83.fm

Similar documents
10(3)-10.fm

12.077~081(A12_이종국).fm

fm

14.531~539(08-037).fm

82.fm

( )-83.fm

10(3)-09.fm

87.fm

13.fm

82-01.fm

14.fm

3.fm

304.fm

57.fm

10(3)-12.fm

untitled

( )-113.fm

89.fm

62.fm

( )-123.fm

105.fm

( )-77.fm

< DC1A4C3A5B5BFC7E22E666D>

93.fm

9(3)-4(p ).fm

19(1) 02.fm

16(5)-03(56).fm

10(3)-02.fm

605.fm

fm

85.fm

23(2) 71.fm

16(5)-06(58).fm

120.fm

untitled

17.393~400(11-033).fm

50(1)-09.fm

한 fm

DBPIA-NURIMEDIA

27(5A)-07(5806).fm

48.fm

16(1)-3(국문)(p.40-45).fm

(163번 이희수).fm

07.051~058(345).fm

<312D303128C1B6BAB4BFC1292E666D>

416.fm

69-1(p.1-27).fm

( )-53.fm

( )-70.fm

05.581~590(11-025).fm

38(6)-01.fm

12(4) 10.fm

15.fm

( )-71.fm

( )-84.fm

16(6)-06(08(77)).fm

16(4)-05.fm

16(2)-7(p ).fm

49(6)-06.fm

12(2)-04.fm

16(5)-04(61).fm

27(5A)-13(5735).fm

fm

26(3D)-17.fm

10(1)-08.fm

<30332DB9E8B0E6BCAE2E666D>

50(5)-07.fm

( )-101.fm

12(3) 10.fm

64.fm

14(2) 02.fm

07.045~051(D04_신상욱).fm

18(3)-10(33).fm

11(5)-12(09-10)p fm

fm

( )45.fm

( )-103.fm

50(4)-10.fm

15(2)-07.fm

40(2)-08.fm

( )-94.fm

(2)-02(최경자).fm

( )-68.fm

4.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

( )63.fm

( )-122.fm

8(2)-4(p ).fm

10(3)-11.fm

untitled

202.fm

03.fm

144.fm

18211.fm

14(4)-14(심고문2).fm

15.101~109(174-하천방재).fm

106.fm

한 fm

10.fm

( )-47.fm

Transcription:

Journal of the Korean Ceramic Society Vol. 44, No. 9, pp. 483~488, 2007. The Influence of on the Clinker Mineral Composition and Cement Quality Tae-Hyoung Eom, Won-Seok Kim, Chang-Bum Kim, Byeong-Yong Jeon, and Jong-Ryul Lee Technology Research Center, Ssangyong Cement Industrial Co., Ltd, Daejeon 305-345, Korea (Received August 13, 2007; Accepted September 14, 2007) ƒ j f Ÿ t e w kx Á½ Á½ Á Á zœ ( )» (2007 8 13 ; 2007 9 14 ) ABSTRACT The influence of on clinker mineral composition and the cement quality was investigated. When the sewage sludge was used as a raw material in place of clay, the presence of in sewage sludge affects the mineral composition and the clinker quality. As the concentration in raw mix increases, the burnability of clinker becomes worse and the alite decomposes into belite and free- CaO, so belite increases with the decrease of alite. The early strength of mortar decreases with the increase of concentration. On the other hand, later-age strength increases with the increase of belite content. The setting time of cement was delayed with the concentration above 0.6 wt%. Key words : Sewage sludge,, Clinker, Mineral composition, Alite, Belite 1. w wš x. x w w y š ù, w y w w. y w n» w (5417m/ ) 26% 1485m/ p y w z wš. pœ e s» w. p s» w w 1,450 o C š, 5~ 20 ¼,, w», ù x, y, s» ƒ ƒ ƒ p» ƒ ƒ û ƒ š. w ü» p ƒ SiO 2, Al 2, Fe 2 O, CaO» w wš. ù w w p œ t w öe Corresponding author : Tae-Hyoung Eom E-mail : petereom@hanmail.net Tel : +82-42-865-1662 Fax : +82-42-865-1678. 1-3) j f 4-6) j f Ÿ x w e 7-9) p w öe. 10) ƒ ƒ š š š, xk ü w» y., p w ƒw, j f w z ƒ p œ p t t e w q w w w w w r š w. 2. x 2.1. x 2.1.1. j f w p w S Dœ Yœ p wš w w. p œ k w k p ƒ» w k 2% ƒw yw» ³ w yww j f w w. j f w w yw Table 1. 2.1.2. NH 4 H 2 PO 4 w, w 483

484 kxá½ Á½ Á Á Table 1. Chemical Composition and Modulus of Raw Mix D raw mix Y raw mix SiO 2 21.35 22.21 Al 2 6.55 5.92 Fe 2 3.29 3.22 Constituents CaO 63.46 62.97 (wt%) MgO 2.99 2.69 K 2 O 1.01 1.37 S 0.38 0.65 LOI 33.42 34.00 LSF 91.59 88.75 Modulus SM 2.17 2.43 (wt%) IM 1.99 1.84 100C ) LSF(Lime Saturation Factor)= ------------------------------------------ 2.8S + 1.1A + 0.7F S A SM(Silica Modulus)= -----------, IM(Iron Modulus)= -- A+ F F C:CaO, S:SiO 2, A:Al 2, F:Fe 2 0, 0.2, 0.4, 0.6, 1.0, 2.0% ƒw yw» ³ w yww w. 2.2. x 2.2.1. j f w» w š 100 C 24 o w. super kanthal furnace 900 C kk o wš, 1350 C o 1500 C¾ o 50 o C 15 wš, w free-cao d w. mw w. w 900 C 1 o kk wš w 1450 o C, 40» w j f w. 2.2.2. j f p sƒ (1) j f yw Ÿ p j f yw Ÿ p y w» w XRF (X-ray fluorescence spectrometer, PANalytical model Axios-cement, Netherlands) w modulus j f Ÿ Bogue w. w j f š wš grinding polishingz 5% etchingw j f Ÿw x w. w Ÿwx r etchingt gqw EPMA(electron probe micro analyzer, Philips model MDX4, Netherlands) Ÿ w. (2) p yp» j f Sw 2%ƒ ky š ƒw ball mill 3,200 g/cm 2ƒ w. w p p KS ³ p (KS L 5105), x(ks L 5103) w. w yp r» w Tokyo Riko micro conduction calorimeter(tcc-26, ) y d w. 3. š 3.1. w p w 1350 o C, 1400 o C, 1450 o C, 1500 C o w j f free-cao d w (BI; burnability index) w. = 3.73( F1 + F2+ 2 F3 + 3 F4) ----------------------------------------------------------------------- F1 F4 free-cao (wt%) F2: 1400 C o free-cao (wt%) F3: 1450 C o free-cao (wt%) F4: 1500 C o free-cao (wt%)», F1: 1350 o C Table 2 ùkü. x ƒ» w» ù w. Fig. 1 ùkü w ƒw» w ƒ ù, LSF(lime saturation factor)ƒ D w ù LSF w. w ƒ û [P-O-Si-O-P] ƒ x Table 2. Burnability Index of Raw Mix Sample D Y (wt%) free-cao (wt%) 1350 o C 1400 o C 1450 o C 1500 o C 0.0 5.57 4.11 2.71 1.60 52.6 0.2 5.50 4.25 2.71 1.60 53.0 0.4 5.93 4.53 2.96 1.68 55.7 0.6 6.04 4.69 3.31 1.68 57.8 1.0 5.63 4.73 3.21 1.65 57.4 2.0 5.30 4.75 3.50 1.97 63.4 0.0 3.13 2.42 1.16 0.46 27.0 0.2 3.40 2.52 1.36 0.72 31.5 0.4 3.68 2.58 1.50 0.72 32.5 0.6 3.63 2.85 1.57 0.80 34.6 1.0 3.75 2.93 1.91 0.84 37.2 2.0 4.02 3.59 2.66 1.20 47.6 BI w wz

ƒ j f Ÿ t e w 485 Fig. 1. Burnability index of D and Y raw mix with addition. Fig. 2. Effect of on the clinkerization of raw mix (LSF). Table 3. The Modulus and Mineral Composition of Clinker Sample (wt%) D Y Modulus (wt%) Mineral composition (wt%) LSF SM IM C 3 S C 2 S C 3 A C 4 AF 0.0 94.44 2.39 1.64 59.35 14.97 8.93 10.20 0.2 94.15 2.40 1.68 58.63 15.66 9.04 9.95 0.4 93.89 2.39 1.67 58.19 16.20 8.98 10.01 0.6 93.77 2.42 1.69 57.76 16.45 9.06 9.63 1.0 92.65 2.38 1.70 55.16 19.15 9.36 9.62 2.0 90.79 2.47 1.68 52.48 22.91 8.38 9.57 0.0 92.47 2.74 1.50 57.40 18.42 7.27 9.71 0.2 91.94 2.74 1.49 56.96 17.66 8.01 9.76 0.4 91.31 2.74 1.49 54.80 21.03 7.22 9.69 0.6 90.88 2.73 1.50 53.84 22.06 7.28 9.70 1.0 89.49 2.72 1.51 50.66 25.45 7.38 9.74 2.0 87.68 2.73 1.53 45.96 29.48 7.31 9.39 Table 4. The Relationship Between and Clinker Minerals D Y Alite (wt%)= 3.42 (%)+59.52 r 2 =0.992 Belite (wt%)=4.10 (%)+14.69 r 2 =0.984 Alite (wt%)= 5.84 (%)+57.28 r 2 =0.990 Belite (wt%)=5.60 (%)+18.58 r 2 =0.993 ƒ š, CaO w y ƒ û alite(tri-calcium silicate C S:3CaO 3 SiO 2 )» š š. 3.2. j f Ÿ p j f XRF yw m w j f modulus Ÿ w Table 3 ùkü. ƒ R 2 w» d w š Al 2 sw g Bogue j f Ÿ w. Fig. 3. Influence of on alite and belite content. ù, j f w š w š w SiO 2 sw g Bogue j f Ÿ w yw., w d wš SiO 2 sw (SiO 2 =SiO 2 + 0.846 ) w j f modulus modified Bogue w j f Ÿ w Table 4 ùkü. j f modulus w ƒ SM(Silica modulus) IM(iron modulus) j y ù, Fig. 2 LSF w w ùkþ. ³ SiO 2 e ƒ eyw š w» ƒ SiO 2ƒ ƒw SM ƒ z ùkù». w, Fig. 3 ùkü alite w wš, belite w ƒ alite š w LSF belite ƒz ƒ alite š w belite free-cao w». ƒ alite, belite ƒ Table 4 ù kü yw z ùkû. ƒ j f Ÿ Ÿ š y w» w EPMA ƒ w š 44«9y(2007)

486 kxá½ Á½ Á Á Table 5. Substituted Content in the Clinker Minerals (Unit : wt%) D H Alite Belite Interstitial Alite Belite Interstitial 0.0 0.062 0.148 0.00 0.174 0.260 0.00 0.2 0.300 0.590 0.11 0.341 0.470 0.04 0.4 0.451 1.030 0.12 0.472 0.670 0.04 0.6 0.660 1.366 0.10 0.653 0.855 0.04 1.0 0.864 1.760 0.13 1.010 1.200 0.07 2.0 0.780 1.352 0.22 1.824 2.070 0.19 ) Interstitial ( ):C 3 A (Aluminate), C 4 AF (Ferrite) Fig. 4. Influence of on XRD peaks. Fig. 5. The influence of on setting time. w w Table 5 ùkü. D w Y w j f Ÿ w š belite>alite>interstitial ùkû. ƒ j f XRD Fig. 4 ùkü. alite peakƒ ƒ w y, ƒ ƒw ƒ ƒ f. beliteƒ α-belite Fig. 6. Influence of on compressive strength. (a) D clinker and (b) Y clinker w, F.Goetz 9,10) w. 3.3. p e w 3.3.1. p p ¼ e w p k p d w ƒ 2wt%¾ ƒw Fig. 5 ùkù D w w 180 230, Y w w 190 240 ƒw. w D w w 5 40 6 40, Y w w ƒ 5 50 6 30 ¾ ƒw ùkû. x 0.6 wt% j ùkù, ƒ 0.5 wt% ¾ w w j ùkû. 3.3.2. p k Fig. 6 ùkü ƒ w w 1 3 ƒ w ƒ w w ùkü ù 7 z, 28 ƒw. j f Ÿ p ùkù ƒ alite SiO 2 ƒ ey» w belite w ƒw» q. 3.3.3. y w p micro conduction w wz

ƒ j f Ÿ t e w 487 Fig. 7. Influence of on initial heat of hydration (1 st exothermic peak). Fig. 8. Influence of on heat of hydration (2 nd exothermic peak). calorimeter w y d w. 1 peak Fig. 7, 2 peak Fig. 8 ùkü. D w w 1 peak ƒ j y ùkû ù 0.2 wt% 0.4 wt% ƒ ƒw y., Y w w peakƒ D w w û y» yy D w. 2 peak D w w ƒ ƒw»ƒ y. Y w w w w w ùkü. 2 peak ewš. 4. ƒw w j f t p sƒw. 1. ƒw w, w ƒw ù, p LSF ƒ w ù. 2. ƒ SM IM y ù LSF w. ƒ SiO 2 eyw SiO 2 w ƒw» q. 3. Bogue w j f Ÿ alite wš belite ƒw calcium silicate š ƒ alite w j». 4. EPMA ƒ w w w Ÿ w š belite > alite > interstitial ùkû. 5. ƒ 0.6 wt% x ùkù,» w wù 7 z w 28 ƒw w ùkü.» w belite ƒ» w. 6. y d ƒ ƒ 2 peak ùkû ew. 44«9y(2007)

488 kxá½ Á½ Á Á REFERENCES 1. L. Halicz and Y. Nathan, The Influence of on Clinker Reactions, Cement and Concrete Research, 14 [1] 11-7 (1983). 2. Y. M. Butt, V. V. Timashev, and A.P.Osokin, The Mechanism of Clinker Formation Processes and Modification of its Structure, 6 th I.C.C.C (1974). 3. K. popovic and A. Bezjak, Influence of MgO on Phase Composition of PC-clinker and Cement Properties, 7 th I.C.C.C, 4 14-9 (1980). 4. V. V. Timashev, The Kinetic of Clinker Formation Process and the Modification of its Structure, 7 th I.C.C.C. Paris, 1 I-3/1-20 (1980). 5. R. W. Nurse, The Effect of Phosphate on the Constitution and Hardening of Portland Cement, J. App.Chem, 2 [2] 708-16 (1952). 6. AKATSU, Ken, K. Maeda, and I. Ikeda, The Effect of Cr 2 and on the Strength and Color of Portland Cement Clinker(in Jpn.), CAJ Review of the 24th General Meeting, 24 39-43 (1970). 7. T. Shiraska and D. Sawaki, Influence of Phosphorus on Clinker Constituent Phase and Hydration of Cement(in Jpn.), JCA proceeding cement and concrete, 50 8-13 (1996). 8. F. Goetz-Neunheffer, and J. Neubauer, Effect of Meal Substitution by Sewage Sludge on OPC Clinker Studied by Rietvelt Analysis, 20 th Int. Conf. of Cem. Microscopy, Guadalajara, Mexico (1998). 9. I. Maki and K.Goto, Factors Influencing the Phase Constitution of Alite in Portland Cement Clinker, Cement Concrete Research, 12 [3] 301-08 (1982). 10. KANAYA, Muneki, Influence of Phosphorus on the Quality of Clinker(in Jpn.), Cement Science and Concrete Technology, 53 10-X4 (1999). w wz