use of a novel nontarget GC/EI-MS selected ion monitoring method for a thorough investigation of polyhalogenated compounds in environmental samples with quadrupole systems. Anal. Chem. 82: 9835-9842. Shenoy, N. R. 1992. Inhibitory effect of diet related sulphydryl compounds in the formation of
26 Journal of Agriculture & Life Science 49(2) carcinogenic nitrosamine. Cancer Letters. 31: 227-232. Takahashi, S., and K. Hakoi. 1992. Enhancing effects of diallyl sulfide on hepatocarcinogenesis and inhibitory actions of the related diallyl disulfide on colon and renal carcinogenesis in rats. Carcinogenesis. 13: 1513-1518. Yu, T. H., C. M. Wu, and Y. C. Liou. 1989. Volatile compounds from garlic, J. Agric. Food Chem. 37: 725-730.