J Korean Soc Food Sci Nutr 한국식품영양과학회지 47(10), 973~980(2018) https://doi.org/10.3746/jkfn.2018.47.10.973 새싹보리잎, 뿌리및줄기에탄올추출물의항산화활성및신경세포보호효과비교 변의홍 1 김광욱 1 김이은 1 조은지 1 민희숙 1 이정현 1 조규성 2 윤우정 3 김병천 3 안동현 4 박원종 1 1 공주대학교식품공학과, 2 푸코바이오기술연구원 3 농업회사법인 ( 주 ) 주성, 4 부경대학교식품공학과 / 식품연구소 Comparison Study of Antioxidant Activity and Neuroprotective Effects of Barley Sprout Leaf, Root, and Stem Ethanol Extracts Eui-Hong Byun 1, Kwangwook Kim 1, Yi-Eun Kim 1, Eun-Ji Cho 1, Hee-Suk Min 1, Jeong-Hyeon Lee 1, Gyu-Seong Cho 2, Woo Jung Yoon 3, Byung Chean Kim 3, Dong-Hyun Ahn 4, and Won-Jong Park 1 1 Department of Food Science and Technology, Kongju National University 2 Food and Cosmetics Biotechnology Research 3 Agriculture Jusung Limited Company 4 Department of Food Science and Technology/Institute of Food Science, Pukyong National University ABSTRACT It is believed that barley sprouts (Hordeum vulgare L.) have antioxidant, lipid metabolic, anti-cancer, and anti-fatty liver formation effects; however, no studies have been conducted to confirm this. Therefore, the present study was conducted to compare the leaf, root, and stem extracts of barley sprouts in terms of their total polyphenol contents, flavonoid contents, antioxidant activities, and neuroprotective effects. To accomplish this, barley sprout leaves, roots, and stems were individually extracted using ethanol. The highest levels of total polyphenols and total flavonoids were observed in barley sprout leaf extract. Similarly, antioxidant activities resulted in radical scavenging activities [2,2-diphenyl-1-picrylhydrazyl and 2,2 -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and reduced power increased significantly in the extract of barley sprout leaves. In addition, barley sprout leaves, roots, and stems significantly increased cell viability in H 2O 2-treated HT22 cells. Further, barley sprout leaves increased superoxide dismutase activity and decreased the malonaldehyde level. In conclusion, these results indicate that leaves of barley sprouts can be used as a new natural antioxidant source and that they have the potential to prevent and treat neuro-degenerative diseases. Key words: sprout barley, antioxidant activity, polyphenol, flavonoid, neuroprotective effect 서 생체의대사과정에서생성되는 superoxide radical(o 2- ), hydroxyl radical(ho ), hydrogen peroxide(h 2O 2), 일중항산소 ( 1 O 2) 와같은활성산소종 (reactive oxygen species) 은생체내에서산화생성물을합성하며, 이렇게생성된산화물질은생체에치명적인독성을일으키며 (1), 세포독성및암세포의형성을촉진한다 (2). 또한, 활성산소는세포소기관의손상을초래하기도하고생체내단백질의아미노산을산화시켜단백질의기능저하를초래하며 (3,4), DNA에도 Received 31 July 2018; Accepted 11 September 2018 Corresponding author: Won-Jong Park, Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439, Korea E-mail: pwj@kongju.ac.kr, Phone: +82-41-330-1483 론 손상을주어돌연변이나암의원인이되기도한다. 우리몸에서발생하는질환중에암, 동맥경화, 당뇨병, 뇌졸중, 간염, 심근경색, 신장염, 아토피성피부염, 파킨슨병등이활성산소와관련이있다고알려져있다 (5-8). 이러한활성산소는항산화제를통해제거되는데비타민 C, 비타민 E, β-카로틴, 카로티노이드등이대표적인항산화제물질이며폴리페놀및플라보노이드또한항산화물질로알려져있다 (9-11). 따라서생체내활성산소발생을억제하기위해항산화물질개발에관한연구들이증가하고있으며, 강력한항산화력을지닌 butylated hydroxyanisole(bha) 및 butylated hydroxytoluene(bht) 과같은합성항산화제가있지만, 간독성등부작용문제가제기되어이를대체할수있는식품에서유래된천연항산화제개발이요구되고있다 (12). 게다가이전연구에노인성치매 (Alzheimer s disease; AD) 와같은신경퇴행성질환의주된원인이활성산소에기인한다
974 변의홍 김광욱 김이은 조은지 민희숙 이정현 조규성 윤우정 김병천 안동현 박원종 는것이보고되어있고 (13,14), 이활성산소를조절할수있는항산화제의개발과연구에많은관심이집중되고있다. 보리 (Hordeum vulgare L.) 는벼과 (Poaceae/Gramineae) 에속하는한해살이작물로세계각국에서재배되는대표적인곡물이다. 우리나라의경우쌀다음으로많이소비되는곡물로, 식량작물로는가장오래된작물중의하나이다 (15). 보리에는 quercetin, kaempferol, catechin과같은플라보노이드와비타민 C, 비타민 E, β-카로틴등의항산화물질을함유하고있고 (16,17), saponarin, lutonarin 등다양한폴리페놀화합물을함유하고있으며콜레스테롤을낮추어주는수용성식이섬유 β-glucan 또한많이함유하고있기때문에비만, 고혈압과당뇨병등의성인병예방에효과가있다고알려져있다 (11,18-20). 새싹보리의경우자신을보호하고싹을틔우기위해완전히자란보리보다각종아미노산, 비타민, 무기질을비롯한식이섬유소와다양한생리활성물질들을다량함유하고있다고보고되어있다 (19-21). 이러한항산화제효과가있는보리는보리잎추출물에서폴리페놀화합물, 플라보노이드등이함유되어있고항산화, 항염등의생리작용을한다고알려져있다 (22,23). 이렇게새싹보리의연구가진행되고있지만새싹보리잎, 뿌리및줄기추출물의항산화활성및신경세포보호효과비교연구는거의이루어지지않았다. 따라서본연구에서는새싹보리의잎, 뿌리, 줄기를부위별로각각의에탄올추출물에대한총폴리페놀과플라보노이드함량, 항산화활성및신경세포보호효과에관하여비교평가하였다. 물 20 μl에증류수 400 μl를가한후, 2 N Folin-Ciocalteu phenol reagent(sigma-aldrich Co., St. Louis, MO, USA) 40 μl를넣은다음교반하였다. 이용액에 20% Na 2CO 3 400 μl를가한후 37 C에서 30분동안반응시킨다음 microplate reader를이용하여 765 nm에서흡광도를측정하였다. 총폴리페놀정량은 gallic acid(sigma-aldrich Co.) 를표준물질로사용하여작성한표준곡선으로부터산출하였다. 총플라보노이드함량분석새싹보리잎, 뿌리및줄기추출물의총플라보노이드의함량은 Davis(25) 의방법을일부변형하여분석하였다. 추출물 500 μl에 diethylene glycol(sigma-aldrich Co.) 5 ml 와 1 N NaOH 500 μl를혼합하여 37 C 항온수조에서 1시간동안반응시켰다. 흡광도의변화는 microplate reader를이용하여 420 nm에서측정하였으며, 총플라보노이드의정량을위하여 naringin(sigma-aldrich Co.) 을이용하여작성한표준곡선으로부터총플라보노이드함량을산출하였다. DPPH 라디칼소거능측정새싹보리잎, 뿌리및줄기추출물의 2,2-diphenyl-1- picrylhydrazyl(dpph, Sigma-Aldrich Co.) 라디칼소거능은 Kim 등 (26) 의방법을일부수정하여분석하였다. 메탄올에용해된 0.1 mm의 DPPH 용액 100 μl에농도별새싹보리추출물 (0.31, 0.62, 1.25, 2.5, 5, 10 mg/ml) 을첨가한후암실에서 30분간반응시킨다음 microplate reader를이용하여 517 nm에서흡광도를측정하였다. 재료및방법실험재료새싹보리의부위별항산화활성및신경세포보호효과를비교하기위하여새싹보리잎, 뿌리및줄기를사용하였다. 새싹보리잎, 뿌리및줄기는대한민국경기도안성시농업회사법인 ( 주 ) 주성에서재배한시료를구입하여사용하였다. 새싹보리에탄올추출물의제조새싹보리잎, 뿌리및줄기를 70 C에서 24시간동안열풍건조하였다. 건조한시료는실험실용분쇄기 (NSG-100 2 SS, Hanil, Seoul, Korea) 로분쇄하여각각의분말 20 g에 400 ml의 95% 에탄올을가하여 24시간동안교반추출하였고동일조건으로 2회반복하여상등액을분리하였다. 분리된추출상등액을 filter paper(no.4, Whatman, Kent, UK) 로여과후감압농축하였고, 각시료를동결건조하여 -70 C에보관하여사용하였다. 총폴리페놀함량분석새싹보리잎, 뿌리및줄기추출물의총폴리페놀함량은 Folin-Denis 방법 (24) 을일부수정하여분석하였다. 추출 Scavenging activity (%) =(1- Asample-Ablank1 ) 100 A blind-a blank2 여기서 A sample 은 sample과 DPPH 반응용액의흡광도를의미하며, A blank1 은 sample의단독흡광도를나타내고, A blind 는 DPPH 용액의단독흡광도를나타내며, A blank2 는공시료를나타낸다. ABTS 라디칼소거능측정새싹보리잎, 뿌리및줄기추출물의 2,2 -azino-bis(3- ethylbenzothiazoline-6-sulfonic acid)(abts, Sigma-Aldrich Co.) 라디칼소거능은 Re 등 (27) 의방법을이용해서측정하였다. 7.4 mm ABTS와 2.6 mm potassium persulfate(sigma-aldrich Co.) 를 24시간동안암소방치하여 ABTS 라디칼을형성시킨후, 이용액을 760 nm에서흡광도값이 1.5가되도록증류수로희석하였다. 희석된 ABTS 용액 1 ml에농도별로제조한시료 (0.31, 0.62, 1.25, 2.5, 5, 10 mg/ml) 20 μl를처리한후 microplate reader를이용하여 760 nm에서흡광도를측정하였다. Scavenging activity (%) =(1- Asample ) 100 A blind
새싹보리추출물의항산화활성및신경세포보호효과비교 975 여기서 A sample 은 sample과 ABTS 반응용액의흡광도를의미하며, A blind 는 ABTS 용액의단독흡광도를나타낸다. FRAP(ferric-reducing antioxidant potential) 측정새싹보리잎, 뿌리및줄기추출물의 FRAP 측정방법은 Benzie와 Strain(28) 의방법을참고하여측정하였다. FRAP reagent는 25 ml acetate buffer(300 mm, ph 3.6) 를 37 C에서가온한후, 40 mm HCl에용해한 10 mm 2,4,6-tris (2-pyridyl)-s-triazine(TPTZ, Sigma-Aldrich Co.) 5 ml 와 20 mm ferric sulfate(feso 4) 2.5 ml를가하여제조하였다. 제조된 0.9 ml FRAP reagent에 1 mg/ml의농도로용해시킨시료각각의분획물 0.03 ml와증류수 0.09 ml를넣은후 37 C에서 10분간반응시킨다음 593 nm에서 microplate reader를이용하여흡광도를측정하였다. 환원력측정환원력은 Oyaizu(29) 의방법을일부변형하여분석하였다. 농도별 (0.31, 0.62, 1.25, 2.5, 5, 및 10 mg/ml) 새싹보리잎, 뿌리및줄기추출물 100 μl에 0.2 M sodium phosphate buffer(ph 6.6) 100 μl 및 1% potassium ferricyanide(sigma-aldrich Co.) 100 μl를각각첨가하여 50 C 항온수조에서 20분반응시킨후 10% trichloroacetic acid (Sigma-Aldrich Co.) 100 μl를가하고 12,000 rpm에서 10분동안원심분리하였다. 그후 0.1% ferric chloride (Sigma-Aldrich Co.) 를 20 μl 가하여 37 C 항온수조에서 20분반응시킨다음 microplate reader를이용하여 700 nm에서환원력을측정하였다. HT22 mouse hippocampal 세포배양생쥐해마유래 HT22 cell line은전북대학교수의과대학에서분양받아사용하였으며, 10% fetal bovine serum과 penicillin, streptomycin(100 IU/mL, 100 μg/ml) 을함유한 Dulbecco s modified Eagle s medium(dmem) 용액으로 37 C로유지되는 5% CO 2 배양기에서배양하였다. HT22 세포생존율평가 HT22 cell을 3 10 4 cells/well씩 96-well plate(spl, Pocheon, Korea) 에분주하고, 37 C, 5% CO 2 incubator에서 12시간동안배양하면서세포를완전히부착시킨후농도별 (31.25, 62.5, 125, 250 및 500 μg/ml) 새싹보리잎, 뿌리및줄기추출물과 H 2O 2 500 μm을동시처리하였다. 37 C 5% CO 2 조건으로 5시간동안배양한후 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide(mtt, Sigma-Aldrich Co.) 분석을통해세포독성을산출하였다. MTT assay는 MTT 용액 (5 mg/ml) 을 30 μl씩각각 well에첨가하고 2시간동안배양한후배양상등액을제거하고생성된 formazan crystal을 dimethyl sulfoxide(dmso, Sigma-Aldrich Co.) 에녹여 517 nm에서흡 광도를측정하였다. 세포내 superoxide dismutase(sod) activity 측정새싹보리추출물이미치는 SOD 활성은 SOD assay kit (Dojindo, Kyushu, Japan) 을이용하여측정하였다. 6-well plate에 HT22 cell을 5 10 5 cells/well로분주하고, 37 C, 5% CO 2 incubator에서 6시간동안배양하면서세포를완전히부착시킨후농도별 (250, 500 μg/ml) 새싹보리잎, 뿌리및줄기추출물과 H 2O 2 를동시처리하였다. 37 C 5% CO 2 조건으로 5시간동안배양한후 cell lysis buffer(cell Signaling, Danvers, MN, USA) 를첨가하여 ice에서 5분반응시키고, sonication 시킨후 13,000 rpm에서 10분간원심분리하여 cell lysate를분리하였다. 분리된 cell lysate 는 BCA protein detection kit(thermo Scientific, Rockford, IL, USA) 을사용하여 1 mg/ml의농도로단백질정량하여기질로사용하였으며, 측정과정은제조자가제시한지침에따라진행하였다. 세포내 malonaldehyde(mda) level 측정새싹보리추출물이 H 2O 2 유도독성으로부터생성되는 HT22 세포에서의 MDA level을평가하기위해 MDA 586 kit(oxis Research, Portland, OR, USA) 을이용하였다. 위의 1 mg/ml로정량한 cell lysate를이용하여제조자가제시한지침에따라 MDA level을측정하였다. 통계처리이상의새싹보리잎, 뿌리및줄기추출물의총폴리페놀, 플라보노이드및항산화활성실험에서얻어진결과는 Statistical Package for Social Sciences(SPSS, 10.0, IBM, Chicago, IL, USA) software를이용하여 one-way ANOVA test로분석하였으며, 시료간의유의성은 Duncan s multiple range test로 P<0.05 수준에서비교하였다. 결과및고찰추출수율, 총폴리페놀및플라보노이드함량새싹보리추출물의항산화활성에관하여알아보기이전에새싹보리잎, 뿌리및줄기에탄올추출물추출수율에관하여평가하였다 (Table 1). 새싹보리추출수율은뿌리에서 18.26% 로가장높게나타났으며, 잎 13.78%, 줄기 5.55 % 순으로관찰되었다. Benzene 고리의수소중하나가 hydroxyl(-oh) 로치환된물질을페놀이라하며 2개이상의하이드록시기를갖고있는물질을폴리페놀이라고하며 (30), 폴리페놀은대표적인천연항산화물질중의하나로써폴리페놀함량은식품의항산화력을결정짓는데매우중요한인자로작용한다 (31, 32). 새싹보리잎, 뿌리및줄기에함유된폴리페놀양을 gallic acid equivalents/g으로환산하여표시한결과 (Table
976 변의홍 김광욱 김이은 조은지 민희숙 이정현 조규성 윤우정 김병천 안동현 박원종 Table 1. The comparison of yield, total polyphenol contents, and total flavonoid contents in leaf, root, and stem ethanol extract of barley sprout Sample Yield Total polyphenol Total flavonoid (%) (mg GAE/g) (mg NAR/g) Leaf Root Stem 13.78 18.26 5.55 104.154±0.28 a1)2) 73.309±0.21 b 51.512±0.47 c 721.294±6.48 a 53.451±2.37 c 116.588±6.30 b 1) Each value is mean±sd. 2) Values with different letters (a-c) in a column are significantly different (P<0.05). 1), 새싹보리잎에서 104.154±0.28 mg/g으로가장높게관찰되었으며, 뿌리 73.309±0.21 mg/g, 줄기 51.512±0.47 mg/g 순으로관찰되었다. 플라본을기본구조로갖는플라보노이드는폴리페놀의일종으로페닐기 2개가 C 6-C 3-C 6 형탄소골격구조와결합되어있는화합물로서 (30), 식물의꽃, 줄기및열매등에많이함유되어있으며, 항산화, 항암및항염증효과등다양한기능성을가지고있다 (33). 새싹보리잎, 뿌리및줄기추출물의플라보노이드양을 naringin equivalents/g으로환산하여표시한결과 (Table 1), 새싹보리잎에서 721.294±6.48 mg/g으로가장높게관찰되었으며, 줄기 116.588±6.30 mg/g, 뿌리 53.451±2.37 mg/g 순으로관찰되었다. Park 등 (34,35) 은보리잎을다양한방법으로건조하여이화학적특징을분석하였고, 외관상품질은동결건조를하였을때가장좋았으나음건하였을때성분의파괴가가장덜하다고보고하였으며, 건조방법별보리잎의총플라보노이드함량은열처리후건조한보리잎에서플라보노이드함량이높게나타나는것으로보고하고있어, 본실험에서새싹보리잎에서총폴리페놀과플라보노이드함량이가장높게나타난다는결과를뒷받침해준다. 따라서본실험에서새싹보리잎, 뿌리및줄기추출물의항산화활성에필요한대표물질인폴리페놀과플라보노이드함량측정결과, 새싹보리뿌리, 줄기에비해잎에서가장높게나타났으며, 이로인해새싹보리잎에서높은항산화효과를 나타낼것으로판단된다. 자유라디칼소거활성새싹보리잎, 뿌리및줄기의항산화활성을알아보기위해 DPPH 및 ABTS 라디칼소거활성에대하여조사하였다. DPPH는천연항산화제의자유라디칼소거활성을평가하는데사용되며 (36), 산화된형태에서 cysteine, glutathione, aromatic amine, BHA 등과같은항산화제에의해전자를얻거나환원되어짙은자색의 DPPH가발색되는성질을이용하여다양한물질의항산화활성을확인하는데사용되고있다 (37,38). 이러한 DPPH 라디칼소거능을알아본결과 (Fig. 1), 새싹보리의잎, 뿌리및줄기모두농도 (0.31, 0.62, 1.25, 2.5, 5, 10 mg/ml) 가증가할수록 DPPH 라디칼소거능이유의적으로증가하는것이관찰되었다. 특히새싹보리잎의 DPPH 라디칼소거능이가장높게나타났으며, 다음으로뿌리, 줄기순으로높게나타나는것을관찰할수있었다. ABTS 또한항산화활성을측정하는데사용되는방법으로, 라디칼을생성하는 ABTS 존재시과산화수소와 metmyoglobin의활성을이용해보다빠른항산화반응을일으켜 myoglobin radical을감소시키는기전이라고할수있다 (39). 이러한 ABTS 라디칼소거능을알아본결과 (Fig. 1), DPPH 라디칼소거능결과와유사하게새싹보리의잎, 뿌리및줄기모두농도별 (0.31, 0.62, 1.25, 2.5, 5, 10 mg/ml) 로 ABTS 라디칼소거능활성이농도의존적으로증가하는것을관찰하였다. 그중새싹보리잎의 ABTS 라디칼소거능활성이가장높게관찰되었으며, 새싹보리뿌리, 줄기순으로높게나타나는것을관찰할수있었다. Jang 등 (40) 은보리잎을이용한보리잎차의 DPPH 라디칼소거능 11.06%, 아질산염소거능 74.88% 를나타냈으며, SOD 유사활성은 12.99% 로매우높은수치는아니지만보리잎의항산화활성능력이보고되어있다. 게다가 Park 등 (35) 에서는보리생잎에서 SOD 유사활성이 95.69±0.33% 로매우높은결 Fig. 1. DPPH and ABTS radical scavenging activities of barley sprout leaf, root, and stem ethanol extracts. Results were expressed the radical scavenging activities as inhibition percent. The data represent the mean±sd (n=3). Values with different letters (a-l) are significantly different (P<0.05).
새싹보리추출물의항산화활성및신경세포보호효과비교 977 과를나타내고있어본연구결과를뒷받침해주고있다. 따라서본연구에서새싹보리의잎, 뿌리, 줄기의자유라디칼소거능에관하여평가해본결과새싹보리의잎에서 DPPH 와 ABTS 라디칼소거능이새싹보리의뿌리와줄기보다가장높게관찰되었기때문에새싹보리의잎에서항산화활성에높은영향을준다고판단된다. 환원력환원력의측정은시료가페놀성화합물에의해 Fe 3+ 이온을 Fe 2+ 로환원시키는능력을측정하여항산화활성을측정하는방법으로, 시료의환원력이강할수록 tripyridyltriazine(tptz) 과결합하여진한녹색에가깝게발색되어높은흡광도값을나타내는것으로알려져있다 (41). 이런환원력이클수록활성산소를제거하는능력이증가하므로환원력이큰물질일수록활성산소에의한질병을예방및치료하는효과가크다고볼수있다. 새싹보리잎, 뿌리및줄기를농도별 (0.31, 0.62, 1.25, 2.5, 5, 10 mg/ml) 로처리했을때환원력을측정한결과 (Fig. 2), 전반적으로농도의존적으로환원력이증가하였고새싹보리의잎에서환원력이가장높게관찰되었으며그다음으로새싹보리뿌리와줄기순으로높은것이관찰되었다. 이와같은결과는앞서기술한바와같이새싹보리의잎에서총폴리페놀및플라보노이드함량과자유라디칼소거활성이가장높게관찰되었고새싹보리뿌리와줄기가그다음순으로높게관찰된것으로보아식품의총폴리페놀및플라보노이드함량과자유라디칼소거활성이환원력과의상관관계가있음을판단할수있는데, 기존연구에의하면폴리페놀및플라보노이드함량은 DPPH 라디칼소거활성및 ABTS 라디칼소거활성과연관이있고환원력과도밀접한관계를갖고있다고보고되어있다 (42-44). 따라서본연구에서새싹보리잎이뿌리나줄기보다환원력이높으므로천연항산화소재로개발될가능성이있다고판단된다. 새싹보리의신경세포보호효과 MTT assay는살아있는세포의미토콘드리아에있는탈수소효소작용에의해노란색의수용성 MTT tetrazolium 을청자색을띠는비수용성 MTT formazan 결정으로환원시키는능력을이용하는측정법으로 (45), 새싹보리가생쥐유래해마세포의세포독성에미치는영향을평가하기위하여 HT22 cell에새싹보리잎, 뿌리및줄기를농도별 (31.25, 62.5, 125, 250, 500 μg/ml) 로처리하여세포생존율을 MTT assay로측정한결과 (Fig. 3), 새싹보리잎, 뿌리및줄기모두세포생존율이농도의존적으로미세하게증가하는것이관찰되었다. 따라서새싹보리자체는세포에독성이없음을확인할수있었고, 새싹보리가 H 2O 2 에서유도된산화독성으로부터세포를보호하는효과를평가한결과 (Fig. 3), 새싹보리잎, 뿌리및줄기모두 H 2O 2 에서유도된산화독성으로부터농도 (31.25, 62.5, 125, 250, 500 μg/ml) 의존적으로세포를보호하는효과가관찰되었다. 항산화효소 SOD의활성은자유라디칼을제거하는데기여하며, 이 SOD 활성이저하되면세포독성을일으켜 Alzheimer s disease 및 Parkinson s disease와같은신경계질환을일으킨다 (46). 이에 H 2O 2 에서유도된산화독성으로부터새싹보리에의해세포내 SOD 활성증가여부를측정한결과 (Fig. 4), 새싹보리잎과뿌리에의해세포내 SOD 활성이증가하는것을관찰할수있었고, 특히새싹보리잎에서가장높은활성을관찰할수있었다. 자유라디칼과활성산소에의한지질과산화반응은신경세포막손상에치명적이다 (47). 지질과산화생성물인 MDA 는 Alzheimer s disease 및 Parkinson s disease를포함한뇌질환연구에서신경세포의지질과산화의정도를측정하는지표로많이사용된다 (48). 본실험에서새싹보리잎, 뿌리및줄기가 H 2O 2 에서유도된 MDA를억제하는지평가한결과 (Fig. 4), 새싹보리잎, 뿌리및줄기모두농도 (250, 500 μg/ml) 의존적으로 H 2O 2 에서유도된 MDA level을감소시켰고새싹보리잎과뿌리에서가장많이감소시켰다. Fig. 2. FRAP and reducing power of barley sprout leaf, root, and stem ethanol extracts. Results were expressed the radical scavenging activities as inhibition percent. The data represent the mean±sd (n=3). Values with different letters (a-o) are significantly different (P<0.05).
978 변의홍 김광욱 김이은 조은지 민희숙 이정현 조규성 윤우정 김병천 안동현 박원종 Fig. 3. Effect of barley sprout leaf, root, and stem ethanol extracts on proliferation of HT22 mouse hippocampal cells. Cell viability was measured in indicated doses. Inhibitory effects of barley sprout leaf, root, and stem ethanol extracts (31.25 500 μg/ml) in H 2O 2 (500 μm)-induced cell death was analyzed by MTT assay. The data represent the mean±sd (n=3). Values with different letters (a-g) are significantly different (P<0.05). Fig. 4. Effect of barley sprout leaf, root, and stem ethanol extracts of cellular SOD activity and cellular MDA level on HT22 mouse hippocampal cells. The cellular SOD activity and cellular MDA level were measured in indicated doses. The data represent the mean±sd (n=3). Values with different letters (a-e) are significantly different (P<0.05). 신경세포에서의산화적스트레스에의한세포손상은신경세포사멸을일으키며결과적으로 Alzheimer s disease 및 Parkinson s disease와같은신경계질환을초래하게되지만 (49), 천연항산화소재인폴리페놀과플라보노이드등은산화적스트레스로부터신경세포보호효과가뛰어난것으로보고되고있다 (50,51). 따라서새싹보리추출물은퇴행성신경계질환의예방및치료제로서의활용가능성이높다고판단되며, 특히새싹보리잎추출물에서가장높은효과를기대할것이라판단된다. 결론적으로새싹보리잎이뿌리나줄기보다총폴리페놀, 플라보노이드함량및항산화활성이가장높으며, 신경세포보호효과도가장높은것을관찰할수있었다. 요약새싹보리는보리 (Hordeum vulgare L.) 종자에서발생한싹을키워발아한지일주일정도된어린보리이며완전히 자란보리보다기능성물질을다량함유하고있다고알려져있다. 이런새싹보리의부위별생리활성연구는많이미흡한실정이다. 따라서본연구에서는새싹보리의잎, 뿌리, 줄기에탄올추출물의총폴리페놀과플라보노이드함량, 항산화활성및신경세포보호효과에관하여비교하였다. 천연물항산화력의지표물질인폴리페놀및플라보노이드함량은새싹보리의뿌리, 줄기보다잎에서더욱높게측정되었으며, 새싹보리잎이 DPPH, ABTS 라디칼소거능및환원력평가에서도뿌리, 줄기보다더높은항산화활성을관찰되었다. 또한, 새싹보리잎, 뿌리및줄기의신경세포보호효과를확인하기위해 H 2O 2 로산화적스트레스를유도하여세포독성, SOD 활성및 MDA level을확인한결과, 새싹보리잎에서세포생존율증가, SOD 활성증가및 MDA level 감소가가장높게관찰되었다. 이는새싹보리의잎이다른부위인뿌리, 줄기보다천연항산화소재와신경세포보호소재로개발될가능성이월등히높다는것을보여주고있다.
새싹보리추출물의항산화활성및신경세포보호효과비교 979 감사의글 본연구는 2018년농업회사법인 ( 주 ) 주성의연구비지원에의하여수행된결과로이에감사드립니다. REFERENCES 1. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. 2. Lee JN, Kim SW, Yoo YK, Lee GT, Lee KK. 2006. Antiwrinkle effect of Morinda citrifolia (Noni) extracts. J Soc Cosmet Scientists Korea 32: 227-231. 3. Farinati F, Cardin R, Degan P, Rugge M, Mario FD, Bonvicini P, Naccarato R. 1998. Oxidative DNA damage accumulation in gastric carcinogenesis. Gut 42: 351-356. 4. Cooke MS, Mistry N, Wood C, Herbert KE, Lunec J. 1997. Immunogenicity of DNA damaged by reactive oxygen species-implications for anti-dna antibodies in lupus. Free Radic Biol Med 22: 151-159. 5. Darley-Usmar V, Halliwell B. 1996. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 13: 649-662. 6. Parthasarathy S, Steinberg D, Witztum JL. 1992. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Ann Rev Med 43: 219-225. 7. Laurindo FR, da Luz PL, Uint L, Rocha TF, Jaeger RG, Lopes EA. 1991. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83: 1705-1715. 8. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. 1991. Does superoxide underlie the pathogenesis of hypertension?. Proc Natl Acad Sci U S A 88: 10045-10048. 9. Kim EJ, Choi JY, Yu MR, Kim MY, Lee S, Lee BH. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J Food Sci Technol 44: 337-342. 10. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extract from vegetables produced in Ullung Island. Korean J Food Sci Technol 37: 233-240. 11. Gangopadhyay N, Hossain MB, Rai DK, Brunton NP. 2015. A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules 20: 10884-10909. 12. Joo HY, Lim KT. 2009. Protective effect of glycoprotein isolated from Cudrania tricuspidata on liver in CCI 4-treated A/J mice. Korean J Food Sci Technol 41: 93-99. 13. Runyons CR, Schmitt FA, Caban-Holt A, Kryscio RJ, Mendiondo MS, Markesbery WR. 2005. Antioxidants for the prevention of dementia: Overview of the preadvise trial. Alzheimer s and Dementia 1: S74. 14. Behl C. 1999. Alzheimer s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 57: 301-323. 15. Kim DC, Kim DW, Lee SD, In MJ. 2006. Preparation of barley leaf powder tea and its quality characteristics. J Korean Soc Food Sci Nutr 35: 734-737. 16. Eun CS, Hwang EY, Lee SO, Yang SA, Yu MH. 2016. Antioxidant and anti-inflammatory activities of barley sprout extract. J Life Sci 26: 537-544. 17. Jo SH, Cho CY, Ha KS, Choi EJ, Kang YR, Kwon YI. 2013. The antioxidant and antimicrobial activities of extracts of selected barley and wheat inhabited in Korean Peninsula. J Korean Soc Food Sci Nutr 42: 1003-1007. 18. Lee KS, Park GS. 2014. Studies in the consumption and preference for sprout vegetable. J East Asian Soc Diet Life 24: 896-905. 19. Kim IS, Han SH, Han KW. 1997. Study on the chemical change of amino acid and vitamin of rapeseed during germination. J Korean Soc Food Sci Nutr 26: 1058-1062. 20. Kim KT, Kim SS, Lee SH, Kim DM. 2003. The functionality of barley leaves and its application on functional foods. Food Science and Industry 36(1): 45-49. 21. Lee CH, Shin SL, Kim NR, Yoon SE, Kim SI, Baek SH, Hwang JH. 2009. Changes of antioxidant effect according to greening period of Astrangalus membranaceus var. membranaeus, Senna occidentalis, Dianthus longicalyx, and Plantago asiatica sprout vegetables. Korean J Plant Res 22: 349-358. 22. Lee YC, Son JY, Kim TJ, Kim SS. 1994. Antioxidant activity of solvent extract isolated from barley leaves. Korean J Food Nutr 7: 332-337. 23. Ohkawa M, Kinjo J, Hagiwara Y, Hagiwara H, Ueyama H, Nakamura K, Ishikawa R, Ono M, Nohara T. 1988. Three new anti-oxidative saponarin analogs from young green barley leaves. Chem Pharm Bull 46: 1887-1890. 24. Appel HM, Govenor HL, D Ascenzo M, Siska E, Schultz JC. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27: 761-778. 25. Davis WB. 1947. Determination of flavanones in citrus fruits. Anal Chem 19: 476-478. 26. Kim DO, Lee KW, Lee HJ, Lee CY. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50: 3713-3717. 27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. 28. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power : the FRAP assay. Anal Biochem 239: 70-76. 29. Oyaizu M. 1986. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. 30. Masamoto Y, Ando H, Murata Y, Shimoishi Y, Tada M, Takahata K. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L.. Biosci Biotechnol Biochem 67: 631-634. 31. Perron NR, Brumaghim JL. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53: 75-100. 32. Dragsted LO. 2003. Antioxidant actions of polyphenols in humans. Int J Vitam Nutr Res 73: 112-119. 33. Vijaya K, Ananthan S, Nalini R. 1995. Antibacterial effect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp.-a cell culture study. J Ethnopharmacol 49: 115-118. 34. Park SJ, Joung YM, Choi MK, Kim YK, Kim JG, Kim KH, Kang MH. 2008. Chemical properties of barley leaf using different drying methods. J Korean Soc Food Sci Nutr 37: 60-65. 35. Park SJ, Lee JS, Hoe YH, Moon EY, Kang MH. 2008. Physiology activity of barley leaf using different drying methods. J Korean Soc Food Sci Nutr 37: 1627-1631.
980 변의홍 김광욱 김이은 조은지 민희숙 이정현 조규성 윤우정 김병천 안동현 박원종 36. Kang DY, Shin MO, Shon JH, Bae SJ. 2009. The antioxidative and antimicrobial effects of Celastrus orbiculatus. J Life Sci 19: 52-57. 37. Jung YT, Lee IS, Whang K, Yu MH. 2012. Antioxidant effects of Picrasma quassioides and Chamaecyparis obtuasa (S. et Z.) ENDL extracts. J Life Sci 22: 354-359. 38. Park EJ, Kim SH, Kim KS, Oh HJ. 2013. Effect of administration method on blood Garcinia cambogia concentration and antioxidative activity. J Korean Soc Food Sci Nutr 42: 856-860. 39. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84: 407-412. 40. Jang JH, Choi HS, Cheong HS, Kang OJ. 2007. A comparison of the antioxidant activity of barley leaf tea and green tea according to leaching conditions in distilled water. Korean J Food Cook Sci 23: 165-172. 41. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. 2011. Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-bhp induced oxidative stress in Chang cells. J Korean Soc Food Sci Nutr 40: 1525-1531. 42. Shackelford RE, Kaufmann WK, Paules RS. 2000. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28: 1387-1404. 43. Cantin CM, Moreno MA, Gogorcena Y. 2009. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57: 4586-4592. 44. Dlamini NR, Taylor JRN, Rooney LW. 2007. Effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem 105: 1412-1419. 45. Kim SS, Park RY, Jeon HJ, Kwon YS, Chun W. 2005. Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells. Phytother Res 19: 243-245. 46. Zemlan FP, Thienhaus OJ, Bosmann HB. 1989. Superoxide dismutase activity in Alzheimer s disease: possible mechanism for paired helical filament formation. Brain Res 476: 160-162. 47. Morrow JD, Awad JA, Kato T, Takahashi K, Badr KF, Roberts LJ 2nd, Burk RF. 1992. Formation of novel non-cyclooxygenase-derived prostanoids (F 2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest 90: 2502-2507. 48. Bermejo P, Gomez-Serranillos P, Santos J, Pastor E, Gil P, Martin-Aragon S. 1997. Determination of malonaldehyde in Alzheimer s disease: a comparative study of high-performance liquid chromatography and thiobarbituric acid test. Gerontology 43: 218-222. 49. Rao KS. 2009. Free radical induced oxidative damage to DNA: relation to brain aging and neurological disorders. Indian J Biochem Biophys 46: 9-15. 50. Zhao B. 2009. Natural antioxidants protect neurons in Alzheimer s disease and Parkinson s disease. Neurochem Res 34: 630-638. 51. Kim JH, Jeong CH, Choi GN, Kwak JH, Choi SG, Heo HJ. 2009. Antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis using an in vitro system. Korean J Food Sci Technol 41: 712-716.