Korean Journal of Environmental Agriculture Korean J Environ Agric (2011) Online ISSN: 2233-4173 Vol. 30, No. 1, pp. 9-15 DOI : 10.5338/KJEA.2011.30.1.9 Print ISSN: 1225-3537 Research Article Open Access 비료원과멀칭재료에따른사과유묘의생장및토양이화학성변화 최현석, 1* 롬컽, 2 이연, 1 조정래, 1 정석규, 3 지형진 1 1 국립농업과학원유기농업과, 2 아칸소주립대학교원예학과, 3 경희대학교한방재료가공학과 Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources Hyun-Sug Choi, 1* Curt Rom, 2 Youn Lee, 1 Jung-Lai Cho, 1 Seok-Kyu Jung 3 and Hyeong-Jin Jee 1 ( 1 Organic Agriculture Division, National Academy of Agricultural Science, Suwon 441-875, Korea, 2 Department of Horticulture, University of Arkansas, Fayetteville 72701, USA 3 Department of Medicinal Materials & Processing, Kyunghee University, Yongin 446-701, Korea) Received: 19 November 2010 / Accepted: 10 March 2011 c The Korean Society of Environmental Agriculture Abstract BACKGROUND: This study was conducted to evaluate the effects of the fertilizer sources and ground cover mulches on nutrient release, growth, and photosynthesis in small one-year-old apple (Malus domestica Borkh.) trees in controlled conditions. METHODS AND RESULTS: Treatments included no fertilizer (NF), commercial organic fertilizer (CF), and poultry litter (PL) for fertilizer treatments, and wood chips (WC), shredded paper (SP), green compost (GC), and grass clippings (GR) for cover mulch treatments. All treatments were applied proportionally based on the volume ratio equivalent to the soil. CF, PL, and GR treatments that had optimum carbon (C) and nitrogen (N) ratios (less than 30:1) for N mineralization through the microbes released the greatest NH 4 + concentrations in the pot media at 90 days after the treatments, but GC mulch with the optimum C:N ratio did not. CF-, PL- and GR-treated plants had the largest leaf area, thickest stem diameter, longest shoot extension, and greater dry matter production. CONCLUSION(s): CF and PL showed an suitable organic nutrient source for improving plant growth in an orchard. * 교신저자 (Corresponding author): Tel: +82-31-290-0547 Fax: +82-31-290-0548 E-mail: dhkdwk7524@daum.net Interestingly, GR also could be a nutrient source for tree growth, if vegetation competition is controlled by maintaining vegetation height and recycling enough grass clippings to the soil in an orchard. Key Words: Apple, CO 2 assimilation, Growth, Nutrient, Organic 서론 유기재배된사과나무는관행재배와비교하여상대적으로약한가지생장, 과피의착색불량, 과실의생리적장해, 그리고엽과과실의양분결핍등과같은문제가발생할수있다. 따라서유기재배하는사과나무의적절한수체생장및고품질의다수확과실생산을위해서는토양내충분한양의무기성분이필요하나현재각유기자재의비료가치에대한과학적검증은미비한실정이다 (Shear and Faust, 1980). 화학비료, 살충제, 제초제를배제하면서유기질비료와멀칭에기초한유기농법은토양생태계내다양성을증가시킬것으로기대되나, 시용되는자재에따라서유기태질소가무기화되는양이나비율이달라져서관행재배의시비기준을적용하기에는어려운부분이있다. 이전의기내실험에서유기태질소의무기화율은 12주동안유기질급원에따라서달라졌고 (Hartz et al., 2000), 일반적으로지연된무기화율과암모니아태질소의높은휘발율때문에, 대량의유기질급원투입이농장에요구된다고하였다. 하지만포장실험에서다량의퇴비멀칭시용은 9
10 CHOI et al. 수체가필요로하는양을초과하였고, 과다한질소공급으로지하수의오염가능성이관찰되었는데 (Choi and Rom, 2011b), 이에따른보다정확한환경제어실험이요구되고있다. 과일나무는상당한양의질소를필요로하는데, 토양중이용가능한질소는질소의변동성 (N-cycle) 때문에시비형태, 시비량, 시비시기, 시비방법, 그리고자재내의무기태질소의양에의해서제한된다 (Koehn et al., 2002). 사과과원실험에서퇴비, 나무껍질, 종이, 초생멀칭은수체주위의잡초발생을억제하고멀칭자재의유기물성분은수체에양분을공급해줌으로써관행재배된사과나무못지않은수체생장이관찰되었다 (Choi, 2009). 이러한멀칭자재의탄소와질소비율에의해토양유기물의질소무기화와부동화에영향을주어서 (Chalker-Scott, 2007), 수체생장에영향을미칠수있다 (Choi et al., 2011a). 특히, 자재투입량이적었지만탄소 : 질소비가가장낮았던초생멀칭은재배 2년차와 3년차에수체생장증가율이크게증가하는것이관찰되었다 (Choi and Rom, 2011b). 식물체의건물중, 광합성률, 그리고엽록소간이측정기인 SPAD 값은유기질급원 ( 비료원 + 멀칭재료 ) 에따라서수체가어떻게반응하는지에대한기본적인정보를제공해준다. 하지만, 포장실험에서사과나무의상대적인크기와환경적인요인및과원토양의생물학적다양성은토양과식물반응을일괄적으로도출해내는데어려움이있어서환경이제어된온실에서처리간의반응을관찰하는것이보다정확한효과가있을것으로판단되었다 (Choi, 2009). 이러한실험에서도출된결과는사과유묘생장을위한유기질급원중에서가장효과적인자재를구명함으로써유기농과수농가에이용될수있는자재를제시할수있을것으로기대된다. 본연구는외부환경을제어한온실에서 MM.106 사과유묘에질소투입양을동일시한비료급원과멀칭체적이같은멀칭재료에따른토양중무기성분, 수체생장과분배, 그리고광합성률을조사하였다. 재료및방법 온실상태본연구는미국아칸소주립대학교부속농장에위치한온실에서수행하였다. 온도는 25-35/18-20 ( 낮 / 밤 ) 로유지시켰고, 실험기간중 12시간 (7:00am-7:00pm) 동안일정한빛을공급해주기위해서고압나트륨전구 (1,000 watt) 를설치하였다. 해충방제는유기자재인 neem oil (2%, Green Light CO., San Antonio, USA) 로 2-3주에한번씩살포하였다. 식물재료및처리내용 2007년 4월 16일에일년생 MM.106 사과대목 (Malus domestica Borkh.) 을지표에서 10 cm 길이로잘라낸후에, 피트모스와모래 (3:7, v/v) 를혼합하여채운 27.5( 길이 ) 27.5 ( 너비 ) 20( 높이 ) cm 플라스틱포트에재식하였다. 유묘는한개의눈에서싹이튼가지를주간형으로해서재배하였고, 나머지측아나측지는제거하였다. 포트당 1 L의지하수로매일관수하였다. 비료원과멀칭재료의투입양은유기농사과나무포장에서매해시비했던질소투입양 (50 g 질소 / 한나무 ) 과체적 ( 깊이 10 cm 너비 2 m/ 한나무 ) 에비례해서 5월 4일에각포트에처리하였다. 비료원으로상업용유기질비료 (CF) 와계분비료 (PL) 를사용하였으며, 멀칭재료로는나무껍질 (WC), 재활용종이 (SP), 식물성퇴비 (GC), 초생멀칭 (GR) 을 2 cm 깊이로시용하였다. 자세한처리내용은 Table 1에제시하였다. 비료원과멀칭재료를통하여토양에투입된양분은 Table 2와같다. 비료처리구에서는동일한질소량으로처리하였으므로포트당동일한양의질소 (1301 mg) 가투입되었다. 멀칭자재는 2m의동일한높이로처리하였지만멀칭자재가함유한성분차이로인해서포트당질소투입함량은멀칭처리구간에모두달랐고 GC에서가장많은질소가투입되었다. GR Table 1. Treatment summery in 2007 Source No fert. (NF) Treatment content Input (g, dry wt.) Tap water application without any organic feeding source - Fertilizer Commercial fert (CF) Formulated, certified organic pelletized fertilizer (10N-2P 2O 5-8K 2O, Nature Safe ) 17 Poultry litter (PL) Wood chips (WC) Composted poultry litter fertilizer 108 Uncomposted wood chips 75 Mulch Shredded paper (SP) Green compost (GC) Shredded white paper obtaining from recycling center in University facility Municipal green compost mulch from leaves, grass, and small brush obtaining from City of Fayetteville 64 113 Grass clippings (GR) Grass clipping mulch mown from tall fescue and other weed species in the organic apple orchard 5
Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources 11 Table 2. Amount of nutrients (mg/pot) applied by fertilizer source and ground cover mulch in a greenhouse Treatment C N C:N P K Ca Mg Fe Mn Zn Cu B Commercial fert (CF) 5,680 1,301 7 252 452 518 98 88 51 47 31.9 7.4 Poultry litter (PL) 29,991 1,301 23 1,332 1,293 6,491 316 90 49 37 17.1 1.8 Wood chips (WC) 21,555 491 42 44 188 977 69 192 29 3 1.0 1.1 Shredded paper (SP) 22,774 115 208 4 20 3,520 43 108 1 2 0.4 0.2 Green compost (GC) 19,142 1,301 15 195 549 4,169 194 549 79 10 2.0 1.6 Grass clippings (GR) 1,633 80 15 11 48 33 7 85 14 3 0.8 0.7 Results were from bulk analysis derived from random samples of the fertilizer sources or mulches, and were representative of the treatments during the study period. Table 3. Soil ph, electrical conductivity (EC), and organic matter (OM) as affected by fertilizer sources and mulches at 90 days after treatments Treatment ph EC (µs/cm) OM (%) No fertilizer (NF) 4.4 a 149 b 1.3 a Commercial fert (CF) 4.4 a 187 b 1.2 a Poultry litter (PL) 4.6 a 186 b 1.3 a Wood chips (WC) 4.8 a 311 a 1.2 a Shredded paper (SP) 4.7 a 148 b 1.4 a Green compost (GC) 4.6 a 164 b 1.3 a Grass clippings (GR) 4.4 a 152 b 1.0 a P value 0.065 <0.05 0.779 Means followed by the same letter within a column are not significantly different according to Duncan's multiple range test at P<0.05. 멀칭처리의경우높이는 2 cm 이었지만소량 (5 g) 의초생멀칭투입으로질소투입양이가장적었다. 탄소 : 질소비는 WC 와 SP 처리를제외하고는유기질급원 ( 비료원 + 멀칭재료 ) 모두 30:1 이하로질소의무기화가적절하게진행될수있는조건이었다. PL과 GC 처리에서는인산, 칼륨, 칼슘그리고마그네슘투입양이많았고, 반면에 GR 처리에서는포트당무기성분투입양이다른유기질급원에비교해서대체적으로낮은수준을보였다. 토양화학성유기질급원시용 3개월후 (DAT 90) 에토양 ph 와전기전도도 (EC) 를조사하였다. 유기물함량은작열감량방법으로측정하였다 (Schulte and Hopkins, 1996). 질산태질소는비색으로정량하였고, 인산은 Lancaster법, 치환성양이온은 1 N ammonium acetate법, 그밖의미량원소는침출법등으로침출한후 ICP를이용하여분석하였다 (Mehlich, 1984). 도도, 엽내이산화탄소농도, 그리고엽온도를측정하였다. IGRA(Infra Red Gas Analyser) leaf chamber는 25 온도, 350 ppm CO 2, 50% 상대습도, 1,200 µmols/m 2 /s 광도로설정하였다. 유묘생장총엽면적과유묘직경및높이와관련한유묘생장은처리후 30일과 90일째되는날에각각측정하였다. 각측정일에수확된유묘는뿌리, 엽, 줄기로나누었고, 각식물체기관은온풍건조기 70 에서 3일간건조후건물중을측정하였다. 통계분석세블록에의한난괴법으로 7반복으로수행하였다. 자료분석은 SAS 통계분석 (SAS version 8/2, NC, USA) 을이용하여분산분석하였고, 평균간유의차검증은 Duncan's multiple range test로 95% 수준에서분석하였다. 엽내광합성엽록소는 SPAD 502 meter(minolta, Japan) 로유묘크기의중간정도의엽에서처리후 54일째되던날 (DAT 54) 에측정하였다. 휴대용광합성측정기 (CIRAS-1 Analyzer, PP Systems, U.S.A.) 를이용하여엽의광합성, 증산량, 기공전 결과및고찰토양화학성분석유기질급원 ( 비료급원 + 멀칭급원 ) 처리 90일후에 (DAT 90) 토양 ph는 5.0이하의낮은수치를보였는데 (Table 3), 이는
12 CHOI et al. 강산성을나타내는피트모스가배지토양중 30% 를차지했기때문으로판단된다. 토양 ph와 OM은유기질급원에의해통계적으로유의성있게나타나지않았고, EC는처리간에유의성이나타났다 (P<0.05). WC는가장높은 EC를보였고, CF와 PL이그뒤를따랐다. 유기질급원에따른토양중무기성분농도를 Table 4에제시하였다. 처리후 90일에서처리에따른질산태질소의영향은없었다. 질산태질소는토양내에서이동성이굉장히빠른원소로서사용한포트바닥이뚫려있고매일 1L씩관수했기때문에질산태질소의용탈이나암모니아태질소로전환후휘산 (N-volatilization) 이이미진행된것으로생각된다 (Choi et al., 2011b). 우리의포장실험에서투입된멀칭체적이같더라도탄소 : 질소비가낮고대량으로투입된퇴비멀칭은질산태질소의지표면유출이나토양내로의유입으로지하수오염을일으킬가능성이관찰되었는데 (Choi al., 2011b), 본온실시험에서는처리후 90일에서는처리간에통계적으로별다른유의성이없었고, 처리구모두낮은질산태질소농도가나타났다. 토양중암모니아태질소는 CF와 PL이 1.6 mg/kg으로높은암모니아태질소농도를보였고 GR이 1.3 mg/kg으로그다음수준을나타내었다. 탄소 : 질소비가높을수록 (30:1 이상 ) 미생물은토양유기물에포함된질소를고정시키는데 (N-immobilization) (Gale et al., 2006), 탄소 : 질소비가높았던 WC (42:1) 와 SP(208:1) 는토양내낮은농도의무기태질소를나타내었다 (Table 2). 이는우리의포장실험에서탄소 : 질소비가낮았던초생멀칭이사과과원토양의무기성분함량을높였다는연구와일치한다 (Choi et al., 2011a). 하지만, 탄소 : 질소비가낮았던 GC 또한낮은농도의무기태질소를나타내는경향을보였다 (Table 2). 토양중인산은유기질급원의투입량이높았던 CF와 PL에서 (Table 2) 통계적으로유의성있게높게나타났다 (P<0.001) (Table 4). 모든처리구에서유효인산함량이 30 mg/kg 이 하로낮게나타났던이유는실험에이용된배지에서 70% 가모래로이루어졌기때문으로판단된다. 토양중칼륨은유기질급원의칼륨투입양이높았던 PL(1293 mg/pot) 에서 (Table 2) 통계적으로유의성있게높게나타났다 (P<0.01). 토양중칼슘은 GC가 268 mg/kg으로가장높았다 (P<0.001). 과원토양에석회시용시과실경도에영향을주는칼슘은토양내이동성이극히제한된원소로알려졌고, 과수뿌리에서과실내로의이동은 2-4년까지경과할수있다고하였다 (Bramlage, 1994). 따라서토양칼슘농도를증가시켰던 GC를과원에유기질급원으로시용했을때과실품질향상을위한효과가있을것으로기대된다. 토양마그네슘은처리간에통계적으로유의성이없었다 (P=0.872). 토양중철, 구리, 그리고붕소는처리간에통계적으로유의성있게나타나지않았다 (Table 4). 토양망간은유기질급원의망간투입양이많았던 GC에서가장높은농도 (8.9 mg/ kg) 를보였다. 아연은처리간에 P<0.001에서유의성이나타났는데, PL은 1.44 mg/kg으로가장높은아연을보였고나머지처리간에는비슷한수치를나타내었다. 유묘생장엽면적과유묘직경및높이는처리간에모두통계적으로유의성있는차이 (P<0.001) 를나타내었다 (Table 5). 비료원으로서토양내무기태질소농도가높았던 CF와 PL 처리구, 그리고멀칭재료의탄소 : 질소비가미생물에의한무기화가좋았던 (15:1) GR 처리가총엽면적이넓으면서직경이두껍고신장이큰유묘를생산하였다. 하지만탄소 : 질소비가낮았던 (15:1) GC 처리구는 GR 처리구만큼의수체생장에기여하지못하였다. 수체각기관의건물중은 PL을제외하고는줄기 > 뿌리 > 엽순으로높게나타났다 (Fig. 1). PL로처리된대목은지상부생장을가속화시키는데에따른뿌리생장이그만큼억제되어 Table 4. Soil nutrient concentrations (mg/kg) as affected by fertilizer sources and mulches at 90 days after treatments NO 3 - NH 4 + Av. P K Ca Mg Fe Mn Zn Cu B No fertilizer (NF) 1.1 a 1.0 b 6 bc 13 c 166 bc 40 a 46 a 6.5 b 0.79 bc 0.77 a 0.07 a Commercial fert (CF) 1.2 a 1.6 a 10 b 16 c 133 c 40 a 47 a 5.8 b 0.82 bc 0.72 a 0.14 a Poultry litter (PL) 1.6 a 1.6 a 23 a 45 a 168 bc 40 a 47 a 5.6 b 1.44 a 0.78 a 0.11 a Wood chips (WC) 0.9 a 1.0 b 4 c 29 abc 141 bc 39 a 47 a 6.0 b 0.86 bc 0.82 a 0.15 a Shredded paper (SP) 1.2 a 1.1 ab 4 c 25 bc 183 b 40 a 43 a 5.9 b 0.72 c 0.62 a 0.15 a Green compost (GC) 1.1 a 0.9 b 7 bc 34 ab 268 a 43 a 46 a 8.9 a 0.99 b 0.78 a 0.20 a Grass clippings (GR) 1.1 a 1.3 ab 5 bc 26 bc 143 bc 40 a 45 a 6.5 b 0.79 bc 0.79 a 0.08 a P valuee 0.166 <0.05 <0.001 <0.01 <0.001 0.872 0.815 <0.05 <0.001 0.614 0.336 Means followed by the same letter within a column are not significantly different according to Duncan's multiple range test at P < 0.05.
Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources 13 Table 5. Total leaf area, single shoot diameter, and height of small apple trees grown in a greenhouse as affected by fertilizer sources and mulches at 90 days after treatment Treatment Leaf area (cm 2 ) Stem diameter (mm) Tree height (cm) No fertilizer (NF) 371 c 6.1 c 43 c Commercial fert (CF) 844 b 8.0 b 72 a Poultry litter (PL) 1,020 a 9.3 a 75 a Wood chips (WC) 311 c 5.9 c 37 c Shredded paper (SP) 336 c 6.0 c 41 c Green compost (GC) 413 c 6.9 c 54 b Grass clippings (GR) 853 b 8.2 b 74 a Significance <0.001 <0.001 <0.001 Means followed by the same letter within a column are not significantly different according to Duncan's multiple range test at P < 0.05. 30 25 y = 5.6809x + 1.2287 R 2 = 0.451 Top dry weight (g) 20 15 10 5 Fig. 1. Plant dry weight of small apple trees grown in a greenhouse as affected by fertilizer sources and mulches at 90 days after treatment. Different letters top columns indicate significant difference by Duncan's multiple range test at P < 0.05. NF=no fertilizer, CF=commercial fertilizer, PL=poultry litter, WC=wood chips, SP=shredded paper, GC=green compost, and GR=grass clippings. Fig. 2. Plant top dry weight of small apple trees grown in a greenhouse as affected by fertilizer sources and mulches at 30 and 90 days after treatment. Different letters top columns indicate significant difference by Duncan's multiple range test at P < 0.05. NF=no fertilizer, CF=commercial fertilizer, PL=poultry litter, WC=wood chips, SP=shredded paper, GC=green compost, and GR=grass clippings. 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 NO - 3 +NH + 4 (mg/kg) in soil Fig. 3. Relationships between inorganic N and top (leaf + stem) dry weight in a plant at 90 days after treatment. 엽이뿌리보다조금더높은건물중을보인것으로판단된다. 질소시비량과종류에따라서지상부수체생장은달라지고, 대량의질소시비는뿌리생장보다는지상부생장을촉진시킨것으로알려졌다 (Harris, 1992). 대량의질소투입을보였던 CF와 GR은뿌리와엽이비슷한건물중을보였다 (Table 2). 뿌리건물중은 GR에서가장높았고, 엽과줄기는 PL>GR>CF 순으로높았다. Figure 2는각처리에따른지상부건물중을나타낸것인데, 처리후 30일에서는 PL이가장높은건물중을보였다. 처리후 90일에서도, PL이가장높았고 CF와 GR이그다음으로관찰되었다. 따라서 PL 처리는생육초기수체생장 ( 특히지상부 ) 을굉장히빠른속도로증가시키는것으로생각된다. 토양중높은무기태질소농도를보였던 CF와 PL, 그리고유기질급원내탄소 : 질소비가좋았던 (15:1) GR 처리구는높은건물중을생산하였고 (r 2 =0.451)(Fig. 3), 이러한유묘생장량은처리후 54일에서엽내광합성을유의적으로증가시켰다 (P<0.001)(Table 6). 하지만, 엽내증산율과기공전도도및온도는처리간에통계적으로유의성있게나타나지않았다 (P>
14 CHOI et al. Table 6. Foliar Pn (CO 2 assimilation, µmolco 2/m 2 /s), Tr (transpiration, mmolco 2/m 2 /s), GS (stomatal conductance, µmolco 2/m 2 /s), Temp (temperature, ), CI (internal CO 2 concentration), and SPAD 502 meter chlorophyll estimate of single shoot of small apple trees grown in a greenhouse as affected by fertilizer sources and mulches at 54 days after treatment Treatment Pn Tr GS Temp CI SPAD No fertilizer (NF) 9.4 c 4.1 a 567 a 23 a 279 a 30 bc Commercial fert (CF) 12.2 a 4.3 a 546 a 24 a 260 bc 33 a Poultry litter (PL) 12.4 a 3.9 a 406 a 24 a 253 c 34 a Wood chips (WC) 8.8 c 4.1 a 464 a 24 a 282 a 29 c Shredded paper (SP) 9.2 c 4.4 a 571 a 24 a 284 a 30 bc Green compost (GC) 10.2 bc 4.4 a 556 a 24 a 277 a 29 c Grass clippings (GR) 11.4 ab 4.5 a 595 a 24 a 269 ab 32 ab Significance <0.001 0.396 0.449 0.205 <0.001 <0.001 Means followed by the same letter within a column are not significantly different according to Duncan's multiple range test at P < 0.05. 0.05). 엽록소함량을추정하는 SPAD 또한광합성에서관찰된바와같이 PL(34)>CF(33)>GR(32) 순으로나타나서유기질급원에의한 SPAD값과광합성률이비슷한경향이나타났다. 이상의결과로보아유묘생장과발달에효과적이었던 CF, PL, GR 처리는사과과원농가에서도유기질급원으로유용하게이용될수있을것으로판단되며탄소 : 질소비를고려한유기자재를선택해야할것으로사료된다. 특히과원에서예초작업시에발생된초생 (GR) 을수체주위에살포해준다면외부의비료원이나멀칭재료원을따로공급할필요없이수체생장에기여할것으로여겨진다. 하지만수체의크기나수령에따라서필요한초생량이달라지므로정기적인토양이나엽분석을함으로써전체적인양분수지를고려해야할것으로판단된다. 요약 본실험은비료공급원으로서 1) 대조구 (NF), 2) 상업용유기질비료 (10N-2P 2O 5-8K 2O, Nature Safe )(CF), 3) 계분비료 (PL) 를포함하였고, 멀칭공급원으로는 4) 나무껍질멀칭 (WC), 5) 재활용종이멀칭 (SP), 6) 식물성퇴비멀칭 (GC), 7) 초생멀칭 (GR) 을포함하였다. 유기질비료와멀칭의양은매해유기농사과나무포장에시비하였던 (50 g 질소 / 한나무, 10 cm 멀칭시용 / 한나무 ) 질소량과체적에각각비례해서각포트에시비하였다. CF, PL, 그리고 GR 급원은미생물이유기태질소를무기화 (N-mineralization) 하는데이상적인탄소 : 질소 (30:1이하) 비를보였는데, 처리후 90일째되던날에토양중무기태질소농도를증가시켰다. CF, PL, 그리고 GR 처리된유묘는가장넓은총엽면적과두꺼운직경, 그리고큰수고및건물중을나타내어서식물생장을증가시키기위한가장유용한자재로평가되었다. 감사의글 We would like to thank to the Department of Horticulture in University of Arkansas in U.S.A. Additional thanks should go to the Organic Agriculture Division of the Korean National Academy of Agricultural Science for providing assistance. 참고문헌 Bramlage, W., 1994. Physiological role of calcium in fruit, in: Peterson, B., Stevens, R.G. (Eds), Tree fruit nutrition: A comprehensive manual of deciduous tree fruit nutrient needs, Good Fruit Grower, Yakima, USA, pp. 101-107. Chalker-Scott, L., 2007. Impact of mulches on landscape plants and the environment - A Review, J. Environ. Hort. 25, 239-249. Choi, H.S., 2009. Effects of different organic apple production systems on seasonal variation of soil and foliar nutrient concentration, Ph.D. dissertation, University of Arkansas, USA. Choi, H.S., Rom, C.R., Gu, M., 2011a. Effects of different organic apple production systems on seasonal nutrient variations of soil and leaf, Sci. Hort. In press. Choi, H.S., Rom, C.R., 2011b. Estimated nitrogen use efficiency, surplus, and partitioning in young apple trees grown in varied organic production systems, Sci. Hort. In press. Gale, E.S., Sullivan, D.M., Cogger, C.G., Bary, A.I.,
Growth and Soil Chemical Property of Small Apple Trees as Affected by Organic Fertilizers and Mulch Sources 15 Hemphill, D.D., Myhre, E.A., 2006. Estimation plantavailable nitrogen release from manures, composts, and specialty products, J. Environ. Qual. 35, 2321-2332. Harris, R.W., 1992. Root-shoot ratios, J. Arboriculture 18, 39-42. Hartz, T.K., Mitchell, J.P., Giannini, C., 2000. Nitrogen and carbon mineralization dynamics of manures and composts, Hort. Sci. 35, 209-212. Koehn, A.C., Peryea, F.J., Neilsen, D., Hogue, E.J., 2002. Temporal changes in nitrate status of orchard soils with varying management practices, Commun. Soil Sci. Plant Anal. 33, 3621-3634. Mehlich, A., 1984. Mehlich 3 soil extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plant Anal. 15, 1409-1416. NSSGA, 2009. Calcium carbonate what is it, National Stone, Sand & Gravel Association, Alexandria, USA. SAS Institute, 2001. SAS/STAT User's Guide, Release 8.2, SAS Institute, Cary, USA. Schulte, E.E., Hopkins, B.G., 1996. Estimation of soil organic matter by weight loss-on-ignition, in: Magdoff, F.R., Tabatabai, M.A., Hanlon Jr., E.A. (Eds), Soil organic matter: Analysis and interpretation, Soil Sci. Soc. Am., Madison, USA, pp. 21-31. Shear, C.B., Faust, M., 1980. Nutritional ranges in deciduous tree fruits and nuts, Hort. Rev. 2, 142-163.