Sedimentary Characteristics and Chronology of Loess-paleosol Sequence in Jeongjang-ri, Geochang basin, Gyeongnam Province Sangill Hwang* Chang-Hyeok Kang** Soon-Ock Yoon*** OSL L1 L1L1 MIS 2 L1S1 MIS 3 L1L2 MIS 4 1 MIS 5 L2 MIS 6 MIS 7 MIS 3 Abstract The physical and chemical characteristics of loess-paleosol sequence in Jeongjang-ri, Geochang basin are examined using the magnetic susceptibility measurement, grain size analysis, OSL age dating, major, rare earth and trace elements analysis. The grain size characteristics of the loess-palesol sequence are obviously different from those of river sediment forming river terrace deposits and the Chinese Loess Plateau. The loess-paleosol sequence consisting of L1, L1LL1, L1S1, L1L2, S1 and L2 from top to bottom is estimated to MIS 2~MIS 6 and the river terrace to MIS 7. The compositions of major, rare earth and trace elements indicate that the sequence show more weathered characteristics than the Chinese Loess Plateau and originated from the Chinese Loess Plateau. These features are in harmony with the previous studies in Korea. : Geochang basin, loess, paleosol, magnetic susceptibility, weathering characteristics (Racs 2009-3002) (Associate Professor, Dept. of Geography, Kyungpook National University), hwangsi@knu.ac.kr (Master, Dept. of Geography, Kyung Hee University), smykch@naver.com (Professor, Dept. of Geography and Research Institute for Basic Sciences, Kyung Hee University), soyoon@khu.ac.kr 1
(loess) 10 (Pye, 1987) (paleosol) (soil crack) (Pye, 1987) (Park, 1985) (buried soil) (exhumed soil) (fossil soil) (Kang, 1979) (Park, 1985) (Oh and Kim, 1994; Shin et al., 2004) (Lee and Yi, 2002) (Shin et al., 2005) (Yoon et al., 2007) (Park et al., 2007) (Kim, 2007) (Yu et al., 2008) (Hwang et al., 2009) 4 (Shin et al., 2004) (Shin, 2003; Shin et al., 2004; Yoon et al., 2007; Park et al., 2007; Hwang et al., 2009) (Oh and Kim, 1994) (Kim, 2007; Kim et al., 2006) 4 OSL 1 614m 1 430m 2
경남 거창분지 정장리 뢰스-고토양 연속층의 퇴적물 특성과 편년 Figure 1. Topography around the Geochang Basin. 거창분지 지형개관 유산(1,507m) 동쪽 거창군 북상면 월성리 부근에서 발 (Figure 2). 화강암 지역은 저기복의 낮은 구릉지를 형 원하는데, 거창군 북상면을 거쳐 거창읍과 마리면의 성하고 편마암 지역은 해발고도 400~700m에 이르는 경계를 이루는 해발고도 600~700m의 산지에서는 좁 상대적으로 높은 산지이다. 이 분지는 암석의 차별적 은 하곡을 통과하여 거창읍을 지나 대평리 부근에서 침식을 통해 형성된 침식분지이다. 거창 분지저를 이루는 지형은 선상지, 하안단구, 범 황강과 합류한다(Figure 1). 거창 분지저를 이루는 기반암은 분지를 둘러싼 산지 람원, 구릉지 등인데, 위천을 경계로 하여 분지 남부에 와 뚜렷하게 구분되며, 분지저는 중생대 백악기 흑운 서 비교적 넓은 하안단구가 확인된다. 시료를 채취한 모화강암, 산지는 선캄브리아기 편마암류로 되어 있다 노두(이하 거창단면이라 칭함; Figure 2)는 거창군 거 -`3`-
Figure 2. Geology around the Geochang Basin. 35 40 19 127 55 10 200 210m 209m 1 000m 11 12 1 2600m0m (KMA) 3 3m (grain size analysis) (magnetic susceptibility, MS), OSL(Optically Stimulated Luminescence) (major element) (rare earth element, REE) (trace element) 2cm 166 30 (H 2 O 2 ) 0 4 (Sodium Hexametaphosphate) Malvern Instrument Laser Particle Size Analyzer Mastersizer-2000 Folk and Ward(1957) (mean; M ) (median; Md ) (Magnetic Susceptibility) ZH instruments SM-30 3 OSL OSL 6 30 50 90 120 180 200cm 10cm 33 XRF(X-Ray Fluorescence; Shimadzu XRF-1700 Spectrometer) ICP-MS(Induced Coupled Plasma-Mass Spectrometer PERKIN-ELMER SCIEX, ELAN-6100) wt (ppm) Han, 2010 (Gallet et al., 1996; Jahn et al., 2001; Jeong et al., 2010) (Shin, 2003; Yoon et al., 2007; Park et al., 2007; Hwang et al., 2009) (volatile -free) 4
경남 거창분지 정장리 뢰스-고토양 연속층의 퇴적물 특성과 편년 Nesbitt and Young(1984, 1989)의 A-CN-K 또는 A- 은 확인하지 못하였다. 하부층은 boulder급 원력 및 CNK-FM 다이어그램에 나타내어, 거창단면의 풍화특 아원력을 중심으로 cobble 및 pebble급 원력으로 이 성 및 기원지를 확인하였다. 희토류 원소의 표준화는 루어져 있으며, matrix는 모래와 granule급 자갈이다. Leedey 운석(Masuda et al, 1973; Masuda, 1975)을 이 거창단면에 대한 물리적, 화학적 분석은 표층에서 깊 용하였으며, 지구화학적 참조물질로는 UCC와 PAAS 이 3.3m까지 이루어졌으며, 상부에서 하부로 가면서 (Upper Continental Crust and Post-Archean 표층(경작층), 뢰스-고토양 연속층, 하천퇴적층으로 Australia Shale; Taylor and McLennan, 1985)를 이용 구분된다(Figure 3). 하였다. 일반적으로 뢰스층이 형성되기 위해서는 뢰스 물질 을 공급할 수 있는 공급지(기원지), 물질을 이동시킬 수 있는 바람에너지, 적당한 퇴적지 등의 조건이 충족 되어야 한다(Pye, 1995). 동아시아의 가장자리에 위치 2. 본론 하며 뢰스의 기원지로부터 멀리 떨어진 한반도에서는 빙기와 간빙기의 환경변화에 의해 뢰스층과 고토양층 이 형성되었다. 빙기에는 아시아대륙 내부에 건조지역 1) 뢰스-고토양 층서와 퇴적상 이 크게 확대되었고, 바람에 의해 많은 실트질 퇴적물 거창단면 노두는 하부의 하안단구 퇴적층과 상부에 이 한반도에 유입되었다고 판단된다. 이와는 대조적으 퇴적된 뢰스-고토양층까지 두께가 약 7m이며 기반암 로 간빙기에는 한반도로 유입하는 뢰스물질의 양은 급 Figure 3. Stratigraphy and sedimentary facies of the Geochang section. 거창 단면 층서와 퇴적상 -`5`-
(magnetite, Fe 3 O 4 ) (maghemite, r-fe 2 O 3 ) (Maher, 1998) L1, L1L1, L1S1, L1L2, S1, L2 (Figure 4(a)) (Kukla et al., 1988) L1S1 119 0 169 0 10 5 SI L2 10 6 48 5 10 5 SI S1 34 7 149 0 10 5 SI 10 4 24 7 10 5 SI L1L1, L1L2 60 8 141 0 10 5 SI 83 5 145 0 10 5 SI 34 7 169 0 10 5 SI 10YR 7 5YR (Naruse et al., 2008) MIS 5 MIS 3 0 8cm L1 8 20cm L1 (10YR 7/6) 20 40cm L1L1 (10YR 6/6) soil crack L1S1 40 80cm (10YR 5/6) 20 25cm soil crack Figure 4. Variations of the MS, Mean, Median, Sorting of the Geochang section. 6
(L1L1) crack L1L2 80 118cm (10YR 6/6) (10YR 5/8) 1 1 soil crack S1 118 170cm (7.5YR 4/6) soil crack 15cm L2 170 216cm (10YR 6/6) (2.5YR 7/6) S1 soil crack L2 216 272cm L2 (2.5YR 7/6) (5Y 7/2) 1mm 272 300cm (5Y 7/2) 20cm 320cm pebble 7m 25cm boulder (Mean; Figure 4(b)) (L1L1, L1L2, L2) 6 99 7 53 (L1S1, S1) 6 93 7 43 0cm L1L2 L1L2 S1 216cm (Median; Figure 4(c)) 7 6 87 7 38 6 76 7 30 (Sorting; Figure 4(d)) L2 2 Folk and Ward(1957) (poorly sorted) L2 2 0 3 6 (very poorly sorted) L1 L1S1 L1L2 L2 216cm <4 25 35 4 16 40 45 16 63 20 25 >63 5 220cm 40 60 L1 L2 1 L1S1 L1L2 L1L1 L2 6 30 50 90 120 180 200cm OSL MIS(Marine oxygen Isotope 7
Stage) L1 L1L1 MIS 2, L1S1 MIS 4 5c L1L2 MIS 5c 5e S1 MIS 5e, L2 MIS 5e (Table 1, Figure 5) L1L1 L1L2 S1 L2 MIS 5c 5e L1L2 L2 MIS 5d 23 000 1m OSL MIS 5d MIS 4 6 1 2 OSL GC-180 200 L1 L1L1 MIS 2 S1 MIS 5(119 5ka) L1S1 MIS 3 L1L2 MIS 4 L2 MIS 6 MIS 7 S1 L1S1 MIS 3 MIS 3 MIS 5 MIS 3 (Yoon et al., 2007) MIS 3 Table 1. OSL age dating and expected MIS results of loess-paleosol sequence at the Geochang section. Sample Code Dose Rate Water Equivalent Aliquots Expected OSL age Stratigraphy (Gy/ka) content(%) Dose(Gy) used(n) age GC-30 3.69 0.10 7.9 89 2 24 24 1 ka L1L1 MIS 2 (2.80 0.08) (38.3) (32 1)* GC-50 3.37 0.09 19.1 221 7 24 66 3 ka L1S1 MIS 3 (2.66 0.07) (47.9) (83 3) GC-90 3.18 0.08 20.2 313 15 24 99 5 ka L1L2 MIS 4 (2.70 0.07) (39.3) (116 6) GC-120 3.03 0.08 25.0 361 11 24 119 5 ka Uppermost S1 MIS 5 (2.76 0.07) (36.2) (131 5) GC-180 3.17 0.09 25.1 377 19 24 119 7 ka Upper L2 MIS 6 (3.01 0.08) (31.0) (125 7) GC-200 3.44 0.09 18.9 422 19 24 123 6 ka Lower L2 MIS 6 (3.42 0.09) (19.7) (124 6) * Numbers in branket indicate the values calculated on the basis of the saturated water content. OSL ages of GC-180 and GC- 200 are not available for this study. GC-180 GC-200 OSL 8
Figure 5. Correlation between MS of the Geochang section and SPECMAP (Imbrie et al., 1984) by OSL data from Table 1. SiO 2 70 (Figure 6(c) (e)) CaO Na 2 O 0 2 1 (Figure 6(b)) Na 2 O CaO (Park, 1985) (Yoon et al., 2007) (Park et al., 2007) (Hwang et al., 2009) Ca Na (Park, 1985; Park et al., 2007) CaO Na 2 O Al 2 O 3, Fe2O 3, TiO 2 CaO K 2 O (Figure 6(a)) Figure 6(c) SiO 2 Al 2 O 3 SiO 2 Al 2 O 3 (aluminosilicate) phyllosilicate (Újvári et al., 2008) phyllosilicate Al 2 O 3 K 2 O (Figure 6(d)) Al 2 O 3 TiO 2 (Figure 6(e)) Figure 6(f) K 2 O/Al 2 O 3 Na 2 O/Al 2 O 3 (Yoon et al., 2007) (Park et al., 2007) Na 2 O Na 2 O/Al 2 O 3 K 2 O/ Al 2 O 3 K 2 O/Al 2 O 3 Na 2 O/Al 2 O 3 (igneous rocks lower limit; Garrels and Mackenzie, 1971) (shaly) Na K (Gallet et al., 1998) K Figure 7 (GCLP) 9
Figure 6. Major elements contents (wt%) and ratios of Korean (GCLP; Geochang loess-paleosol sequence, BALP; Buan loess-paleosol sequence, BDLP; Bongdong loess-paleosol sequence, DCLP; Daecheon loesspaleosol sequence, DSLP; Dukso loess-paleosol sequence) and CLP (Chinese loess-paleosol sequence), GCRS (Geochang river sediment) and GCBR (bedrock), UCC (Upper Continental Crust) and PAAS (Post- Archean Australia Shale). 10
(GCRS) (Table 2) (GCBR) UCC PAAS Leedey (Masuda et al., 1973; Masuda, 1975) (Gallet et al., 1996; Jahn et al., 2001) Leedey (Light REE, LREE) (Heavy REE, HREE) (enrichment) ((La/Eu) N 7 04 9 11 ((Tb/Lu) N 1 44 1 98 Table 2 (GCLP) Eu (Eu anomaly) 0 62 0 67 Eu/Eu 0 63 1 04 Eu/Eu 1 00 Eu UCC(Taylor and McLennan, 1985) (La/Yb) N UCC Figure 7. Averaged chondrite-normalized REE patterns of Korean and Chinese loess-paleosol sequence, Geochang river sediment and bedrock, UCC and PAAS; Legend is same as in Figure 6. (Table 2) UCC PAAS (Figure 8) UCC PAAS(Taylor and McLennan, 1985) Eu (La/Yb) N PAAS (Gallet et al., 1998) (La/Yb) N UCC PAAS Ce Ce/Ce 1 01 Ce/Ce 1 00 Ce (Ce anomaly) Ce/Ce 0 71 1 13 Ce/Ce 0 68 1 27 Ce Ce Jahn et al.(2001) Eu (La/Yb) N (Figure 8(a)) (Figure 11
Table 2. Ce/Ce*, Eu/Eu* and (La/Yb) N of Korean and Chinese loess-paleosol sequence, Geochang bedrock and river sediment, UCC and PAAS; Legend from Figure 6. Site Ce/Ce* Eu/Eu* (La/Yb) N Site Ce/Ce* Eu/Eu* (La/Yb) N GCLP 0.68~1.27 0.62~0.67 10.72~17.34 BALP 0.79~1.00 0.63~0.66 13.02~16.11 BDLP 0.84~1.04 0.58~0.63 9.36~12.04 DCLP 0.71~1.10 0.59~0.62 8.88~14.01 CLP 0.71~1.12 0.61~0.67 7.16~10.42 GCBR 0.92 1.00 30.72 GCRS 0.23~2.07 0.63~1.05 17.19~25.91 UCC 1.01 0.64 8.98 PAAS 1.00 0.64 8.94 Figure 8. REE ratios of Korean and Chinese loess-paleosol sequence, Geochang river sediment and bedrock, UCC and PAAS; Legend from Figure 6. 8(b)) (Taylor and McLennan, 1985) (Yang et al. 2007) (Total REE Total LREE/Total HREE (Li et al. 2007 Total LREE/Total HREE Total REE 12
Figure 9 Rb/Sr Ba/Sr Th/Pb U/Pb Figure 9(a) Rb/Sr Ba/Sr Sr (Jahn et al., 2001) Rb/Sr Ba/Sr Rb (Kwon et al., 2004) K illite (transformation) Rb (accommodate) (Gallet et al., 1996) Rb/Sr Rb/Sr Ba/Sr UCC PAAS Rb/Sr Ba/Sr K-feldspar muscovite, illite (Újvári et al., 2008) Th U Th U (Gallet et al., 1998) Th U Th/U Figure 9(b) Th/U 3 8 Th/U 5 5 Figure 9. Plots of Ba/Sr vs. Rb/Sr (a) and Th/U vs. U/Pb (b) ratios of the Geochang section with Chinese loess-paleosol sequence, UCC and PAAS; Legend from Figure 6. 13
(Park, 1985) (Porter and An, 1995 Shin et al.(2004) Table 3 (Lee and Yi, 2002) (Kim, 2007) 6 7 5 (Hwang et al., 2009) Table 3. Comparisons of mean (M) and median (Md) values ( unit) in grain size parameters of loess-paleosol sediments in Korea. Lee and Yi(2002) Yongin M Hongcheon Shin(2003) terrace 1 terrace 2 terrace 3 M Md M Md M Md Layer 2 7.51 L1LL1 6.62 6.44 6.79 6.64 6.60 6.47 10 7.62 L1SS1 6.84 6.70 6.25 6.03 6.06 6.34 12 7.42 L1LL2 6.45 6.33 5.77 5.47 S1 6.29 6.27 4.87 4.78 Yoon et al.(2007) Yu et al.(2008) Kim(2007) Daecheon M Md Dukso M Md Iljuk M L1S1 7.03 6.89 L1LL1 6.56 6.4 silty soil 4.28 L1L2 6.64 6.39 L1SS1 6.57 6.31 S1 6.95 6.73 L1LL2 6.28 6.04 L2 6.86 6.64 S1 6.25 5.93 S2 6.57 6.25 L2 6.47 6.24 L3 6.23 5.92 S2 6.17 5.89 Hwang et al.(2009) this study Bongdong M Md Geochang M Md Layer 1 6.72 7.38 L1 7.07 6.93 Layer 2 6.39 7.01 L1L1 7.18 7.03 Layer 3 6.14 6.87 L1S1 7.27 7.11 L1L2 7.37 7.19 S1 7.19 7.03 L2 7.18 7.02 14
(Yoon et al., 2010) A-CN-K A-CNK-FM A-CN (Figure 10) Ca, Na, K Hwang et al.(2009) Ca, Na K Rb UCC Figure 10. A-CN-K and A-CNK-FM diagram (Nesbitt and Young, 1984, 1989) of Korean and Chinese loesspaleosol sequence, Geochang river sediment and bedrock, UCC and PAAS; Sm=smectite; Pl=plagioclase; IL=illite; Ks=K-feldspar; Fel=feldspar; Ka=kaolinite; Gi=gibbsite; Chl=chlorite; Bi=Biotite; A=Al 2 O 3 ; CN=CaO+ Na 2 O; K=K 2 O; CNK=CaO+Na 2 O+K 2 O; FM=Fe 2 O 3 +MgO; Legend is same as in Figure 6. 15
Sr Sr Ca Na (Gallet et al., 1996) Ca>Sr>Na> Mg (Yang et al., 2004) Sr Rb Ca Sr Na Kim et al.(2006) 19 28m 5 70 80 15 20 (HREE) Eu (La/Eu) N, (Tb/Lu) N, (La/Yb) N UCC OSL L2 MIS 6 MIS 6 L2 boulder MIS 7 16
L2, S1, L1L2, L1S1, L1L1, L1, L1S1 S1 OSL (SPECMAP) L1 L1L1 MIS 2, L1S1 MIS 3, L1L2 MIS 4, S1 MIS 5, L2 MIS 6 19 28m MIS 7 7 21 7 05 40 45 25 5 CN-K A-CNK-FM Sr, U Th/U Eu (La/Yb) N MIS 3 MIS 5 MIS 3 Folk, P. L., and Ward, W. C., 1957, Brazos river bar - a study in the significance of grain size parameters, Journal of Sediment Petrology, 27, 3-26. Gallet, S., Jahn, B., and Torii, M., 1996, Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications, Chemical Geology, 133, 67-88. Gallet, S., Jahn, B., Lanoë, B. V. V., Dia, A., and Rossello, E., 1998, Loess geochemistry and its implications for particle origin and composition of the upper continental crust, Earth and Planetary Science Letters, 156, 157-177. Garrels, R. M., and Mackenzie, F. T., 1971, Evolution of Sedimentary Rocks, Norton & Company, New York. Han, M., 2010, Petrological Study of the dioritic and granitic rocks from Ryeongnam Massif, Geochang, Geological Science Major, Division of Earth Environmental System, Master s thesis, Pusan National University (in Korean). Hwang, S. I., Park, C. S., and Yoon, S. O., 2009, Weathering properties and provenance of loesspaleosol sequence deposited on river terrace in 17
the Bongdong area, Wanju-gun, Jeonbuk Province, Journal of the Korean Geographical Society, 44(4), 463-480 (in Korean). Jahn, B., Gallet, S., and Han, J., 2001, Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka, Chemical Geology, 178, 71-94. Jeong, G. Y., Hiller, S., and Kemp, R. A., 2010, Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau, Quaternary Research, 75, 1-11. Kang, Y. B., 1979, Paleopedological problems on the pedogenesis of red soils in south Korea, Geography-Education, 9, 256-266 (in Korean). Kim, J. Y., Yang, D. Y., Bong, P. Y., Kim, J. K., Oh, K. C., and Choi, D. W., 2006, Environment of fluvial sedimentary deposits and palynological occurrence in the Geochang area, The Korean Journal of Quaternary Research, 20(1), 39-50 (in Korean). Kim, Y. R., 2007, Properties of local loess of small basin in Charyong Range - Iljuk, Anseong City, Central Korea, Journal of the Korean Geomorphological Association, 14(2), 67-81 (in Korean). Lee, Y. I. and Yi, S. B., 2002, Characteristics of Pyeongchang-ri paleolithic-site paleosols, Yongin-si, Gyeonggi-do, Korea: implications for archaeogeological application, Journal of the Geological Society of Korea, 38(4), 471-489 (in Korean). Li, F., Jin, Z., Xie, C., Feng, J., Wang, L., and Yang, Y., 2007, Roles of sorting and chemical weathering in the geochemistry and magnetic susceptibility of Xiashu loess, East China, Journal of Asian Earth Sciences, 29, 813-822. Maher, B. A., 1998, Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications, Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 25-54. Masuda, A., Nakamura, N., and Tanaka, T., 1973, Fine structure of mutually normalized rare-earth patterns of chondrites, Geochimica et Cosmochimica Acta, 37, 239-348. Masuda, A., 1975, Abundance of mono isotopic REE, consistent with the Leedey chondritic values, Geochemical Journal, 9, 183-184. Naruse, T., Yu, K. M., and Watanabe, M., 2008, Loess- Paleosol stratigraphy and chronology after 900 ka for constructing the paleolithic chronology in East Asia, 65-85: In Basic studies of the paleolithic chronology and paleoenvironmental changes in East Asia (Matsufuji, K. Ed.). Nesbitt, H. W., and Young, G. M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochimica et Cosmochimica Acta, 48, 1523-1534. Nesbitt, H. W., and Young, G. M., 1989, Formation and diagenesis of 584 weathering profiles, The Journal of Geology, 97, 129-147. Oh, K. S., and Kim, N. S., 1994, Origin and postdepositional deformation of the superficial formations covering basalt plateau in Chungok area, The Korean Journal of Quaternary Research, 8(1), 43-68 (in Korean). Park, C. S., Yoon, S. O., and Hwang, S. I., 2007, Properties and provenance of loess-paleosol sequence at the Daebo Granite area of Buan, Jeonbuk Province, South Korea, Journal of the Korean Geographical Society, 42(6), 898-913 (in Korean). Park, D. W., 1985, A study on the loessial red yellow soil of Hwangsan, Kimje County and Gamgok, Chungeup County of the South Western Coastal area of Korea, Geography (Journal of the Korean Geographical Society), 32, 1-10 (in Korean). Porter, S. C., and An, Z. S., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305-308 Pye, K., 1987, Aeolian dust and dust deposits, Academic press, London. Pye, K., 1995, The nature, origin and accumulation of 18
loess, Quaternary Science Reviews, 15, 653-667. Shin, J. B., 2003, Loess-Paleosol Stratigraphy of Dukso and Hongcheon Areas and Correlation with Chinese Loess-Paleosol Stratigraphy: Application of Quaternary loess-paleosol stratigraphy to the Chongokni paleolithic site, Ph. D. dissertation, University of Yeonsei. Shin, J. B., Naruse, T., and Yu, K. M., 2005, The application of loess-paleosol deposits on the development age of river terraces at the midstream of Hongcheon River, Journal of the Geological Society of Korea, 41(3), 323-333 (in Korean). Shin, J. B., Yu, K. M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20- pit of Chongokni Paleolithic Site, Journal of the Geological Society of Korea, 40(4), 396-381 (in Korean). Taylor, S. R., and McLennan, S. M., 1985, The continental crust: Its composition and evolution, Geoscience Texts, Blackwell, Oxford. Üjvári, G., Varga, A., and Balogh-Brunstad, Z., 2008, Origin, weathering, and geochemical composition of loess southwestern Hungary, Quaternary Research, 69, 421-437. Yang, S. Y., Li, C. X., Yang, D. Y., and Li, X. S., 2004, Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implication, Quaternary International, 117, 27-34. Yang, X., Liu, Y., Li, C., Song, Y., Zhu, H., and Jin, X., 2007, Rare earth elements of aeolian deposits in Northern China and their implications for determining the provenance of dust storms in Beijing, Geomorphology, 87, 365-377. Yoon, S. O., Park, C. S., Hwang, S., and Naruse, T., 2007, Weathering characteristics of loesspaleosol sequence at the Daecheon area, South Korea, Journal of the Geological Society of Korea, 43(3), 281-296 (in Korean). Yoon, S. O., Park, C. S., and Hwang, S., 2010, Comparisons of grain size analysis results by different pretreatments procedures in loesspaleosol sediments, Journal of the Korean Geographical Society, 45(5), 553-572 (in Korean). Yu, K. M., Shin, J. B., and Naruse, T., 2008, Loesspaleosol stratigraphy of Dukso area, Namyangju City, Korea (South), Quaternary International, 176-177, 96-103. http://www.kma.go.kr/ 130-701 1 soyoon@ khu.ac.kr 02-961-0862 02-964-0250) Correspondence: Soon-Ock Yoon, Department of Geography and Research Institute for Basic Sciences, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, Korea (e-mail: soyoon@khu.ac. kr, phone: +82-2- 961-0862, fax: +82-2-964-0250) 19