04홍석영(509~520)(f.5)ok

Similar documents
09È«¼®¿µ 5~152s

05서찬양(521~529)ok

09구자용(489~500)

DBPIA-NURIMEDIA

< B3E2BFF8BAB828C8AFB0E629312E687770>

인문사회과학기술융합학회

14(4)-14(심고문2).fm

03이경미(237~248)ok

03-서연옥.hwp

02ÇãÀÎÇý ~26š

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

04김이현(31~44)ok

02¿ÀÇö¹Ì(5~493s

433대지05박창용

04김호걸(39~50)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

09이훈열ok(163-

8(3)-01.fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

년AQM보고서_Capss2Smoke-자체.hwp

Focus2È£pdf

09권오설_ok.hwp

hwp

433대지04강철성

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

05 목차(페이지 1,2).hwp

<B8F1C2F72E687770>

10(3)-09.fm

09오충원(613~623)

45-51 ¹Ú¼ø¸¸

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

현대패션의 로맨틱 이미지에 관한 연구

12(1)-01(허지나).fm

08원재호( )

1

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

참혹한 일본 지진, 쓰나미, 원전폭발

012임수진

1..

06_( )홍석영.hwp


Lumbar spine

untitled

( 월호) 해외곡물시장 동향

03¹Ú³ë¿í7~272s

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

63-69±è´ë¿µ

untitled

*5£00̽ÅÈ�

09-감마선(dh)

이상훈 심재국 Vegetation of Mt. Yeonin Provincial Park Department of Life Science, Chung-Ang University The forest vegetation of Mt. Yeonin Provincial Park

레이아웃 1

칠레01-28p 6월27일3차

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(3)-12.fm

Journal of Educational Innovation Research 2016, Vol. 26, No. 1, pp.1-19 DOI: *,..,,,.,.,,,,.,,,,, ( )

<31372DB9DABAB4C8A32E687770>

DBPIA-NURIMEDIA

Rheu-suppl hwp

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

À±½Â¿í Ãâ·Â

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

1. 연구 개요 q 2013년 연구목표 제2-1과제명 건축물의 건강친화형 관리 및 구법 기술 연구목표 건강건축 수명예측 Lifecycle Health Assessment (LHA) 모델 개발 건축물의 비용 기반 분석기술(Cost-based Lifecycle Health

???춍??숏

한국 출산력의 저하 요인에 관한 연구

82-01.fm

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

<31335FB1C7B0E6C7CABFDC2E687770>

歯49손욱.PDF

DBPIA-NURIMEDIA

04-다시_고속철도61~80p

14.531~539(08-037).fm

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

03-2ƯÁý -14š

02Á¶ÇýÁø

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특


Æ÷Àå½Ã¼³94š

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물


<313120B9DABFB5B1B82E687770>

<31325FB1E8B0E6BCBA2E687770>

±×¸°¸®Æ÷Æ® ³»Áö5Â÷

<312EBFACB1B8C0DAB7E C1D6BFE4B1B9C0C75FB1B9C0AFB8B25FB0E6BFB5B5BFC7E2292DC3D6C1BEC6ED2E687770>

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

아태연구(송석원) hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

°í¼®ÁÖ Ãâ·Â

16-기06 환경하중237~246p

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

서론 34 2

DBPIA-NURIMEDIA

Transcription:

Korean Journal of Remote Sensing, Vol.28, No.5, 2012, pp.509~520 http://dx.doi.org/10.7780/kjrs.2012.28.5.4 Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea Suk Young Hong*, Jina Hur**, Joong-Bae Ahn**, Jee-Min Lee***, Byoung-Keol Min***, Chung-Kuen Lee****, Yihyun Kim*, Kyung Do Lee*, Sun-Hwa Kim*, Gun Yeob Kim* and Kyo Moon Shim* * National Academy of Agricultural Science (NAAS), RDA, ** Division of Earth Environmental System, Pusan National University *** B&T Solutions, **** National Institutel of Crop Science (NICS), RDA Abstract : The objective of this study was to estimate rice yield in Korea using satellite and meteorological data such as sunshine hours or solar radiation, and rainfall. Terra and Aqua MODIS (The MOderate Resolution Imaging Spectroradiometer) products; MOD13 and MYD13 for NDVI and EVI, MOD15 and MYD15 for LAI, respectively from a NASA web site were used. Relations of NDVI, EVI, and LAI obtained in July and August from 2000 to 2011 with rice yield were investigated to find informative days for rice yield estimation. Weather data of rainfall and sunshine hours (climate data 1) or solar radiation (climate data 2) were selected to correlate rice yield. Aqua NDVI at DOY 233 was chosen to represent maximum vegetative growth of rice canopy. Sunshine hours and solar radiation during rice ripening stage were selected to represent climate condition. Multiple regression based on MODIS NDVI and sunshine hours or solar radiation were conducted to estimate rice yields in Korea. The results showed rice yield of 494.6 kg 10a -1 and 509.7 kg 10a -1 in 2011, respectively and the difference from statistics were 1.1 kg 10a -1 and 14.1 kg 10a -1, respectively. Rice yield distributions from 2002 to 2011 were presented to show spatial variability in the country. Key Words : Rice yield, Remote sensing, MODIS NDVI, Solar radiation 509

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 510

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea 511

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 Fig. 1. Flow chart of MODIS data preprocessing. (NIR NDVI = _ RED) (-1 NDVI 1) (1) (NIR + RED) 512

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea Fig. 2. Parcel map based paddy mask(90 m). 513

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 Fig. 3. Rice yield prediction schema using MODIS NDVI and climate data. Table 1. Yield statistics of Korea (Statistics Korea, http://kosis.kr) Year Unhulled rice Milled rice Year Yield(kg 10a -1 ) 2000 675 497 2001 693 516 2002 639 471 2003 609 441 2004 679 504 2005 661 490 2006 664 491 2007 630 466 2008 694 520 2009 706 534 2010 653 483 514

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea Table 2. Correlation coefficient between rice yield and MODIS products MODIS products Correlation Coefficient MODIS products 00~ 11 00~ 11 02~ 11 02~ 11 TNDVI209 (7.28) -0.25-0.33 TNDVI225 (8.13) -0.04-0.04 TEVI209 (7.28) -0.27-0.40 TEVI225 (8.13) -0.38-0.43 Terra TLAI201 (7.20) -0.05 0.01 TLAI209 (7.28) -0.15-0.24 TLAI217 (8.5) 0.23 0.30 TLAI225 (8.13) -0.05-0.11 TLAI233 (8.21) 0.41 0.33 TLAI241 (8.28) 0.63 0.62 ANDVI201 (7.20) -0.25 ANDVI217 (8.5) 0.28 ANDVI233 (8.21) 0.62 AEVI201 (7.20) 0.50 AEVI217 (8.5) 0.18 Aqua AEVI233 (8.21) -0.23 ALAI201 (7.20) -0.17 ALAI209 (7.28) 0.14 ALAI217 (8.5) 0.26 ALAI225 (8.13) 0.41 ALAI233 (8.21) 0.30 ALAI241 (8.28) 0.73 rainfall (1 ) -0.71-0.83 sunshine hours (1) 0.63 0.70 rainfall (2 )* -0.64-0.79 solar radiation (2) 0.73 0.86 A: Aqua, T: Terra, 1, 2: Meteorological data 1, 2, * 00-10(n=11) or 02-10(n=9) 515

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 Table 3. Rice yield prediction model based on Aqua NDVI 233 (x 1 ) and sunshine hours 1(x 2 ) or rainfall 1(x 2 ) of ripening stage( 02~ 10, n=9) Yield Prediction Model 2011 Rice Yield predicted(kg/10a) Rice Yield = (NDVI 233 (x 1 ), sunshine hours 1(x 2 )) P=0.0274 RSq=0.70 * RMSE=17.9 kg 10a -1 494.6 Rice Yield = (NDVI 233 (x 1 ), rainfall 1(x 2 )) P=0.0054 RSq=0.82 * RMSE=13.7 kg 10a -1 515.5 Table 4. Rice yield prediction model based on Aqua NDVI 233 (x 1 ) and insolation 2(x 2 ) or rainfall 2(x 2 ) of ripening stage( 02~ 10, n=9) Yield Prediction Model 2011 Rice Yield predicted(kg/10a) Rice Yield = (NDVI 233 (x 1 ), solar radiation 2(x 2 )) P=0.0103 RSq=0.78 * RMSE=15.2 kg 10a -1 509.7 Rice Yield = (NDVI 233 (x 1 ), rainfall 2(x 2 )) P=0.0078 RSq=0.80 * RMSE=14.5 kg 10a -1 515.0 (a) Fig. 4. Comparision of predicted rice yield based on MODIS NDVI and sunshine hours 1 (a) and MODIS NDVI and solar radiation 2 (b) and rice yield statistics from 2002 to 2011. (b) 516

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea 2011 2010 2009 Fig. 5. Rice yield map of Korea from 2002 to 2011. 2008 517

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 2007 2006 2005 2004 Fig. 5. Continued 2003 2002 518

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea Ahn, J.B., C.K. Park, and E.S. Im, 2002. Reproduction of regional scale surface air temperature by estimating systematic bias of mesoscale numerical model, Journal of Korean Meteorological Society, 38(1): 69-80. Becker-Reshef, I., E. Vermote, M. Lineman, and C. Justice, 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, Remote Sensing of Environment, 114: 1312-1323. Chang, J., M.C. Hansen, K. Pittman, M. Carroll, and C. DiMiceli, 2007. Corn and soybean mapping in the United States using MODIS time-series data sets, Agronomy Journal, 99: 1654-1664. Cock, J.H. and S. Yoshida, 1972. Accumulation of 519

Korean Journal of Remote Sensing, Vol.28, No.5, 2012 14 C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant, Proceedings of the Crop Science Society of Japan, 41: 226-234. Cressman, G.P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374. Doraiswamy, P.C, T.R. Sinclair, S. Hollinger, B. Akhmedov, A. Stern. and J. Prueger, 2005. Application of MODIS derived parameters for regional crop yield assessment, Remote Sensing of Environment, 97: 192-202. FAO (GIEW), http://www. fao.org/giews/english/index.htm Hong, S.Y., J.T. Lee, S.K. Rim, and J.S. Shin, 1997. Radiometric estimates of grain yields related to crop aboveground net production (ANP) in paddy rice. Proc. of 1997 International Geoscience and Remote Sensing Symposium, Singapore, Aug. 3-8, pp. 1793-1795. Jordan, C.F., 1969. Derivation of leaf area index from quality of light on the forest floor, Ecology, 50: 663-666. Myneni, R.B., G. Asrar, and F.G. Hall, 1992. A three dimensional radiative transfer modelsalgorithms-experiments. Remote Sensing of Environment, 51: 3-26. Narongrit, C. and K. Chankao, 2009. Development and validation of rice evapotranspiration model based on Terra/MODIS remotely sensed data, Journal of Food, Agriculture & Environment, 7: 684-689. Rasmussen M.S., 1997. Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability, International Journal of Remote Sensing, 18(5): 1059-1077. Rouse, J.W, R.H. Haas, J.A. Schell, and D.W. Deering, 1973. Monitoring vegetation systems in the great plains with ETRA. In third ETRS Symposium, NASA SP-353. U.S. Govt. Printing Office, Washington D.C., 1: 309-317. Ren, J., Z. Chen, Q. Zhou, and H. Tang, 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China, International Journal of Applied Earth Observation and Geoinformation, 10: 403-413. Sun, J., 2000. Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China, Photogrammetric Engineering and Remote Sensing, 66(5): 645-650. 520