Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Similar documents
Lecture12_Bayesian_Decision_Thoery

Overview Decision Tree Director of TEAMLAB Sungchul Choi

단순 베이즈 분류기

cha4_ocw.hwp

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

확률과통계 강의자료-1.hwp

Overview Ensemble Model Director of TEAMLAB Sungchul Choi

확률과통계4

확률 및 분포

untitled

DIY 챗봇 - LangCon

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

adfasdfasfdasfasfadf

2002년 2학기 자료구조

4임금연구겨울-지상토론


<4D F736F F F696E74202D205BBFACB0A3BAB8B0EDBCAD5DC8EFB1B9B8D6C6BCC7C3B7B9C0CC333020BFACB0A320BFEEBFEB20C7F6C8B220B9D720C0FCB8C15F >

Index

<3130C0E5>

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):

확률과통계6

[로플랫]표준상품소개서_(1.042)

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

untitled

슬라이드 1

슬라이드 1

ASETAOOOCRKG.hwp

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

김기남_ATDC2016_160620_[키노트].key

.

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

DOOSAN vol

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

DISCOUNT 신세계면세점이 2013년 10월 신세계포인트 제휴사로 새롭게 출발합니다 DISCOUNT 장르별 스페셜 할인 전국 이마트, 신세계백화점에서 발급받으시고 쇼핑하실 때마다 구매금액의 0.5%를 적립해드립니다. (1,000원 단위로 적립) 적립된 포인트는 신세

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table

Introduction to Statistics (Fall, 2018) Chapter 2 Introduction to Probability Chapter 2 Introduction to Probability 2.1 Overview 확률 ( 론 ) 은우연에따라좌우되는게임

6자료집최종(6.8))

MZ601_QG_0527_L-SKT.pdf

MB860_Q_0405_L-SKT.pdf

KD hwp

歯4차학술대회원고(장지연).PDF

1 1,.,

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169


PowerPoint Presentation

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

R을 이용한 텍스트 감정분석

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>

Microsoft PowerPoint - LN05 [호환 모드]

public key private key Encryption Algorithm Decryption Algorithm 1


Microsoft PowerPoint - SBE univariate5.pptx


untitled

2

Microsoft Word - EDA_Univariate.docx

슬라이드 1

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P

VOL /2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph

정보기술응용학회 발표

Documents Taxonomy - LASSO regression을 중심으로


2부 데이터 수집

하반기_표지

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005

컴파일러

Microsoft Word - 김창환.doc

을 할 때, 결국 여러 가지 단어를 넣어서 모두 찾아야 한다는 것이다. 그 러나 가능한 모든 용어 표현을 상상하기가 쉽지 않고, 또 모두 찾기도 어 렵다. 용어를 표준화하여 한 가지 표현만 쓰도록 하여야 한다고 하지만, 말은 쉬워도 모든 표준화된 용어를 일일이 외우기는

Infinity(∞) Strategy

¼º¿øÁø Ãâ·Â-1

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

UI TASK & KEY EVENT

디지털영상처리3


게시판 스팸 실시간 차단 시스템

untitled

untitled

MATLAB and Numerical Analysis

#수Ⅱ지도서-4단( )

歯제7권1호(최종편집).PDF

Orcad Capture 9.x

BSC Discussion 1

PowerPoint 프레젠테이션

산선생의 집입니다. 환영해요

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.

Microsoft Word - [2017SMA][T8]OOPT_Stage_2040 ver2.docx

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

15_3oracle

<C7A5C1F620BEE7BDC4>

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

歯4차학술대회원고(황수경이상호).PDF


Chapter4.hwp

G Power

2

Transcription:

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based learning

머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based learning

Probability - 이산형값 count(event X) P (X) = count(all Event) - 연속형값 P ( 1 <x<1) Z 1 1 f(x) dx =1 Source: https://goo.gl/d9vcsl Source: https://goo.gl/dvnsh2

Basic concepts of probability 0 apple P (E) apple 1 P (S) = NX i=1 P (E i ) = 1 if all E i are independent P (A \ B) P (A [ B) P (A c )=1 P (A)

Conditional probability A B P (A B) = P (A \ B) P (B) A \ B

Conditional probability P (A B) = P (A \ B) P (B) P (A) = {set of odd number} P (B) = {less than 4 in a dice} P (B A) = P (A \ B) P (A) A B A \ B

Human knowledge belongs to the world.

Bayes s Theorem Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Bayes s theorem - 경험에의한확률의업데이트 - 사전확률 (given) 에서사건발생을통해사후확률로 - 빈도주의 vs. 베이즈주의 - 객관적확률은존재하지않는다!

Queen card game

Probability updated 1 3 1 3 1 3 3 30 8 30 19 30

Probability updated 3 30 8 30 19 30

Bayes s theorem P (A B) = P (A \ B) P (B) P (B A) = P (A \ B) P (A) P (A \ B) =P (B)P (A B) =P (A)P (B A) P (A B) = P (A \ B) P (B) = P (A)P (B A) P (B)

Cookie Quiz 쿠키두그릇이있다고한다. 첫번째그릇에는바닐라쿠키 30개와초콜렛쿠키 10개가있고, 두번째그릇에는각쿠키가 20개씩있다. 임의쿠키를집었는데해당쿠키가바닐라쿠키이다. 이쿠키가그릇 1에서나왔을확률은? Source: https://goo.gl/gzopzy

Cookie Quiz 쿠키두그릇이있다고한다. 첫번째그릇에는바닐라쿠키 30 개와초콜렛쿠키 10 개가있고, 두번째그릇에는각 쿠키가 20 개씩있다. 임의쿠키를집었는데해당쿠키가바닐라쿠키이다. 이쿠키가그릇 1 에서나왔을확률은? P (Choco) P (A B) = P (A \ B) P (B) = P (A)P (B A) P (B) P (Vanilla) P (B1) P (B2) Source: https://goo.gl/gzopzy

<latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> <latexit sha1_base64="sud+tka9qbtmtepj5vavo7nckmu=">aaacchicbzbps8mwgmbt+w/of1wpxojdwc+jfue9cen32lgcdyotjdrlt7a0lukqjg5xl34vlx5uvporvpltzlyedpobwc/p+74k7xmkjepl299gywv1bx2jufna2t7z3tp3d+5lnapmpbyzwlqcjamjnhikkkzaisaochhpbsobab35qiskmb9to4t4eepzglkmlla6jnqrjxhdglewewqem3213ep93lammuvwpguw7ao9e1wgj4cyyov2za9ol8zprljcdenzduxe+rksimjgjqvokkmc8bd1svsjrxgrfjbbzajptnodysz04qro3n8tgyqkhewb7oyqgsjf2tt8r9zovxjhz5qnqsiczx8kuwzvdkexwb4vbcs20ocwopqvea+qtktp8eo6bgdx5wxwtquxvef2rfy7ztmoginwdcraaeegbhrabr7a4be8g1fwzjwzl8a78tfvlrj5zch4i+pzb4jfl0q=</latexit> Bayes s theorem H is Class 사전확률우도사후확률 P (H)P (D H) P (H D) = P (D) D is Data 데이터가발생할확률 (Evidence)

Bayes s theorem P (H D) = P (C)P (D H) P (D) P (A 1 \ B)+P (A 2 \ B)+P (A 3 \ B) P (B) =P (A 1 )P (B \ A 1 )+P (A 2 )P (B \ A 2 )+P (A 3 )P (B \ A 3 ) P (A \ B) =P (B)P (A B) =P (A)P (B A)

Example 공 1 무작위로 1 개나오는다음과같은완구가있다. 나온공이 큰공 일때, 검은색일확률은? Source: https://goo.gl/gzopzy

Example P (H D) = P (C)P (D H) P (D) P (B) =P (A 1 )P (B \ A 1 )+P (A 2 )P (B \ A 2 )+P (A 3 )P (B \ A 3 ) Source: https://goo.gl/gzopzy

Human knowledge belongs to the world.

Simple Bayes Classifier Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Viagra 스팸필터기 - Viagra 라는단어의유무를통해스팸여부확인 - Viagra 단어가들어가면무조건스팸? - 어느정도확률로스팸이라고해야할까?

Viagra 스팸필터기 number viagra spam number viagra spam 1 1 1 11 1 0 2 0 0 12 0 0 3 0 0 13 0 0 4 0 0 14 1 0 5 0 0 15 0 0 6 0 0 16 0 0 7 0 1 17 0 0 8 0 0 18 0 1 9 1 1 19 0 1 10 1 0 20 1 1

Viagra 스팸필터기

Viagra 스팸필터기

Human knowledge belongs to the world.

NB Classifier Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

제대로된스팸필터기를만들어보자 - Viagra 단어외에영향을주는단어들은? - 오히려스팸을제외해주는단어는어떻게찾지? - 한번에여러단어들을고려하는필터기를만들자

Feature 의확장 P (spam viagra) P (spam viagra, hello, lucky, marketing...) 변수가많을때, 조건부확률의변화

Multivariate multiplication rule P (Y X 1,X 2 )= P (Y \ X 1 \ X 2 ) P (X 1 \ X 2 ) P (Y \ X 1 \ X 2 )=P (Y X 1,X 2 )P (X 1 \ X 2 ) P (X 1,X 2,X 3,...X n ) = P (X 1 )P (X 2 X 1 )P (X 3 X 1,X 2 )...P(X n X 1...X x 1 )

Problems - 계산이어려워짐 - Feature 의차원이증가하면 Sparse Vector 가생성 à 확률이 0 이되는값이늘어남

Naïve Bayes Classifier - 복잡하게하지말고단순 (naïve) 하게해결하자 - 각변수의관계가독립임을가정 - 계산이용이해지고, 성능이생각보다좋음

Joint Probability P (A \ B) =P (A)P (B) if A and B are independent P (Y X 1 \ X 2 )= P (Y )P (X 1 \ X 2 Y ) P (X 1 \ X 2 ) P (Y )P (X 1 Y )P (X 2 Y ) P (X 1 )P (X 2 )

Naïve Bayes Classifier P (Y X 1 \ X 2 )= P (Y )P (X 1 \ X 2 Y ) P (X 1 \ X 2 ) = P (Y )P (X 1 Y )P (X 2 Y ) P (X 1 )P (X 2 ) P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label

Issues - 너무많은확률값 à 0 에수렴하게되는문제 - 곱하지말고더하자 à log ny log{p (Y c ) P (X i Y c )} = log P (Y c )+ i=1 nx i=1 log P (X i Y c ) P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label

Issues - 확률이 0 인변수들이존재함 à 전체값 0 - 작게나마확률이나올수있도록변경 à 스무딩 P (X Y )= count(x \ Y )+k count(y )+(k number of class ) log{p (Y c ) ny i=1 P (X i Y c )} = log P (Y c )+ nx log P (X i Y c ) i=1

Human knowledge belongs to the world.

NB Classifier Implementation Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Dataset German Credit - 대출사기인가? 아닌가를예측하는문제 - 데이터를 NB 에맞도록간단하게변환 - Binary 데이터들로이루어진대출사기데이터

Preprocessing One-Hot Encoding

<latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> <latexit sha1_base64="4550uoa6suvf95ouyo3s5kzkirc=">aaacdhicfvfnb9naef2br2k+alyqenlqufiivzhdc3covmgfy5aidyqdnv6v21xxa7m7rkrb/wn+htf+bheubnicoeu8aawnn280s2+kvkllsfijck9dv3hz1s7t6m7de/cfdb4++mcbznax441qzlxak5tuykaslji3rmbdkhfcnl1z14+/cgnlo9/tqhxlgk+0rcrh8li++bbh0xt0medwdvm83yesbmjue67hcahzzzc7jwgctaypmyvrstz38jdtpzndw3q0z+x52tc7/1ngpwsfoywhi/gvxow7ypawebqwqvvrhoedytjjnocrjn2sidtimg+++3v5vwtnxkg1izrpaenqkork9fhwwdeip8mtsfbuyy3s0m1s62hpkyvujffpe2zupzsc1tau6si7a6rte7m2fv9vw3ruvvw6qduohoyxg6poatwwpggu0ghoauujcip9rsbp0qdn/lcrdyg9/owrzhywetvj3x0mj15v09hht9kug7guvwbh7c2bshnj7gfwjhge7aa/wmfhmny7sibbtucx+wvh5dcdllqp</latexit> P (Y c X 1,...,X n )= Modelling P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label

Modelling Y 의 Index P(X $ Y ' )

Classifier P(Y=1 X) 의확률과 P(Y=0 X) 의확률비교

Human knowledge belongs to the world.

Multinomial NB Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Multinomial Naïve Bayes - X 값이 Binary 가아니라 1 이상의값을가지는문제 - 일반적으로 Text 문제를분류할때많이쓰임 - 단어의존재유무가아닌단어의출현횟수 Feature 로

Text 의 Feature 표현? 문자 è Feature

문자를 Vector 로 One-hot Encoding 하나의단어를 Vector 의 Index 로인식, 단어존재시 1 없으면 0

Bag of words 단어별로인덱스를부여해서 한문장 ( 또는문서 ) 의단어의개수를 Vector 로표현

Bag of words 단어별로인덱스를부여해서 한문장 ( 또는문서 ) 의단어의개수를 Vector 로표현

다시돌아가서..

Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) 기본식!! Y c is a label

Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) Y c is a label Likelihood 만바뀜

<latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="x/bbppqrm1pmbhxdk1ensbl+gjw=">aaab2hicbzdnsgmxfixv1l86vq1rn8eiucozbtsd4mzlbccw2qfkmnfa0exmso4ipfqfxlhrfdb3vo3pz0ktbwif5ytk3pouslokgi+vtrw9s7tx3/cpgv7h0xgz8wslygimrkek00u4rsu1rirjya80ypneytez3c3y7jmakwv9snms45yptmyk4osszrdzctrbumwtwjw0yk1h83oqfqlkuznq3np+gjquz7ghkrto/uflseriwkfyd6h5jjaelcecs3pnpcwrjdua2nl9+wlgc2uneeju5pzg9m+2mp/l+hvl1/fm6rii1gl1uvyprgvb7mxsavcqmjrgwkg3kxnjbrgg14zvogj/brwj0wx7ph0+bfchuzidcwjhcm7hhjoqgyauxudng3uv3vuqqpq37uwefsn7+aaqkyon</latexit> <latexit sha1_base64="2e/bcqjc2d2g5wopszvki083ilm=">aaab/nicbzc9tsmwfivvyl8pbqori6fckkuvsaadehily5eolwpk5lhoa9wxi9tbqkjmfl6fhqeqj8hg2+d+dnbyjeufzrf1fu+yckan6347haxlldw14nppo7y5tv3zkd9qmspcm0ryqdoh1pqzqzuggu7biai4djlthcplcd56oeozkw7mkkhdgpcfixjbxlpbzd9ploz5nmxm6cbj515+n4kcnwrtgd3ebeqoqftdujsrwgrvblwyqrfuvvyejglmhseca93x3mr0m6wmi5zmjt/vnmfkipu0y1hgmopunlklr4fw6afiknueqrp394smx1qp4tdejlez6plsbp6xdvitnxyzjpluuegmg6kuiyprubfuy4osw0cwmfhm/hwravaygnteyzbgza+8cm3j+lndu3ahchtwadxw4aqu4aoa0aqct/acb/dupduvzse0ryizq20x/sj5/agtyzi+</latexit> <latexit sha1_base64="2e/bcqjc2d2g5wopszvki083ilm=">aaab/nicbzc9tsmwfivvyl8pbqori6fckkuvsaadehily5eolwpk5lhoa9wxi9tbqkjmfl6fhqeqj8hg2+d+dnbyjeufzrf1fu+yckan6347haxlldw14nppo7y5tv3zkd9qmspcm0ryqdoh1pqzqzuggu7biai4djlthcplcd56oeozkw7mkkhdgpcfixjbxlpbzd9ploz5nmxm6cbj515+n4kcnwrtgd3ebeqoqftdujsrwgrvblwyqrfuvvyejglmhseca93x3mr0m6wmi5zmjt/vnmfkipu0y1hgmopunlklr4fw6afiknueqrp394smx1qp4tdejlez6plsbp6xdvitnxyzjpluuegmg6kuiyprubfuy4osw0cwmfhm/hwravaygnteyzbgza+8cm3j+lndu3ahchtwadxw4aqu4aoa0aqct/acb/dupduvzse0ryizq20x/sj5/agtyzi+</latexit> <latexit sha1_base64="e6duyda8xesdp8la08slorc32ni=">aaaccxicbva9t8mwehx4lourwmhiqjdkuiuswibuwcjyjeklmha5jtnadzzidpcqkjmfv8lcaiivf8dgv8ftm0dlk056eu9od/eclfgplovbmjtfwfxarqxuv9fwnzbnre0bmwqcewcnlbgdaenckceoooqrtioiigng2shgyus374mqnohxapgsl0y9tiokkdksb+65quhcl9gykunn9mwu7njewfa949ohwx8f+mbnalhjwflil6qgsrr888sne5zfhcvmkjrd20qvlyohkgakqlqzjcnca9qjxu05ion08verbtzqsgijrojico7v3xm5iqucxohujjhqy2lvjp7ndtmvnxg55wmmcmetrvhgoergkbcyukgwyknnebzu3wpxhwmelu6vqkowp1+ejc5r47rhx1m15nmzrgxsgn1qbzy4bk1wcvraarg8gmfwct6mj+pfedc+jq1zrjmza/7a+pwbtgyalg==</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="z0tzistl0vbnvydzk5wjshluxbs=">aaaccxicbvbns8naen3ur1q/oh69rbahxkoignoqil48vjc20ssw2wzbpztn2n0ijebsxb/ixyokv/+bn/+n2zyhbx0w8hhvhpl5qckovjb1bztm5hcwl8rllzxvtfunc3prrsapwmtbmytfo0csmmqjo6hipj0igqkakvywubj5rxsiji35tromxitqj9muxuhpytd33uteoctorjx0m3pm53czz2gz1vbpw62pd3yzatwtmeassqtsbqwavvnlhjfoi8ivzkjkjm0lysuqubqzklfcvjie4qhqky6mheveetn4lrzuaywe3vjo4gqo1d8tgyqkheab7oyq6stpbyt+53vs1t3xmsqtvbgoj4u6kymqhqncyegfwyonnufyuh0rxh0kefy6vyoowz5+ezy4h/xtun11vg2cf2muwq7yazvgg2pqajegcryawsn4bq/gzxgyxox342pswjkkmw3wb8bnd02smji=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> Multinomial Naïve Bayes - 식계산하는방식이다름 ny P (X i Y c ) P (X i Y c )= i=1 P tf(xi,d2 Y c )+ P Nd2Yc + V x_i: A word from the feature vector x of a particular sample. tf(xi,d y_c): The sum of raw term frequencies of word x_i from all documents in the training sample that belong to class y_c. Nd y_c: The sum of all term frequencies in the training dataset for class y_c. α: An additive smoothing parameter (α=1α=1 for Laplace smoothing). V: The size of the vocabulary (number of different words in the training set). http://sebastianraschka.com/articles/2014_naive_bayes_1.html

<latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> <latexit sha1_base64="vhpckempjfbbycnxptzebx4flfk=">aaacr3icbzdnsxwxgmyzq211beuqry8vlskwlmvghnadihrxjcu4umvngtkzjbtmmkpytnez5s/z4tgbf4mxd614npub+nehag/p874k+cw5fbz9/9arzc1/+phpybg+9pnl1+xgyuqpzqrdejdlmjo9mfouhezdfch5lzecqljys/jiynyf/ehgikyf4cjna0xptugfo+iiqbf1wr1iqkhear8j9g12iuwnzwvocwwyti4j8qmsciwe9t8hpdif0mo6crsvz2x1xelikgzhtkphjabf9iec9yaymsazqrm1bsiky4xigpmk1vydp8dbsq0kjnlvdwvlc8ou6dnvo6up4nzqtkbusomsbnlmukmrjunljziqa0cqdpok4tc+7cbh/7p+gemvqsl0xidxbhprwkjadmzuirggm5qjzygzwr0v2ja6jujyjyeeb7/83ns32jvt4hi7ubc/o7fa1skgazga/cr75jb0sjcwckxuyf/yz7v27r0h73e6wvnmo2vklwree7iwrm8=</latexit> Multinomial Naïve Bayes P (X i Y c )= P tf(xi,d2 Y c )+ P Nd2Yc + V P (Y c X 1,...,X n )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) http://slideplayer.com/slide/10998986/

Multinomial Naïve Bayes P (Y c X 1,...,X n )= P (Y c ) n Q i=1 P (X i Y c ) nq P (X i ) i=1 http://slideplayer.com/slide/10998986/

Human knowledge belongs to the world.

Gaussian NB Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Gaussian Naïve Bayes - Category 데이터가아닌경우에 NB 의적용 - Continuous 데이터의적용을위해 y의분포를정규분포 (gaussian) 으로가정함 - 확률밀도함수상의해당값 x 가나올확률로 NB를구현함

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="spnegus/j04plu+gx72elzjdcy4=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltpq9lsn+3szsbstoqs+ho8efdx6j/y5r9x2+ag1qcdj/dmmjkxpliydn0vp7s0vlk6vl6vbgxube9ud/futzjpxn2wyes3q2q4fir7kfdydqo5jupjw+hoauq3hrk2ilf3oe55enobepfgfk10+9bjvwrnrbszkl/ek0gncjr71c9up2fzzbuysy3peg6kqu41cib5pnlnde8pg9eb71iqamxnkm9onzajq/rjlghbcslm/tmr09iycrzazpji0cx6u/e/r5nhdb7kqquzcsxmi6jmekzi9g/sf5ozlgnlknpc3krykgrk0kztssf4iy//jf5j/alu3zzwgpdfgmu4gem4bg/ooahx0aqfgazgcv7g1zhos/pmvm9bs04xsw+/4hx8a5xwjyc=</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="/ixp9j8uray/ibhcslp/e60nneo=">aaab6xicbvbns8naej3ur1q/qh69lbbbu0leug9flx4rgltoq9lsj+3szsbsboqs+ho8efdx6j/y5r9x2+agrq8ghu/nmdmvtaxxxnw/ndlk6tr6rnmzsrw9s7tx3t941emmgposeylqh1sj4bj9w43adqqqxqhavji6mfqtj1saj/lbjfmmyjqqpokmgivdt3u8v625dxcgsky8gtsgqlnx/er2e5bfka0tvouo56ymykkynamcvlqzxpsyer1gx1jjy9rbpjt1qk6s0idromxjq2bq74mcxlqp49b2xtqm9ai3ff/zopmjloocyzqzknl8uzqjyhiy/zv0uujmxngsyhs3txi2pioyy9op2bc8xzexix9wv6p7d+e1xnwrrhmo4bhowymlamatnmehbgn4hld4c4tz4rw7h/pwklpmhmifoj8/nx2nja==</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> <latexit sha1_base64="lwamupo1efsfsmwyisfcbrsynwi=">aaab8xicbvbns8naen3ur1q/qh69lbbbg5rebpvw9okxgrgfjjtndtmu3c2g3ylqqn+gfw8qxv033vw3btsctpxbwoo9gwbmxzngblz326msrk6tb1q3a1vbo7t79f2dr6nytzlplvc6gxpdbe+zdxwe62aaerkl1olht1o/88s04sp9ghhgikkgku84jwclijt5gq4nh0jsqzfcpjsdxizesrqorltx/wr7iuaspuafmsbw3ayigmjgvlbjlcwnywgdkqelle2jzcyqzidp8ilv+jhr2lykekb+niiingysy9spcqznojcv//ochjkrqobplgnl6xxrkgsmck//x32ugquxtorqze2tma6jjhrssjubgrf48jlxz5vxte/+otg6kdoooin0je6rhy5rc92hnvirrqo9o1f05odz4rw7h/pwilpohki/cd5/acjuklm=</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, Y c X i - 특정에대한의평균, 표준편차를에대입 µ,

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, https://en.wikipedia.org/wiki/naive_bayes_classifier

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, https://en.wikipedia.org/wiki/naive_bayes_classifier

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> Gaussian Naïve Bayes P (x i Y c )= 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, https://en.wikipedia.org/wiki/naive_bayes_classifier

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (x i Y c )= Gaussian Naïve Bayes 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, https://en.wikipedia.org/wiki/naive_bayes_classifier

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (x i Y c )= Gaussian Naïve Bayes 1 q2 exp 2 Yc (xi µ Yc ) 2 2 2 Y c, https://en.wikipedia.org/wiki/naive_bayes_classifier

<latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> <latexit sha1_base64="qmslbdtknmcrkvhn/lewslhfxwi=">aaacyxicbvfnaxsxenvukzz102sthnmrmqubernrcm0phdbeenshzgews2jlwvte2t1ksyfg7j/sladc+kmq23tokg4ihm/em5geskpji3f8h4qvtrzfvtp53xmz+3zvpzo4pldlbqsmralkc5lxc0owmeajci4ra1xnci6ym2+r/sutgcvl4icuk5hqpi9klgvht6xrcts7s51sknnyrq9s0adfkmsnfy5phlo/dlohqyszcq759tb1xtm0xg93fvoqy+90i2/nnppj9ubvvx423vzyyyycl7b/0kmjbjyi10wfg6qfxdlwki1+s1kpag0fcswtnsrxhvphduqhoomw2klfxq2fw8tdgmuwu7eoqkhvptojewn8kzcu2x8djmtrlzrzss1xyz/2vut/epma809tj4uqrijezlfek4olxevnz9kaqlx0gasj/v2pwhafgppfwywqph3yczaedj4pkh8fumdf2zr2ybe5jj2ski/kjhwnizimgjwe28fesb/8ctthfb5upghqet6rrxue/qwuvbzr</latexit> P (Y c X 1,...,X n )= P (x i Y c )= P (Y c ) n Q i=1 nq i=1 P (X i Y c ) P (X i ) 1 q2 exp 2 Yc Y c is a label (xi µ Yc ) 2 2 2 Y c

Human knowledge belongs to the world.

Naïve Bayes with Sklearn Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

CountVectorizer in Scikit-learn - 문서에서 Bag of Words Vector 를뽑아주는 class http://scikitlearn.org/stable/modules/generated/sklearn.feature_extr action.text.countvectorizer.html

CountVectorizer in Scikit-learn - 다른전처리모듈처럼생성 à 적용의과정을거침

CountVectorizer in Scikit-learn - 다른전처리모듈처럼생성 à 적용의과정을거침

NB classifier family in scikit-learn - Scikit-learn에서제공하는 NB classifier - Bernoulli Naïve Bayes - Multinomial Naïve Bayes - Gaussian Naïve Bayes

Bernoulli Naïve Bayes

Bernoulli Naïve Bayes

Multinomial Naïve Bayes

Gaussian Naïve Bayes

Human knowledge belongs to the world.