농약과학회지 (Korean J. Pestic. Sci.) Vol. 21, No. 2, pp. 161-174 (2017) Open Access https://doi.org/10.7585/kjps.2017.21.2.161 Online ISSN 2287-2051 Print ISSN 1226-6183 ORIGINAL ARTICLES 대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 이혜리 * 간종범 이보미 김소희 이준배 1 천세억국립환경과학원금강물환경연구소, 1 국립환경과학원토양지하수연구과 Monitoring for Insecticides, Perfluorinated Compounds, and Brominated Flame Retardants in the Water of Daechung Lake and Geum River Basin Hyeri Lee*, Jong Beom Khan, Bo-Mi Lee, Sohui Kim, Junbae Lee 1 and Se Uk Cheon Geum River Water Environment Research Center, National Institute of Environmental Research, Ockcheon 29027, Republic of Korea 1 Soil and Groundwater Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea (Received on May 30, 2017. Revised on June 25, 2017. Accepted on June 26, 2017) Abstract A multiresidue analytical method using LC-MS/MS was developed for insecticides perfluorinated compounds (PFCs), and brominated flame retardants (BFRs) in water samples with the simultaneous SPE method. The ranges of recoveries were 95.0~117.2% (Insecticides), 19.7~135.0% (PFCs), and 72.5~86.4% (BFRs) with coefficients of variation of less than 15%. Method detection limit (MDLs) of insecticides, PFCs, and BFRs were 3.0~3.7 ng/l, 0.3~7.1 ng/l, and 5.1~11.7 ng/l, respectively while limit of quantifications (LOQs) were 9.0~11.0 ng/l (insecticides), 0.9~21.4 ng/l (PFCs), and 15.4~35.0 ng/l (BFRs). For understanding the background levels of insecticides, PFCs, and BFRs in the river water, those compounds were monitored in Geum river main stream, So-ok stream, and Daechung Lake sites (Chu-dong, Mun-ui, and Dam) every month (March to December) utilizing the developed method. The compounds of the highest detection frequency were PFOA, PFHxA, PFHpA and dinotefuran (insecticide), whereas BFRs were detected only in March and December (So-ok and Dam). In conclusion, the trends were not observed on periodical and spatial characteristics and the background levels were secured for insecticides, PFCs, and BFRs in Geum river basin. Brominated flame retardants, geum river basin, insecticides, monitoring, perfluorinated com- Key words pounds 서 론 *Corresponding author E-mail: hr4848@korea.kr 살충제는작물재배시작물을해충으로부터보호하기위해사용하는화합물로다양한종류가국내외에서사용되고있으며 (Ware and Whitacre, 2004), 국내에는총 2,965개의농약이등록되어있다 (RDA, 2017). 최근재선충의방제를위하여다양한살충제를산림지역에살포하고있어, 산림피복이많은부분을차지하고있는금강수계는이러한살충제의오염이가능하다. 과불화합물 (PFCs; Perfluorinated compounds) 은탄화수소사슬에불소가치환된물질로서, 탄소와불소사이의강력한공유결합으로인해분자안정성이높아분자사이에인력이낮으며, 열 화학적으로매우안정하므로다른물질과거의반응을하지않는물질이다 (Kissa, 2001). PFCs는단백질과결합하여먹이사슬을따라생물농축이될잠재성이있으며 (Kumar, 2005), 발달독성등독성이보고 (Lau et al., 2004) 됨에따라서, PFOS(Perfluorooctane sulfonate) 는스톡홀름협약에의하여 2009년부속서 B에등록되었다. 또한브롬화난연제 (BFRs; Brominated flame retardants) 는플라스틱, 건축자재, 가전제품등가연성물질의화재발생을어렵게하고연소를더디게하는물질로서, 국제적으로 HBCDs (Hexabromocyclododecanes), TBBPA 161
162 이혜리 간종범 이보미 김소희 이준배 천세억 (Tetrabromobisphenol A), PBDEs (Polybromintated diphenyl ethers) 이사용되고있다. 이러한살충제, PFCs, BFRs의분석에 LC-MS/MS (Liquid chromatography with tandem mass spectrometry) 가주로사용되고있으며, 특히 FPCs의분석시에는불소화합물의오염및 PFCs의흡착을방지하기위하여이동상용기, degasser 튜브등을불소가포함되지않은재질을사용하거나, LC의펌프와주입구사이에오염물질을흡착할카트리지를장착하기도한다 (Ahrens, 2011). 환경시료중수질시료를전처리하는방법은액액추출법, 고상추출법 (SPE, Solid phase extract) 등이보고되고있으며 (Ahrens, 2011; Hao et al., 2016; Seccia et al., 2005; Lee et al., 2016), 이들화합물을 동시에분석하는방법은현재까지연구된바가없다. 살충제등농약성분에대한수계에서의모니터링연구는영산강및섬진강수계에서 82종의농약에대하여연구된바있으며 (Mamun et al., 2009), 캐나다온타리오지역에서 neonicotinoid계농약을고분해능질량분석기를이용하여분석한연구가있고 (Hao et al., 2016), 독일에서는농약류및의약물질등을포함한 35종의미량유해물질을 LC-MS/MS 로분석한바있다 (Valls-Cantenys et al., 2016). 또한국내수계에서 PFCs를모니터링한연구는시화호 (Rostkowski, et al., 2006), 서해안및하구지역 (Naile et al., 2010, Naile et al., 2013), 한강및주요하수처리장 (Shin et al., 2009), 4대강유역및공단지역 (Cho et al., 2009), 낙동강수계 (Son et Table 1. Target compounds in insecticides, PFCs, and BFRs for water analysis Insecticides Dinotefuran, Acetamiprid, Thiacloprid, Triflumuron, Chlorfluazuron, Acetamiprid-d3 (IS) Perfluorinated compounds (PFCs) Brominated flame retardants (BFRs) PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFHxDA, PFODA, PFBS, PFHxS, PFOS, PFDS, 13 C 4 PFOA (SS), 13 C 4 PFOS (SS), 13 C 8 PFOA (IS), 13 C 8 PFOS (IS) α, β, γ-hbcds, TBBPA, 13 C 12 -α, γ-hbcds (SS), 13 C 12 -TBBPA (SS), 13 C 12 -β-hbcd (IS) Fig. 1. Structure of the insecticides, PFCs, and BFRs. (A) Acetamiprid, (B) Chlorfluazuron, (C) Dinotefuran, (D) Thiacloprid, (E) Triflumuron, (F) PFCA, (G) PFAS, (H) α-hbcd, (I) β-hbcd, and (J) γ-hbcds.
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 163 al., 2013), 영산강수계 (Kwon et al., 2015) 에서이루어졌으며, BFRs를모니터링한연구는보고되고있지않다. 하지만 BFRs의경우환경시료중퇴적물 (Kim et al., 2012; Lee et al., 2014) 및붕어 (Lee et al., 2014) 에대한연구가진행된바있다. 따라서, 본연구에서는충청지역에서재선충방제에사용하는살충제 5종및 PFCs, BFRs을분석대상물질 (Table 1, Fig. 1) 로선정하고수질시료중 LC-MS/MS 기기분석법및동시전처리법을확립하였다. 그리고금강본류, 소옥천, 대청호에서모니터링을수행하여금강수계중살충제 (5종), PFCs, BFRs의배경농도를확보하고자하였다. 재료및방법 시약및재료살충제 (acetamiprid; 99.9%, chlorfluazuron; 98.9%, dinotefuran; 98.8%, thiacloprid; 99.9%, triflumuron; 99.9%, acetamiprid-d3; 98.0%) 는 Sigma-aldrich (USA) 에서구입하였고, PFCs (PFAC-MXB, PFCA 12종, PFAS 4종 ), α-, β-, γ-hbcds, TBBPA와내부및대표표준물질 13 C 4 PFOS, 13 C 4 PFOA, 13 C 8 PFOS, 13 C 8 PFOA, 13 C 13 -α-, β-, γ-hbcds, 13 C 12 -TBBPA 표준품은 Wellington Laboratories (Canada) 에서구입하였다. Methanol, water, ethyl acetate는 Burdick & Jackson (USA) 로부터 HPLC 급을구입하였으며, ammonium acetate는 LC-MS급을 Sigma-aldrich (USA) 에서구입하였 다. 수질시료전처리를위하여 Oasis HLB (200 mg/6 cc, Waters, Ireland) 카트리지를사용하였으며, PFCs의오염및흡착을방지하기위하여초자기구및테플론의사용을최소화하고, 폴리프로필렌 (Polypropylene, PP) 재질의튜브를사용하였다. 시료추출액은질소농축기 (MG-2200, EYELA, Japan) 를이용하여농축하였다. 시료채취및방법모니터링에사용한수질시료는금강본류, 소옥천, 대청호내 ( 추동, 문의, 댐앞 ) 지점 (Fig. 2) 에서 2016년 3월부터 12 월동안한달간격으로채취하였다. 시료는갈색유리병에밀폐하여분석전까지 5 o C에서보관하였고, 분석법검증에사용한바탕시료는 Burdick & Jackson에서구입한 HPLC 급 water를사용하였다. 시료전처리전처리방법은수질시료중 PFCs, BFRs, 살충제를동시에전처리할수있도록확립하였다. 우선 HLB (200 mg/6 cc) 카트리지에 methanol 10 ml, 증류수 10 ml를차례로흘려활성화한뒤, 시료 500 ml를통과시켜카트리지에포집하였다. 이를진공펌프를이용하여수분을완전히제거하고, methanol 10 ml와 ethyl acetate 10 ml로용출하여분석대상물질을회수하였다. 용출액을질소건조하고내부표준물질을첨가한뒤 methanol 1 ml로재정용하여 LC-MS/ MS로분석하였다 (Fig. 3). Fig. 2. The monitoring sites in Geum river basin.
164 이혜리 간종범 이보미 김소희 이준배 천세억 Fig. 3. Scheme of preparation method for water sample. 기기분석조건분석대상성분중 PFCs의분석시바탕시료의오염을줄이기위하여 LC내이동상이이동하는부분을 Peek 튜브로교체하고, 분석컬럼전에 isolate 컬럼을장착하여바탕시료내존재하는 PFCs의용출을지연시켰다. 수질시료중 PFCs, BFRs, 살충제의분석은 Xevo TQ-S with Acquity H class UHPLC (Waters, Ireland) 를사용하였으며, MRM (Multiple reaction monitoring) 모드를이용하여분석하였다 (Table 2, 3). 회수율및방법검출한계본연구의전처리및기기분석법을검증하기위하여 HPLC 급 water 500 ml에살충제 40 ng/l, PFCs 20 ng/l, BFRs 100 ng/l을첨가한뒤, 위의시료전처리방법에따라추출및기기분석과정을거치고회수율및상대표준편차를산출하였다. 검출한계를산출하기위하여 HPLC 급증류수 500 ml에 PFCs 2 ng/l, BFRs 10 ng/l, 살충제 4ng/L을첨가한뒤, 위의시료전처리방법에따라추출및기기분석과 Table 2. LC-MS/MS operating condition for the analysis of insecticides, PFCs, and BFRs LC parameters Column Waters BEH, C18, 2.1 100 mm, 1.7 μm Mobile phase A: 2 mm ammonium acetate/water, B: Methanol Insecticides PFCs BFRs Time (min) A (%) B (%) Time (min) A(%) B(%) Time (min) A (%) B (%) 0 95 5 0 60 40 0 95 5 0.5 60 40 2 0 100 2 95 5 2 0 100 4 0 100 5 30 70 4 0 100 5 60 40 8 30 70 5 95 5 9 60 40 13 5 95 9 95 5 15 95 5 20 95 5 Column flow 0.3 ml/min Column oven temp. 40 o C Injection volume 5 μl (insecticides and PFCs), 10 μl (BFRs) Total run time 9 min (insecticides and PFCs), 20 min (BFRs) MS parameters Ionization Electrospray ionization mode Ionization mode Positive mode (insecticides), Negative mode (PFCs, BFRs) Nebulizing gas flow 7 bar Desolvation temperature 400 o C Desolvation gas flow 800 L/hr Cone gas flow 150 L/hr
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 165 Table 3. MRM transitions and retention times of insecticides, PFCs, and BFRs Name T r Precursor ion > Product ion (CE, v) 1 Dinotefuran 2.59 203.16 > 96.96 (-28) 2 Acetamiprid 2.98 223.09 > 55.92 (-28), 125.85 (-36) 3 Thiacloprid 3.06 253.03 > 125.89 (-40), 185.9 (-36) 4 Triflumuron 3.85 359.09 > 138.85 (-58), 155.89 (-52) 5 Chlorfluazuron 4.13 540.03 > 157.89 (-74), 382.69 (-80) 6 Acetamiprid-d3 2.98 226.09 > 58.98 (-14), 126.01 (-22) 7 PFPeA 2.49 262.9 > 219 (10) 8 PFHxA 2.85 312.9 > 269 (10) 9 PFHpA 3.06 362.9 > 319 (5) 10 PFOA 3.20 413 > 369 (10) 11 PFNA 3.33 463 > 419 (11) 12 PFDA 3.41 513 > 469 (10) 13 PFUdA 3.49 563 > 519 (11) 14 PFDoA 3.56 613 > 569 (14) 15 PFTrDA 3.61 663 > 619 (14) 16 PFTeDA 3.66 713 > 669 (15) 17 PFHxDA 3.74 813 > 769 (10) 18 PFODA 3.80 913 > 869 (10) 19 PFBS 2.57 298.8 > 79.9 (30), 98.9 (26) 20 PFHxS 3.06 398.8 > 79.9 (34), 98.9 (36) 21 PFOS 3.32 498.8 > 79.9 (42), 98.9 (38) 22 PFDS 3.48 598.8 > 79.9 (48), 98.8 (48) 23 m4pfoa 3.20 417 > 372 (10) 24 m4pfos 3.32 503 > 99 (40) 25 m8pfoa 3.20 421 > 376 (11) 26 m8pfos 3.32 507 > 99 (40) 27 α, β, γ-hbcds 13.39, 13.80, 13.95 640.5 > 78.6 (12) 28 TBBPA 10.22 542.7 > 420 (38), 448.2 (34) 29 13 C 12 -α, β, γ-hbcds 13.39, 13.80, 13.95 652.6 > 81.2 (10) 30 13 C 12 -TBBPA 10.23 554.7 > 431.1 (42), 460.3 (34) 정을거치고, 표준편차에 3.14 및 10을곱하여방법검출한계 (MDL; Method detection limit) 및정량한계 (LOQ; Limit of quantification) 를산출하였다 (Ministry of Environment, 2011). 결과및고찰 분석대상물질대청호및금강유역에서잔류하는살충제, PFCs, BFRs를조사하기위하여선정한분석대상물질은충청지역에서재선충방제등에사용되는살충제 5종 (acetamiprid, chlorfluazuron, dinotefuran, thiacloprid, triflumuron), PFOA, PFOS 등총 16종의 PFCs (12종의 PFCAs와 4종의 PFASs), HBCDs 입체이성질체 3종과 TBBPA를포함하는 4종의 BFRs로총 25종의물질을선정하였다 (Table 1, Fig 1). 분석의정확성및신뢰성을확보하기위하여일반적으로내부표준법을이용하는데, Hao et al. (2016) 은 neonicotinoid계농약을분석하기위하여 acetamiprid-d3, clothianidin-d3, imidacloprid-d4, thiamethoxam-d3을내부표준물질로사용하였다. Park et al. (2012) 은 PFOS와 PFOA를포함하는 10종의 PFCs를분석하기위하여 13 C 8 PFOS와 13 C 8 PFOA를내부표준물질로사용하였으며, Kwon et al. (2015) 은 10종의 PFCs를분석하기위하여 13 C 4 PFOS와 13 C 4 PFOA를내부표준물질로사용하였다. Lee et al. (2014) 은 HBCDs 및 TBBPA분석을위하여내부표준물질을 13 C 12 - γ-hbcd를이용하였으며, Lee et al. (2016) 은 13 C 12 -α-, β-, γ-hbcds를대표표준물질로, d-α, β, γ-hbcds를내부표준물질로사용하였다. 따라서본연구에서는 acetamiprid-d3,
166 이혜리 간종범 이보미 김소희 이준배 천세억 Table 4. Recoveries, MDLs, and LOQs of insecticides, PFCs, and BFRs Name Recoveries ± C.V.(%) MDL (ng/l) LOQ (ng/l) 1 Dinotefuran 95.0 ± 4.1 3.661 10.984 2 Acetamiprid 117.2 ± 7.3 3.292 9.877 3 Thiacloprid 115.7 ± 4.4 3.217 9.651 4 Triflumuron 101.6 ± 8.4 2.988 8.963 5 Chlorfluazuron 104.8 ± 14.2 3.442 10.327 6 PFPeA 38.5 ± 9.0 1.131 3.392 7 PFHxA 108.9 ± 3.8 7.143 21.429 8 PFHpA 106.2 ± 2.0 0.310 0.929 9 PFOA 135.0 ± 3.3 0.576 1.728 10 PFNA 105.7 ± 1.4 0.875 2.626 11 PFDA 99.9 ± 5.3 1.001 3.002 12 PFUdA 75.7 ± 7.2 0.863 2.589 13 PFDoA 55.2 ± 7.0 0.768 2.303 14 PFTrDA 56.9 ± 7.7 0.657 1.970 15 PFTeDA 59.0 ± 8.6 0.545 1.636 16 PFHxDA 56.7 ± 9.2 1.054 3.161 17 PFODA 19.7 ± 12.4 0.880 2.640 18 PFBS 96.5 ± 8.3 0.492 1.475 19 PFHxS 105.3 ± 1.7 0.723 2.170 20 PFOS 95.1 ± 7.0 1.018 3.054 21 PFDS 67.6 ± 14.6 0.949 2.848 22 α-hbcds 86.4 ± 9.2 11.674 35.022 23 β-hbcds 72.5 ± 3.2 8.008 24.023 24 γ-hbcds 82.3 ± 9.2 8.639 25.918 25 TBBPA 80.9 ± 4.6 5.136 15.407 13 C 8 PFOS, 13 C 8 PFOA, 13 C 12 -β-hbcd을내부표준물질로사용하였다. 정확도및정밀도본연구에서확립한전처리법및기기분석법을이용하여 HPLC water 500 ml에살충제, PFCs, BFRs 표준용액을첨가하고회수율시험을수행하고, 정확도및정밀도를산출하였다. 3반복으로수행한회수율시험결과, 살충제의회수율은 95.0~117.2%, PFCs는 19.7~135.0%, BFRs는 72.5~ 86.4% 이었으며, 상대표준편차 15% 미만으로나타났다. PFCs의경우탄소개수가 11개이상인 PFUdA~PFODA의회수율이 19.7~59.0% 로다소낮았으나, 상대표준편차가 7.0~12.4% 로정밀도는높게나타나모니터링분석이가능한것으로판단하였다 (Table 4). 잔류성유기오염물질공정시험기준의 하천수 / 호소수시료중과불화합물 (PFCs) 시험방법-LC-MS/MS (ES 10374.1) 에는회수율시험은정제용내부표준물질의회수율로확인하며, 13 C 12 -PFHxA, 13 C 12 - PFNA, 13 C 12 -PFHxS는 60~120%, 13 C 12 -PFDA, 13 C 12 -PFUdA, 13 C 12 -PFDA은 40~120% 의범위를만족하여야하며중간물 질인 13 C 12-8:2 FTUCA, 13 C 12 -N-EtFOSAA는 20~120% 를만족하여야한다고되어있다 (Ministry of Environment, 2011). Hao et al. (2016) 은 neonicotinoid계농약 (acetamiprid, dinotefuran, thiacloprid) 을먹는물, 지하수, 지표수에서회수율시험을한결과 90~113% 로나타났다고보고하였다. Kwon et al. (2015) 은 10종의 PFCs의회수율을측정한결과, 62.2~106.4% 로나타났으며, Dufková et al. (2012) 는 8 종의 PFCA를 SPE로전처리하고 GC-MS로분석하였을때 2개의첨가농도에서의회수율이 53~111% 로보고하였다. Lee et al. (2016) 은수질중 α-, β-, γ-hbcds의회수율을용출용매별로비교한결과 ethyl acetate에서가장높게나타났으며, dichloromethane은 α-, β-, γ-hbcds의순서로높게나타났다고보고하였다. 그리고 Ichihara et al. (2014) 는하천수시료중 α-, β-, γ-, δ-, ε-hbcds의회수율이 101, 105, 99.7, 82.1, 105% 라고보고하여본연구의결과와유사하였다. 방법검출한계및정량한계본연구에서확립한전처리법및기기분석법을이용하여
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 167 HPLC water 500 ml에살충제, PFCs, BFRs 표준용액을첨가하고 7번반복실험하여방법검출한계 (MDL) 및정량한계 (LOQ) 를산출하였다 (Ministry of Environment, 2011). 그결과, 살충제의방법검출한계는 3.0~3.7 ng/l이었고, PFCs 의방법검출한계는 0.3~7.1 ng/l, BFRs의방법검출한계는 5.1~11.7 ng/l이었으며, 이들의정량한계는각각 9.0~11.0 ng/l, 0.9~21.4 ng/l, 15.4~35.0 ng/l이었다 (Table 4). Hao et al. (2016) 은먹는물, 지하수, 지표수에서 neonicotinoid계농약 (acetamiprid, dinotefuran, thiacloprid) 의방법검출한계를산출한결과, 0.7~4.4 ng/l라고하여본연구와유사한결과를나타내었다. Son et al. (2013) 은 on-line SPE 장치를이용하여 11종의 PFCs를전처리한결과방법검출한계는 1.1~5.0 ng/l, 정량한계는 3.6~15.9 ng/l라고보고하였으며, Naile et al. (2010) 은 12종의 PFCs를분석한결과수질시료의방법검출한계가 0.2~2 ng/l라고하였다. Ichihara et al. (2014) 는 α-, β-, γ-hbcds의 S/N (signal과 noise) 비가 10 이상일때의정량한계 (LOQ) 가각각 10 pg이라고보고하였고, Zhou et al. (2010) 도 S/N 비가 10 이상일경우 α-, β-, γ-hbcds의폐수중정량한계가 1.2, 1.2, 3.0 pg/ml 라고보고하였다. 대청호및금강유역에서의과불화합물, 브롬화난연제및 살충제농도분포 금강본류, 금강지류중가장큰소옥천, 대청호내 3 지점 ( 추동, 문의, 댐앞 ) 에서월 1회분석한분석대상성분의검출농도는 ng/l로매우낮은수준으로금강수계에대한오염도는미비한수준이었다. 또한, 분석대상성분중 BFRs의경우소옥천의 3, 12월시료및댐앞지점의 3월시료에서만검출되어금강수계의 BFRs의오염도는매우낮은것으로판단되었다. 살충제는재선충방제뿐아니라, 벼, 고추, 오이, 사과등다양한작물에사용되는 dinotefuran이가장많이검출되었고, 8월이후에높은빈도로검출되었다 (ΣInsecticides; 0~80.2 ng/l, Fig. 4, Supplementary data). 소옥천은농경지및주거지등을포함하는복합유역으로써 8월에 dinotefuran 이 80.2 ng/l로가장높은농도로검출되었으며, 호내지점은갈수기가시작되는 10월이후에다소높은농도로검출되는것을확인하였다. 국내모니터링결과를살펴보면, 영산강및섬진강에서 82종의농약다성분분석을수행한결과 butachlor, oxadiazon, alachlor, iprobenfos의제초제및살균제가검출되었다 (Mamun et al., 2009). PFOA 및 PFOS 등 16종의 PFCs 모니터링결과 (ΣPFCs; 0.6~31.3 ng/l, Fig. 4, Supplementary data), PFOA, PFHxA, PHHpA가주로검출되었으며, PFDA~PFDOA 및 PFDS는전지점에서조사기간동안검출되지않았다. 본류와호내 3 지점간의 PFCs 검출농도및경향은유사하였으나, 소옥천 Fig. 4. Sum of concentrations for PFCs, BFRs, and insecticides in Geum river main stream (A), So-ok stream (B), and Daechung lake sites {Chu-dong (C),Mun-ui (D), and dam (E)} from March to December. 은더다양하고, 높은농도 ( 최대 23.8 ng/l) 로검출되었다. Cho et al. (2009) 은금강의 2006년과 2007년동안 (4회) PFOA와 PFOS 분석결과 0.9~13.8 ng/l로검출되었으며, PFOA가 PFOS와유사하거나높은농도로검출되었다고보고하였다. 또한, Kwon et al. (2015) 은영산강수계에서 10 종의 PFCs 모니터링결과 PFOA, PFOS, PFHxS가주로검출되었으며, Senthilkumar et al. (2007) 은 6종의 PFCs를분석한결과주로 PFOA와 PFOS가검출되었다고보고하였다. 따라서본연구에서도 PFOA와 PFOS가주로검출되어수환경에서주로검출된다고알려진다른연구결과와유사한경향을나타내는것을확인하였다 (Ahrens 2011). TBBPA 및 HBCDs의브롬화난연제분석결과, 본류, 추동, 문의지점에서는조사기간동안정량한계미만이었으며, 소옥천은 3월과 12월 (ΣBFRs; 6.6~7.5 ng/l) 에, 댐앞지점은 3
168 이혜리 간종범 이보미 김소희 이준배 천세억 월 (ΣBFRs; 2.0 ng/l) 에만검출되어금강수계의브롬화난연제오염은미미한것으로판단되었다 (Fig. 4, Supplementary data). 또한, 소옥천에서는 TBBPA, HBCD가모두검출되었지만, 댐앞지점에서는 TBBPA만검출되었다. 국내에서는하천수시료에서 HBCD 등의브롬화난연제를분석한연구결과가보고되고있지않으나, 해수시료에서 TBBPA를분석한결과불검출이었고 (Han and Kong, 2015), 금강교, 미호천, 갑천하류의퇴적물시료에서 HBCDs가 0.34~4.32 ng/ g-dw로검출되었다 (Kim et al., 2012). 따라서본연구에서는수질시료중 PFCs, BFRs, 살충제의동시전처리방법을확립하고금강수계에서의모니터링을수행한결과금강수계에서의배경농도를확보하였다. 또한, 이들의검출농도는시기별, 성분별특성을확인할수없었으며, 금강수계에미치는영향은매우미미할것으로생각된다. Literature Cited Ahrens, L. (2011) Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J. Environ. Monit. 13:20-31. Cho, C. R., I. C. Eom, E. Kim, S. J. Kim, K. Choi, H. S. Cho and J. Yoon (2009) Evaluation of the level of PFOS and PFOA in environmental media from industrial area and four major river basin. J. of the Korean Society for Environmental Analysis 12(4):296-306. Dufková, V., R. Cabala and V. Ševcík (2012) Determination of C5-C12 perfluoroalkyl carboxylic acids in river water samples in the Czech Republic by GC-MS after SPE preconcentration. Chemosphere 87(5):463-469. Han, S. K. and C. S. Kong (2015) A study on exposure concentration and degradation characteristics of tetrabromobisphenol A in coast sea. The Korean Society for Marine Environment & Energy Fall Symposium. 198. Hao, C., M. R. Noesthedon, X. Zhao and D. Morse (2016) Liquid chromatography-tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection. Anal. Chim. Acta 925:43-50. Ichihara, M., A. Yamamoto, K. Takakura, N. Kakutani and M. Sudo (2014) Distribtion and pollutant load of hexabromocyclododecane (HBCD) in sewage treatment plants and water from Japanes rivers. Chmosphere 110:78-84. Kissa, E. (2001) Fluorinated surfactants and repellents, Dekker, M., 2nd Eds; CRC Press: New York, USA. Kim, T. S., S. K. Shin, J. K. Oh and J. E. Park (2012) Study on distribution characteristics of brominated flame retardants in sediments. Analytical Science & Technology 25(4):242-249. Kumar, K. S. (2005) Fluorinated organic chemicals: A review. ê ê Res. J. Chem. Environ. 9(3):50-79. Kwon, B. G., C. S. Lim, H. K. Lim, S. H. Na, J. Kwon and S. Y. Chung (2015) Monitoring of perfluorinated compounds (PFCs) in the Yeongsan river water system. J. Korean Soc. Eviron. Eng. 37(5):303-311. Lau, C., J. L. Butenhoff and J. M. Rogers (2004) The developmental toxicity of perfluoalkyl acids and their derivatives. Toxicol. Appl. Pharmacol. 198(2):231-241. Lee, S., S. Kim and G. H. Jeong (2014) Distribution characteristics of hexabromocyclododecanes in crucian carp and sediment from the major rivers.anal. Sci. Technol. 27(6):321-332. Lee, D. H., I. Y. Chung, H. Lee, H. Kim, S. A. Park, I. K. Kim, Y. S. Do and W. Lee (2016) Analytical method for determination of hexabromocyclododecanes (HBCDs) in water samples using solid-phase extraction and liquid-liquid extraction. J. of the Korean Society for Environmental Analysis. 19(2):80-89. Mamun, M. I. R., J. H. Park, J. H. Choi, H. K. Kim, W. J. Choi, S. S. Han, K. Hwang, N. I. Jang, M. E. Assayed, M. A. El- Dib, H. C. Shin, A. M. A. El-Aty and J. H. Shim (2009) Development and validation of a multiresidue method for determination of 82 pesticides in water using GC. J Sep. Sci. 32(4):559-574. Ministry of Environment (2011) Official method of perfluorinated compounds (PFCs) in water by LC/MSMS, ES 10374.1. Naile, J. E., J. S. Khim, T. Wang, C. Chen, W. Luo, B. O. Kwon, J. Park, C. H. Koh, P. D. Jones, Y. Lu and J. P. Giesy (2010) Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ. Pollut. 158:1237-1244. Naile, J. E., J. S. Khim, S. Hong, J. Park, B. O. Kwon, J. S. Ryu, J. H. Hwang, P. D. Jones and J. P. Giesy (2013) Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the water coast of Korea. Chemosphere. 90:387-394. Park, J. E., S. K. Kim, J. k. Oh, S. Y. Ahn, M. N. Lee, C. R. Cho and K. S. Kim (2012) Study on concentrations and mass flows of perfluorinated compounds (PFCs) in a wastewater treatment plant. J. Korean Soc. Eviron. Eng. 34(5):326-334. Rostkowski, P., N. Yamashita, I. M. K. So, S. Taniyasu, P. K. S. Lam, J. Falandysz, K. T. Lee, S. K. Kim, J. S. Khim, S. H. Im, J. L. Newsted, P. D. Jones, K. Kannan and J. P. Giesy (2006) Perfluorinated compounds in streams of the shihwa industrial zone and lake shihwa, South Korea. Environ. Toxicol. Chem. 25(9):2374-2380. Rural Development Administration (2017) National Institute of Agricultural Sciences, http://pis.rda.go.kr/. Seccia, S., P. Fidente, D. A. Barbini and P. Morrica (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal.Chim.Acta.
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 169 553:21-26. Shin, M. Y., J. K. Im, Y. L. Kho, K. S. Choi and K. D. Zoh (2009) Quantitative determination of PFOA and PFOS in the effluent of sewage treatment plants and in Han river. J. Env. Hlth. Sci. 35(4):334-342. Son, H. J., Y. D. Hwang, H. S. Yoom, J. T. Choi and K. W. Kwon (2013) Detection of perfluorinated compounds (PFCs) in Nakdong river basin. J. Kor. Soc. Environ. Eng. 35(2):84-93. Valls-Cantenys, C. M. Scheurer, M. Iglesias, F. Sacher, H. J. Brauch and V. Salvadó (2016) A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water. Anal. Bioanal. Chem. 408(22):6189-6200. Ware, G. W. and D. M. Whitacre (2004) In The pesticide book, 6th ed.; MeisterMedia Worldwide: Willoughby, Ohio. Zhou, S. N., E. J. Reiner, C. Marvin, P. Helm, N. Rddell, F. Dorman, M. Misselwits, L. Shen, P. Crozier, K. MacPherson and I. D. Brindle (2010) Development of liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for analysis of halogenated flame retardants in wastewater. Anal. Bioanal. Chem. 396:1311-1320. 대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 이혜리 * 간종범 이보미 김소희 이준배 1 천세억국립환경과학원금강물환경연구소, 1 국립환경과학원토양지하수연구과 요약본연구에서는수질중살충제 (5 종 ), 과불화합물 (16 종 ), 브롬화난연제 (4 종 ) 의 LC-MS/MS 기기분석법및동시전처리법을확립하고, 금강본류, 소옥천, 대청호에서모니터링을수행하여금강수계중이들물질의배경농도를확보하고자하였다. 이들화합물은고상추출법으로전처리하고 LC-MS/MS 로분석하였으며, 내부표준법으로정량하였다. 확립된분석법을이용하여회수율시험을수행한결과, 살충제의회수율은 95.0~117.2%, 과불화합물은 19.7~ 135.0%, 브롬화난연제는 72.5~86.4% 이었으며, 상대표준편차 15% 미만으로나타났다. 그리고 7 번반복실험하여얻은방법검출한계는살충제의경우 3.0~3.7 ng/l, 과불화합물은 0.3~7.1 ng/l 이었고, 브롬화난연제는 5.1~11.7 ng/l 이었으며, 이들의정량한계는각각 9.0~11.0 ng/l, 0.9~21.4 ng/l, 15.4~35.0 ng/l 이었다. 금강본류, 금강지류중가장큰소옥천, 대청호내 3 지점 ( 추동, 문의, 댐앞 ) 에서월 1 회모니터링을한결과, 살충제는 dinotefuran 이가장많이검출되었으며, 과불화합물중에는 PFOA, PFHxA, PFHpA 가주로검출되었다. 또한, 브롬화난연제는 3, 12 월시료 ( 소옥천및댐앞 ) 에서만검출되어금강수계의 BFRs 의오염도는매우낮았다. 결론적으로살충제, 과불화합물, 브롬화난연제의검출농도는시기별, 지점별특성을확인할수없었지만, 금강수계중배경농도를확보하였다. 색인어 과불화합물, 금강수계, 모니터링, 브롬화난연제, 살충제
170 이혜리 간종범 이보미 김소희 이준배 천세억 Supplementary 1. Concentrations of PFCs, BFRs, and insecticides for Geum river main stream Main stream Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dinotefuran 11.021 15.914 21.142 21.084 31.253 49.963 61.629 51.152 33.792 26.845 Acetamiprid 7.370 2.231 2.107 1.689 Thiacloprid Triflumuron Chlorfluazuron Sum 11.021 23.284 23.373 23.191 31.253 49.963 61.629 51.152 35.481 26.845 PFPeA 4.666 2.751 PFHxA 2.559 1.893 1.827 2.019 2.270 1.453 1.108 0.57 PFHpA 1.422 1.312 1.672 1.365 PFOA 8.280 8.016 7.933 8.547 9.650 8.440 1.595 1.06 1.174 PFNA PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFODA PFBS PFHxS 1.144 PFOS PFDS Sum 10.839 9.909 12.326 11.878 18.258 14.009 2.703 0.57 1.06 1.174 TBBPA α-hbcds β-hbcds γ-hbcds Sum 0 0 0 0 0 0 0 0 0 0
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 171 Supplementary 2. Concentrations of PFCs, BFRs, and insecticides for So-ok stream So-ok Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dinotefuran 16.222 9.873 17.161 24.805 35.743 80.168 49.432 32.301 16.310 13.281 Acetamiprid 3.291 3.346 5.206 2.738 15.915 Thiacloprid Triflumuron Chlorfluazuron Sum 19.513 9.873 20.507 30.011 35.743 80.168 52.170 32.301 32.225 13.281 PFPeA 2.465 PFHxA 4.73 3.185 5.158 7.538 4.265 3.871 2.475 2.67 3.212 2.673 PFHpA 1.428 2.367 1.735 2.718 1.432 PFOA 10.385 9.255 10.742 11.34 7.390 11.519 3.619 2.728 2.513 2.561 PFNA 1.133 1.254 1.157 1.99 1.631 PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFODA PFBS 1.445 1.235 2.372 1.430 1.157 1.100 1.376 1.555 PFHxS 2.157 1.664 2.338 3.573 3.147 3.543 1.572 2.197 2.485 2.923 PFOS 1.603 1.195 1.804 2.693 2.648 3.365 1.577 1.382 1.96 PFDS Sum 20.32 15.299 23.838 31.137 19.124 27.446 15.194 9.172 10.968 14.137 TBBPA 2.214 2.717 α-hbcds 2.177 β-hbcds 2.060 2.545 γ-hbcds 2.311 0.038 Sum 6.585 0 0 0 0 0 0 0 0 7.477
172 이혜리 간종범 이보미 김소희 이준배 천세억 Supplementary 3. Concentrations of PFCs, BFRs, and insecticides for Chu-dong Chu-dong Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dinotefuran 4.905 4.469 9.014 14.390 21.612 22.382 28.797 31.678 Acetamiprid 2.066 2.679 1.929 Thiacloprid Triflumuron 1.578 Chlorfluazuron Sum 4.905 4.469 1.578 2.066 11.693 14.39 21.612 22.382 30.726 31.678 PFPeA 6.953 7.861 7.273 13.622 6.103 5.988 PFHxA 2.808 1.742 1.315 1.456 1.57 1.219 1.422 1.065 1.161 PFHpA 1.127 1.087 2.173 2.751 1.477 1.563 1.017 1.126 PFOA 9.105 7.944 8.587 8.573 7.956 9.426 2.018 2.675 2.348 1.906 PFNA PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFODA PFBS PFHxS 1.180 1.207917 PFOS 1.25 1.054 1.158 0.996 1.136 PFDS Sum 14.29 10.866 12.164 12.274 17.082 22.604 11.987 19.282 10.533 11.317 TBBPA α-hbcds β-hbcds γ-hbcds Sum 0 0 0 0 0 0 0 0 0 0
대청호와금강유역중살충제, 과불화합물, 브롬화난연제의모니터링 173 Supplementary 4. Concentrations of PFCs, BFRs, and insecticides for Mun-ui Mun-ui Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dinotefuran 13.056 11.911 10.665 9.357 16.259 17.719 10.984 14.913 32.137 29.798 Acetamiprid 5.75 5.929 2.279 4.051 8.645 16.455 Thiacloprid 2.071 Triflumuron Chlorfluazuron Sum 18.806 0 10.665 11.428 18.538 21.770 19.629 31.368 32.137 29.798 PFPeA 6.590 4.461 5.192 9.423 6.329 5.786 PFHxA 3.383 2.001 1.368 1.266 1.744 1.468 1.374 1.194 PFHpA 1.035 1.620 2.387 1.955 1.774 1.083 PFOA 9.673 7.83 8.317 8.091 8.192 9.128 2.369 2.342 2.237 2.072 PFNA PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFODA PFBS PFHxS 1.045 0.980 PFOS 1.084 PFDS Sum 13.056 11.911 10.665 9.357 16.259 17.719 10.984 14.913 8.566 11.219 TBBPA α-hbcds β-hbcds γ-hbcds Sum 0 0 0 0 0 0 0 0 0 0
174 이혜리 간종범 이보미 김소희 이준배 천세억 Supplementary 5. Concentrations of PFCs, BFRs, and insecticides for Dam Dam Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dinotefuran 6.068 4.274 3.965 5.517 14.030 26.802 31.724 29.985 Acetamiprid 2.152 1.816 Thiacloprid Triflumuron Chlorfluazuron Sum 6.068 4.274 0 2.152 3.965 5.517 14.030 26.802 33.540 29.985 PFPeA 5.836 4.715 5.153 9.693 4.758 5.223 PFHxA 2.800 1.937 1.238 1.454 1.669 1.655 1.289 1.21 PFHpA 1.973 2.250 1.758 1.835 1.118 PFOA 8.979 8.383 8.183 8.74 7.345 9.060 2.203 2.53 2.2 2.056 PFNA PFDA PFUdA PFDoA PFTrDA PFTeDA PFHxDA PFODA PFBS PFHxS 1.084 1.031 PFOS PFDS Sum 11.779 11.404 10.452 10.194 15.154 17.694 10.768 15.347 6.958 9.607 TBBPA 2.042 α-hbcds β-hbcds γ-hbcds Sum 2.042 0 0 0 0 0 0 0 0 0