92-04.fm

Similar documents
114-01(07-19).fm

012임수진

44-4대지.07이영희532~

( )Kju269.hwp

12.077~081(A12_이종국).fm

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

°ø±â¾Ð±â±â

10(3)-10.fm

Can032.hwp

Lumbar spine

fm

fm

( )실험계획법-머리말 ok

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

fm

전용]

<313120B9DABFB5B1B82E687770>

10(3)-09.fm

14.531~539(08-037).fm

12(3) 10.fm

fm

untitled

(

untitled

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

???? 1

IKC43_06.hwp

07.045~051(D04_신상욱).fm

09È«¼®¿µ 5~152s

09구자용(489~500)

19(1) 02.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

hwp

82-01.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


DBPIA-NURIMEDIA

γ

43-5.fm

12이문규

45-51 ¹Ú¼ø¸¸

12(4) 10.fm

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

02Á¶ÇýÁø

03이경미(237~248)ok

Kaes010.hwp

歯전용]

PDF

< C6AFC1FD28B1C7C7F5C1DF292E687770>


92-02.fm

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

09-감마선(dh)

歯 PDF

KH100¼³¸í¼�

DBPIA-NURIMEDIA

<BFACBCBCC0C7BBE7C7D E687770>

박선영무선충전-내지

#Ȳ¿ë¼®

untitled

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

<30352DC0CCC7F6C8F B1B3292DBFACB1B8BCD2B1B3C1A42E687770>

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

hwp

Microsoft Word - KSR2013A320

14(4) 09.fm

???? 1

Main Title

16(5)-04(61).fm

10(3)-12.fm

04김호걸(39~50)ok

<31325FB1E8B0E6BCBA2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원

<31372DB9DABAB4C8A32E687770>

fm

10.063~070(B04_윤성식).fm

슬라이드 1

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

09권오설_ok.hwp

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

DBPIA-NURIMEDIA

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

64.fm

09김정식.PDF

DBPIA-NURIMEDIA

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종


Transcription:

Biomaterials Research (2005) 9(2) : 90-95 Biomaterials Research 7 The Korean Society for Biomaterials j ql s w e w The Effect of Mechanical Stimuli and Patterned Microfiber Substrate on Neuronal Outgrowth and Guidance ½ Á Á½ Á½ wá y Á Á * In Ae Kim, Su A Park, Young Jick Kim, Su Hyang Kim, Ho Joon Shin, Yong Jae Lee, and Jung-Woog Shin* fh Š fd Š Department of Biomedical Engineering, Inje University, 607 Obang-Dong, Kimhae, Kyongnam 621-749, Korea (Received January 29, 2005/Accepted May 17, 2005) Most nerve injuries in the central or peripheral nervous systems induce a serious loss of axonal function. Many investigators have studied neuron axonal outgrowth and guidance using various scaffolds, surface patterning, or growth factor coating. Still, neuronal regeneration is difficult. Therefore, we evaluated the effects of micropatterned fibers made by electrospinning and steady fluid-induced shear stress on neuronal outgrowth and axonal guidance in vitro. The rat pheochromocytoma cells (PC-12) were stimulated with nerve growth factor and laminar flow shear stress in a fluid flow system. After a 48h culture, a 2h steady shear stress was applied three times each day for 2 days. The degree of steady shear stress stimulation was divided into five groups according to the magnitude of stimuli: 0.1~1.5 Pa. 4 days after seeding, neuronal outgrowth and alignment were measured using SEM and F-actin staining. The micropatterned fiber substrate enhanced the alignment of neurons and neurite outgrowth. When a stress of 0.5 Pa was applied, the number of cells increased with the micropatterned substrate and neurons were most highly aligned with patterning. The outgrown neurites were longest under the shear stress of 0.25 Pa. The neurons were guided by the micropatterned fibers and stimulated by fluid-induced shear stress at specific magnitudes. The results suggest that micropatterned electrospun fibers and fluid-induced shear stress are promising for stimulating axonal regeneration in a desired direction. Key words: Nerve regeneration, Micro-patterning, PC-12 cells, Shear stress stimulation, Neurite outgrowth length t f f f d, l f f g } g f. g f f Š hœš f g l f Š f l Š. 1) f f f f g ~ g f ihš eš, extracellular matrices, microgrooved surfaces,, z f f f d thš llt fdš Š f. 2) ƒ, l ltf f} } f f Œ Š f fd f. 2), Š e fdš f} llt h fš, f fdš f hœš f gf rš. h f f Š ilf Šhf w j hf Šf Š. f f f Œh f j f ff Œ ~. ƒ h f f f hf l ~,, e, Œ *sf hf: sjw@bme.inje.ac.kr ~ f. 4) f Œ~ Šh, Šhf w f f Šd Š. h f f f g ŠdŠ tœ f j jdš fdš f., Š e llt h f f f f gtl hœš f g x Š rš. Rat pheochromocytoma(pc-12) gff(ngf) fš hœhf f f l Œ f h f. 5) PC-12 Š jfš(korean Cell Line Bank) dš, 10% d~ Œt(FBS, Hyclone, UT, USA), 100 units/ml (Sigma, MO, USA), 100 mg/ml ƒ f (USB, OH, USA)f Š Dulbecco's Modified Eagle's Medium h-glucose(dmem-hg)f l 37 o C, 5% CO 2 f 90

h f f} ef f f g x 91 } f. Š llt rf d f h f. PC-12 f r f f eš f z Š. f llt hfš eš y (24 36 mm) 0.1% d f 12h z Š HANK s balanced salt solution(hbss) sš. f hf llt i f L Š. f f} e llt h f fdš hfš. ~f z f jšt(plga, 50:50, Alkamus Inc., USA) 50 wt%f d. f d N,N- f (DMF, Junsei Chemical Co., Ltd., Tokyo, Japan) ƒ Šf (THF, Junsei Chemical Co.)f 1:1 dš. f} e Š eš f z ll t hš l (e Œ, l : 80 mm, f: 100 mm) rš. 18 G j f dš hf Š. PLGA l f f h he fdš 10 kvf h f j l ff 6.5 cm hš. f l f e f 4.2 m/sf h z PLGA f} e f z llt e Š. f l step motor hœš h Š, h fturbo C(ver 3.0, Boland International, Inc.) fdš. 6) l Figure 1 f e f fdš h f f Š. e f e s, 2 f lhgs, f. lhgs j 1 95% air 5% CO 2 elš eš l s d Œ Š f hf. 2) e s f 1 mm, 30 mmf f hf (Figure 2). e f h Š LabVIEW (ver. 6.1i National Instruments, USA) f fdš y h. f e f Newtonian fluid, h w Figure 1. Schematic diagram of the fluid flow systemu Figure 2. Modified flow chamber used to apply shear stress : (A) Figure of chamber and (B) schematics of chamberu hš. Šl h f f (1). τ = 6µQ/h 2 b (1) µ: dynamic viscosity, Q: flow rate, h: height, b: width h f f f eš, lf dynamic viscosity(µ) 9.6 10-4 PaÁs hš. 2) y e f (CFD)f fdš e s ~ e f f Š. e s 2re ešd hfš, fluid e f e Œ ~, e, h f f rš. f hf CFD f Fluent 6.0(Fluent Inc., USA)f dš Š Š. ƒ z ( L) f} ( F) f f y e PC-12 2.5 10 4 cell/glass iš. f 10% FBS Š DMEM-HG fdš f} f 2f. 3fm L F e s h f f Š (Table 1). f e s 3 f y f 4 f e s l Š. h f f h f f Š 3 2 2f Š. f f l f jf Œ f e eš lf FBS 1% jf NGF(NGF-7s, 0 ng/ml, Vol. 9, No. 2

92 f Á Á lá Á ŒjÁfdgÁ hd Table 1. Experimental groups according to the pattern and shear stress magnitude Substrate Magnitude Group L (laminin-coated only) LC (control: C (0 Pa)) LS_0.1Pa (stimuli: S) LS_0.25Pa LS_0.5Pa LS_1.0Pa LS_1.5Pa Group F (laminin + patterned fibers) FC FS_0.1Pa FS_0.25Pa FS_0.5Pa FS_1.0Pa FS_1.5Pa Sigma, USA) t Š. Table 1 f, h f f } 5 Š. h f f Šll l f f eš 6.79 10-4 cm/sf l ŒŠ. x (SEM) ef f Œ f rš eš SEM f fdš. f l h Š 4% Šf 30 h f vd (PBS)f r s Š. h 30, 60, 70, 80, 90, 100% z 1 sš ~ Š, i z. f f fdš z Š f 5kV SEM(JSM-5000, JEOL, Tokyo, Japan)f fdš u Š. F- p f PBS s 4% Šf 10 hš. f eš 0.1% Triton X-100 4 o C 20 s 1% BSA blocking Š. rhodamine phalloidin(1:100, Molecular Probes, Eugene, OR, USA)f 20 s Š. f fluorescence microscopy(axioskop2 Plus, Karl Zeiss, Germany)f fdš whš.» ù (outgrowth) ¼ w d f whf eš F- f f l f l hgš. bipolar pseudo-unipolar Œ f f f hš. 7) f f Image-J f fdš t f l whš. f whf r ±2 µm ~. PC-12 f h wh Š eš MATLAB(ver. 6.0, MathWorks, Co.)f fdš f l Š. f h f j r(ad) f fdš h h f whš, f AD f Fisher fš circular statistics fdš. 9)»ƒ s s d Œ f f l fdš f f tf 1.5 f f hš f f (2) fdš wh Š. 10) Percentage of cells outgrowth = cell count of outgrowth / cell count of all (2) m f h Œ eš fe x f fdš j Fisher's LSD f dš. d f SPSS 11.0 software(spss Inc. Chicago, IL, USA)f fdš. š h f f h f f} } f e f llt fdš f guidance x Š rš. f rf l ~ eš NGF Š fdš. f ECMf d g f g f f l ~ f fd f. 11,12) NGF PC-12 f Œ ~ jdš d f. f f f f g f gf l ~ f eš f} f llt fdš. Miller 14) f} f Š llt f orientationf l ~ f} groovef f f jdš d ff Š., f} e f llt f fdš. SEMf fdš f} f lltf i rš ef l f 3 µm 5 µm wh (Figure 3A). Š, f} e f h f f} e Š f (Figure 3B), AD f 9.14 o ~. f hf f} e Š, f} e Š f f z f f f efš l. Š f} e f f. f} f e llt hœš hf f g v Š Š f ŠŠ f. h f f Š f Œ h f f f j jdš d f. 15), d h f f f orientation f x f hš. h f f } hš eš f Š, 48 hf h f f llt h. f f rf Š Š ~ f f., d Š Biomaterials Research 2005

물리적 자극과 마이크로 섬유의 패턴이 신경세포의 성장과 방향성에 미치는 영향 A micropatterned substrate : (A) SEM image and (B) angular distribution. Figure 3. 에 3번 2시간씩 이틀간 전단응력을 가하였다. 또한 챔버 내 유동의 정확한 크기를 검증하기 위하여, Fluent 프로그램을 이 용하여 유동 챔버 내부의 유동의 흐름을 관찰하였다. 유동 속 도는 잘 알려진 유체 속도 계산식의 값과 동일하였다. 챔버 내 유동 의 속도를 4.34 cm/s 가했을 때 계산된 전단응력은 0.25 Pa 이었다. 전단응력이 가해질 때 와류와 같은 흐름은 없었다. 전단응력을 받은 세포는 자극을 받지 않은 그룹에 비하여 방 추형의 형상을 보였다. PC-12세포의 뻗어 나온 돌기의 길이를 측정한 결과, F 그룹의 신경돌기는 L 그룹보다 더 길어졌다. 그리고, F 그룹은 섬유를 따라 신경돌기가 자란 것을 알 수 있었다. 자극의 크기가 0.25 Pa 이상일 경우 뻗어 나온 돌기 의 길이가 감소하는 반면에 0.25 Pa 크기의 전단응력을 가했 을 때 신경세포체와 신경돌기의 길이가 길어짐을 관찰할 수 있 었다. 그리고, FS_0.25 Pa 그룹에서 신경돌기의 길이가 가장 길었다(Figures 4, 5). 세포의 orientation 측정 결과, 세포는 라미닌이 코팅된 그룹 보다 섬유가 있는 지지체 그룹에서 높은 배열을 보였다. 또한, FS_0.5Pa 그룹에서 가장 높은 배열 정도를 보였으나, 섬유가 93 Changes in cell morphology with the magnitude of the shear stress at 4 days for both group L and group F ( 100). Figure 4. Outgrowth length of neurites on different structures with different shear stresses (*p<0.05). Figure 5. 없는 그룹에서는 전단응력에 의한 배열은 볼 수 없었다 신경돌기의 성장이 일어난 세포의 수는 FS_0.25Pa 그룹에서 가장 많았으며, 평균적으로 F 그룹에서 L그룹에 비하여 더 많 은 신경돌기의 성장을 나타내었다(Figure 7). (Figure 6). Vol. 9, No. 2

94 f Á Á lá Á ŒjÁfdgÁ hd Figure 6. Angular deviation of neurites on different structures with different shear stresses (n=6, Q: p<0.05)u Figure 7. Percentage of cells with neurite outgrowth on different structures and at different shear stresses (n=6, Q: p<0.05)u Fluid-induced h f f f} e Š f hf h f, f gœ Š ~ Šf ŠŠ f g hd fff f. 16), h f f ll f f Œh f Š f l Œ, f f j f f. 6,16) Š f f h f f } f f ~. 0.5 Pa } f h f g f f f, f f 0.25 Pa g if ~. 0.25 Pa f f h f f Š 0.5 Pa f f } l f. f f f f, f rf Š f f } } l f f f. h f f f} e llt efš if f f f} e f Š f gœ f f h f f l ~ f. f} e llt h f f f g g Š f x Š rš. f f} e f f g f ihš, ƒhš } f h f f f f l ~ f f. ƒ, f} e llt fluid-induced h f f Š fd f gf l h f., e llt ƒh } f h f f g f hhf f j f. f r f f fd d g f fdš lef f hf f. š x 1. N. Rangappa, A. Romero, K.D. Nelson, R.C. Eberhart, and G.M. Smith, Laminin-coated poly(l-lactide) filaments induce robust neurite growth while providing directional orientation, J. Biomed. Mater. Res., 51, 625-634 (2000). 2. H. Tsuji, H. Sato, T. Baba, S. Ikemura, Y. Goroh, and J. Ishikawa, Neuron cell positioning on polystyrene in culture by silvernegative ion implantation and region control of neural outgrowth, Nuclear Instr. Methods Physics Res., B166-167, 815-819 (2000). 3. J. Klein-Nulend, A. van der Plas, C. M. Semeins, N. E., Ajubi, J. A. Frangos, P. J. Nijweied, E.H. Burger, Sensitivity of osteocytes to biomechanical stress in vitro, FASEB. J., 9, 441-445 (1995). 4. A. A. Lee, D. A. Graham, S. D. Cruz, and A. Ratcliffe, Fluid shear stress-induced alignment of cultured vascular smooth muscle cells, J. Biomech. Eng., 124, 37-43 (2002). 5. S. J. Lee, G. Khang, Y. M. Lee, and H. B. Lee, The effect of surface wettability on induction and growth of neurites from the PC-12 cell on a polymer surface, J. Colloid. Interface. Sci., 259, 228-235 (2003). 6. C. H. Lee, H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials, 26, 1261-1270 (2005). 7. L. C, Junqueira, J. Carneiro, and R. O. Kelley, Basic Histology, Appleton & Lange, 1999. 8. R. Brian, M. D. Noble, and P. A. Tresco, Directed nerve outgrowth is enhanced by engineered glial substrates, Exp. Neurol., 184, 141-152 (2003). 9. N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, 1993. 10. J. Schimmelpfeng, K. Weibezahn, and H. Dertinger, Quantification of NGF-dependent neuronal differentiation of PC-12 cells by means of neurofilament-l mrna expression and neuronal outgrowth, J. Neurosci. Methods, 139, 299-306 (2004). 11. D. L. Hynds and D. M. Snow, A semi-automated image analysis Biomaterials Research 2005

h f f} ef f f g x 95 method to quantify neurite preference/axon guidance on a patterned substratum, J. Neurosci. Methods, 121, 53-64 (2002). 12. D. Chafik, D. Bear, P. Bui, A. Patel, N. F. Jones, B. Y. Kim, C. T. Hung, and R. Gupta, Optimization of Schwann cell adhesion in response to shear stress in an in vitro model for peripheral nerve tissue engineering, Tissue Eng., 9(2), 233-241 (2003). 13. N. B. Chauhan, H. M. Figlewicz, and T. Khan, Carbon filaments direct the growth of postlesional plastic axons after spinal cord injury, Int. J. Devl. Neuroscience, 17(3), 255-264 (1999). 14. C. Miller, H. Shanks, A. Witt, G. Rutkowski, and S. Mallapragada, Oriented Schwann cell growth on micropatterned biodegradable polymer substrates, Biomaterials, 22, 1263-1269 (2001). 15. Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. Huang, Electrospinning of gelatin fibers and gelatin/pcl composite fibrous scaffolds, J. Biomed. Mater. Res., 72B, 156 165 (2004). 16. D. Choquet, D. P. Felsenfeld, M. P. Sheets, Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages, Cell, 88, 39-48 (1997). Vol. 9, No. 2