ÀÌÁø¸í

Similar documents
202

2-1

( )Kju098.hwp

(

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

09권오설_ok.hwp

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for


( )kju145.hwp

Â÷¼øÁÖ

09È«¼®¿µ 5~152s

±èÇ¥³â

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

<28C3D6C1BE29312DC0CCBDC2BEC62E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Ȳ¼º¼ö

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Can032.hwp

DBPIA-NURIMEDIA


Kbcs002.hwp

10(3)-09.fm


Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

DBPIA-NURIMEDIA

09이훈열ok(163-

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Lumbar spine

230 한국교육학연구 제20권 제3호 I. 서 론 청소년의 언어가 거칠어지고 있다. 개ㅅㄲ, ㅆㅂ놈(년), 미친ㅆㄲ, 닥쳐, 엠창, 뒤져 등과 같은 말은 주위에서 쉽게 들을 수 있다. 말과 글이 점차 된소리나 거센소리로 바뀌고, 외 국어 남용과 사이버 문화의 익명성 등

14.531~539(08-037).fm

Æ÷Àå½Ã¼³94š

서론 34 2

#Ȳ¿ë¼®

03이경미(237~248)ok

16_이주용_155~163.hwp

02¿ÀÇö¹Ì(5~493s

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

01이정훈(113~127)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

한국성인에서초기황반변성질환과 연관된위험요인연구

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

012임수진

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

02Á¶ÇýÁø

09구자용(489~500)


untitled

Crt114( ).hwp

歯1.PDF

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

63-69±è´ë¿µ

04김호걸(39~50)ok

PJTROHMPCJPS.hwp

03-서연옥.hwp

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

hwp

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

책임연구기관

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

2014_ pdf

<31325FB1E8B0E6BCBA2E687770>

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: : * Research Subject

À±½Â¿í Ãâ·Â

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: NCS : G * The Analy

44-4대지.07이영희532~

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

02이용배(239~253)ok

44-3대지.08류주현c

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

03-ÀÌÁ¦Çö

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

À̱ٿµ

04-다시_고속철도61~80p

인문사회과학기술융합학회

歯5-2-13(전미희외).PDF

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>


현대패션의 로맨틱 이미지에 관한 연구

γ

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26


8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Microsoft PowerPoint - AC3.pptx

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

45-51 ¹Ú¼ø¸¸

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

<C7A5C1F620BEE7BDC4>

Jkcs022(89-113).hwp

<B9AEC8ADC4DCC5D9C3F7BFACB1B82D35C8A32833B1B3292E687770>

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

09-감마선(dh)

Transcription:

165

Table 1. Abbreviation Code for the Various Anatomical Areas in Human Brain Anantomical Area Abbr.Code Superior frontal gyrus ( ) SFG Middle frontal gyrus ( ) MFG Inferior frontal gyrus ( ) IFG Supplementary motor area ( ) SMA Precentral gyrus ( ) PRC Superior temporal gyrus ( ) STG Middle temporal gyrus ( ) MTG Inferior temporal gyrus ( ) ITG Superior parietal gyrus ( ) SPG Inferior parietal gyrus ( ) IPG Supramarginal gyrus ( ) SMG Angular gyrus ( ) AG Precuneus ( ) PCU Postcentral gyrus ( ) POC Superior occipital gyrus ( ) SOG Middle occipital gyrus ( ) MOG Inferior occipital gyrus ( ) IOG Hippocampus ( ) HIP Parahippocampal gyrus ( ) PHIP Amygdala ( ) AMYG Cingulate gyrus ( ) CIN Septal area ( ) SEP Putamen ( ) PUT Globus pallidus ( ) GLO Caudate nucleus ( ) CN Thalamus ( ) THL Hypothalamus ( ) HTHL Insula ( ) INS Corpus callosum ( ) CC Midbrain ( ) MID Medulla ( ) MED Pons ( ) PON Cerebellar cortex ( ) CRBL Vermis ( ) VER 166

Table 2. Correlation of Anatomical Regions and Brodmann s Areas Abbr. Code BA* Function SFG 6,8,9,10,11,32 MFG 6,8,9,10,11,44,45,46,47 IFG 6,11,38,44,45,47 Speech, movement, planning SMA 6 PRC 4,6 STG 21,22,36,38,41,42 Hearing, speech MTG 20,21,22,36,37,38 Form vision ITG 20,37 Form vision SPG 2,5,7 IPG 2,3,40 SMG 2,40,41,42 Reading, speech, movement AG 39 Perception, vision, reading, speech PCU 5,7,23,27,30 Multimodal area for spatial body sence POC 1,2,3,43 SOG 17,18,19 Vision, depth MOG 18,19,39 Vision, depth, color, motion IOG 18,19,37 Vision, depth, color, motion HIP 20,27,28,35,36 Smell, emotion, memory PHIP 27,28,30,35,36 Smell, emotion, memory AMYG 28,34 Emotion, memory CIN 10,11,24,26,29,30,32 Emotion, attention, detection of error SEP PUT 48 Part of involuntary movement, selection GLO of willed movement, regulation, memory CN initiation THL Regulation of emotional behavior HTHL Emotion, function related survival INS 48 Taste, GI tract CC 25 Principal fiber bundle for connection *BA : Brodmann s area 167

이진명 외: 픽셀차분 알고리즘에 의한 대뇌 활성화도의 정성 및 정량 분석 프로그램의 개발 조영상(Fig. 1A)으로 구성된 3차원적인 template(mcconnell Brain Imaging Centre, Montreal Neurological Institute) 에 활성화된 지도를 중첩시켜 이를 그림파일 형태인 활성화 영상(activation image) (Fig. 1B)으로 저장하였다. 이때 T1 강조영상과 활성화 영상은 AC-PC선을 기준으로 상하 -59 mm와 +83 mm의 범위로부터 2 mm 간격으로 총 73개의 단면영상으로 재구성하였다. 이때 각 단면영상은 39,277(181 217)개의 픽셀로 구성되어 있으며, 사용된 영상은 Raw image 형태이고, 각 픽셀은 24 bit의 R, G, B true color로 표현하였다. 일반적으로 24비트 컬러를 표현하기 위해 R, G, B(Red, Green, Blue) 값으로 구분하여 표현할 수 있다. 24 비트로 표현할 수 있는 색상의 범위는 약 1670만(224) 종 류로서, 보통 인간이 자연에서 볼 수 있는 색상을 모두 표현 할 수 있게 때문에 투루컬러라고 부른다. R, G, B컬러는 좌 표계에 따라 각각 1바이트(8비트)씩 할당받게 되고, 따라서 R, G, B의 채도는 각각 28(=256)가지로 나타낼 수 있다. 보 통 인간이 느낄 수 있는 R, G, B 채도값은 보통 120-150정 도 되므로 인간이 분별하기 어려운 처리까지 가능하고, 각 픽 셀들은 R, G, B 각각의 값에 의해 색깔로 표현된다. Table 3 A Fig. 2. A color-cube representing RGB pixel values. D F E G C B Fig. 1. Main protocol for obtaining the anatomical and functional differentiation images. (A) T1-weighted image, (B) activation image, (C) black and white differentiation image, (D) anatomical index image, (E) functional index image, (F) anatomical differentiation image, and (G) functional differentiation image. 168

Table 3. Color Coded RGB Values Corresponding to the Anatomical and Functional Area Anatomical R G B Functional R G B SFG 196 223 155 01 146 039 143 MFG 255 247 153 02 240 030 230 IFG 244 154 193 03 020 245 240 GR 130 202 156 04 255 128 035 OC 146 039 143 05 121 000 000 SCA 068 014 098 06 000 089 082 SMA 000 000 200 07 210 026 110 PRC 000 089 082 08 198 156 109 STG 242 101 034 09 168 252 252 MTG 015 035 235 10 196 223 155 ITG 000 114 188 11 130 202 156 SPG 210 026 110 17 242 109 125 IPG 248 176 172 18 158 011 014 SMG 240 030 230 19 235 010 015 AG 000 084 166 20 000 114 188 PCU 121 000 000 21 015 035 235 POC 020 245 240 22 242 101 034 SOG 102 045 145 23 013 000 076 MOG 235 010 015 24 189 140 191 IOG 141 198 063 25 171 160 000 FUSI 236 000 140 26 099 004 096 LING 158 011 014 27 046 049 146 CU 096 092 168 28 096 057 019 INS 057 181 074 29 000 174 239 HIP 046 049 146 30 130 123 000 PHIP 096 057 019 32 000 000 200 AMYG 255 242 000 34 255 242 000 CIN 189 140 191 35 096 092 168 SEP 082 216 226 36 236 000 140 PUT 033 087 081 37 141 198 063 GLO 000 191 243 38 102 045 145 CN 171 160 000 39 000 084 166 THL 000 165 081 40 248 176 172 HTHL 168 252 252 41 027 020 100 CC 198 156 106 42 068 014 098 PCL 255 128 035 43 000 166 081 RO 013 000 076 44 000 191 243 HES 030 240 020 45 244 154 193 CAL 242 109 125 46 255 247 153 MID 247 148 029 47 33 087 081 PON 163 043 049 MED 080 032 217 CRBL 115 226 120 VER 160 065 013 169

Table 4. Array of RGB Pixel Values Representing a B/W Differentiation Image (Fig. 1C) (1, 1) (2, 1) (101, 1) (102, 1) (103, 1) (180, 1) (181, 1) 0,0,0 (1, 2) (2, 2) (101, 2) (102, 2) (103, 2) (180, 2) (181, 2) 0,0,0 255,255,255 255,255,255 (1, 3) (2, 3) (101, 3) (102, 3) (103, 3) (180, 3) (181, 3) 0,0,0 255,255,255 255,255,255 255,255,255 255,255,255 255,255,255 255,255,255 (1, 216) (2, 216) (101, 216) (102, 216) (103, 216) (180, 216) (181, 216) 255,255,255 255,255,255 255,255,255 (1, 216) (2, 217) (101, 217) (102, 217) (103, 217) (180, 217) (181, 217) 0,0,0 Table 5. Array of RGB Pixel Values Representing a Functional Index Image (Fig. 1E) (1, 1) (2, 1) (101, 1) (102, 1) (103, 1) (180, 1) (181, 1) 0,0,0 (1, 2) (2, 2) (101, 2) (102, 2) (103, 2) (180, 2) (181, 2) 196,223,155 196,223,155 196,223,155 (1, 3) (2, 3) (101, 3) (102, 3) (103, 3) (180, 3) (181, 3) 0,0,0 244,154,193 196,223,155 196,223,155 210,26,110 255,247,153 255,247,153 (1, 216) (2, 216) (101, 216) (102, 216) (103, 216) (180, 216) (181, 216) 235,10,15 235,10,15 158,11,14 (1, 216) (2, 217) (101, 217) (102, 217) (103, 217) (180, 217) (181, 217) 0,0,0 Table 6. Array of RGB Pixel Values for Functional Differentiation Image Obtained by Pixel Differentiation Method from B/W Differentiation and Function Index Images (Fig. 1G) (1, 1) (2, 1) (101, 1) (102, 1) (103, 1) (180, 1) (181, 1) 0,0,0 (1, 2) (2, 2) (101, 2) (102, 2) (103, 2) (180, 2) (181, 2) 59,32,100 59,32,100 59,32,100 (1, 3) (2, 3) (101, 3) (102, 3) (103, 3) (180, 3) (181, 3) 0,0,0 11,101,62 59,32,100 59,32,100 45,229,145 0,8,102 0,8,102 (1, 216) (2, 216) (101, 216) (102, 216) (103, 216) (180, 216) (181, 216) 20,245,240 20,245,240 97,244,241 (1, 216) (2, 217) (101, 217) (102, 217) (103, 217) (180, 217) (181, 217) 0,0,0 170

171

이진명 외: 픽셀차분 알고리즘에 의한 대뇌 활성화도의 정성 및 정량 분석 프로그램의 개발 Fig. 3. An example of measuring the number of activated pixels and brain activities from the anatomical and function differentiation images in a single slice. 172

대한영상의학회지 2004;51:165-177 A B Fig. 4. Quantitative analysis of the number of activated pixels and brain activity in both (A) whole brain area and (B) partially selected brain area, where the slice in red indicates AC-PC line. 173

이진명 외: 픽셀차분 알고리즘에 의한 대뇌 활성화도의 정성 및 정량 분석 프로그램의 개발 Fig. 5. Lateralization indices (%) of cerebrocortical regions based on the anatomical and functional areas, respectively. 174

175

Magn Reson Med 1997;38:296-302 7. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-289 8. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000;10:120-131 9. Kiebel SJ, Poline JB, Friston KJ, Holmes AP, Worsley KJ. Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. Neuroimage 1999;10:756-766 10. Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS. Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 1992;4:352-374 11. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. variability in the locations of areas 9 and 46 and relationship to the Talairach coordinates system. Cereb Cortex 1995;5:323-337 12. Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 1993;3:313-329 13. Caviness VS Jr, Meyer J, Makris N, Kennedy DN. Specified method with estimate of reliability. J. Cogn. MRI-based topographic parcellation of human neocortex: An anatomically. Neuroscience 1996;8:566-587 14. Wu DC, Tsai WH. A steganographic method for images by pixelvalue differencing. Pattern Recognit Lett 2003;24:1613-1626 15. Philipp I, Rath T. Improving plant discrimination in image processing by use of different color space transformations. Comput 1. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic Electron Agric 2002;35:1-15 field. Magn Reson Med 1990;14:68-78 16. Hwang KF, Chang CC. A fast pixel mapping algorithm using principal component analysis. Pattern Recognit Lett 2002;23:1747-1753 2. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl 17. Yue ZQ, Chen S, Tham LG. Finite element modeling of geomaterials using digital image processing. Comp Geotech 2003;30:375-397 Acad Sci USA 1990;87:9868-9872 3. Duyn JH, Moonen CT, Van Yperen GH, de Boer RW, Luyten PR. 18. Zhao W, Busto R, Truettner J, Ginsberg MD. Simultaneous measurement of cerebral blood flow and mrna signals: pixel-based in- Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5T. NMR Biomed 1994;7:83-88 ter-modality correlational analysis. J Neurosci Methods 2001;108: 4. Duong TQ, Silva AC, Lee SP, Kim SG. Functional MRI of calciumdependent synaptic activity: cross correlation with CBF and BOLD 161-170 19. Friedlinger M, Schro der J, Schad LR. Ultra-fast automated brain measurements. Magn Reson Med 2000;43:383-392 volumetry based on bispectral MR imaging data. Comput Med 5. Lee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spinecho fmri at 9.4 T: microvascular/tissue contribution to BOLD sig- Imaging Graph 1999;23:331-337 20. Yule B, Roberts S, Marshall JE. Quantitative spore color measurement using image analysis. Org Geochem 1998;28:139-1490 nal changes. Magn Reson Med 1999;42:919-928 6. Gati JS, Menon RS, Ugurbil K, Rutt BK. Experimental determination of the BOLD field strength dependence in vessels and tissue. 176

Qualitative and Quantitative Measurement of Human Brain Activity Using Pixel Subtraction Algorithm 1 Jin-Myoung Lee, Gwang-Woo Jeong, Ph.D. 1,2, Hyung-Joong Kim, Ph.D. 2, Seong-Hoon Cho, Heoung-Keun Kang, M.D. 2, Jeong-Jin Seo, M.D. 2, Seung-Jin Park, Ph.D. 3 1 Interdisciplinary Program of Biomedical Engineering, Chonnam National University Graduate School 2 Department of Radiology, Chonnam National University Medical School 3 Department of Biomedical Engineering, Chonnam National University, Hospital Purpose: To develop an automated quantification program, which is called FALBA (Functional & Anatomical Labeling of Brain Activation), and to provide information on the brain centers, brain activity (%) and hemispheric lateralization index on the basis of a brain activation map obtained from functional MR imaging. Materials and Methods: The 3-dimensional activation MR images were processed by a statistical parametric mapping program (SPM99, The Wellcome Department of Cognitive Neurology, University College London, UK) and MRIcro software (www.mricro.com). The 3-dimensional images were first converted into 2-dimensional sectional images, and then overlapped with the corresponding T1-weighted images. Then, the image dataset was extended to 59 mm to 83 mm with a 2 mm slice-gap, giving 73 axial images. By using a pixel subtraction method, the differences in the R, G, B values between the T1-weighted images and the activation images were extracted, in order to produce black & white (B/W) differentiation images, in which each pixel is represented by 24-bit R, G, B true colors. Subsequently, another pixel differentiation method was applied to two template images, namely one functional and one anatomical index image, in order to generate functional and anatomical differentiation images containing regional brain activation information based on the Brodmann's and anatomical areas, respectively. In addition, the regional brain lateralization indices were automatically determined, in order to evaluate the hemispheric predominance, with the positive (+) and negative ( ) indices showing left and right predominance, respectively. Results: The manual counting method currently used is time consuming and has limited accuracy and reliability in the case of the activated cerebrocortical regions. The FALBA program we developed was 240 times faster than the manual counting method: 10 hours for manual accounting and 2.5 minutes for the FALBA program using a Pentium IV processor. Compared with the FALBA program, the manual quantification method showed an average error of 0.334 0.007 (%). Thus, the manual counting method gave less accurate quantitative information on brain activation than the FALBA program. Conclusion: The FALBA program is capable of providing accurate quantitative results, including the identification of the brain activation region and lateralization index with respect to the functional and anatomical areas. Also, the processing time was dramatically shortened in comparison with the manual counting method. Index words : Brain Brain, function Brain, MR Address reprint requests to : Gwang-Woo Jeong, Ph.D., Department of Radiology, Chonnam National University Medical School 8 Hack-dong, Dong-gu, Kwang-ju 501-757, Korea. Tel. 82-62-220-5881 Fax. 82-62-226-4380 E-mail: gwjeong@chonnam.ac.kr 177