[ ] w Á wz (J. Kr. Inst. Met. & Mater.) Vl. 46, N.4, pp. 209~216 (2008) 'F$S/J.P8/ ü l w p e $Pw w 1 Á 2 Áû 1 Á ³k 1 Á½ 3Á½ 1, * 2 1 w œw» l 3 ³ w œw Center fr Advanced Life Cycle Engineering, University f Maryland Effect f Cbalt Cntents n the Bicmpatibility and Crrsin Prperties f Fe-31Cr-27Ni-1.6M-1.5W-0.26N Ally Sn Geun Jang 1, Yung Ran Y 2, Hee S Nam 1, Gyu Tae Shim 1, Jung Gu Kim 3, and Yung Sik Kim 1* 1 The Center f Green Materials Technlgy, Schl f Advanced Materials Engineering, Andng Natinal University, 388 Sngchen, Andng, Gyengbuk, 760-749, Krea 2 Center fr Advanced Life Cycle Engineering, University f Maryland, Cllege Park, Md 20742, USA 3 Schl f Advanced Materials Science and Engineering, Sungkyunkwan University, Suwn, 440-746, Krea Abstract : Super austenitic stainless steels shws the high PRE (Pitting Resistance Equivalent) number and the gd crrsin resistance. This wrk cntrlled the C cntents in Fe-31Cr-1.7M-27Ni-0.25N allys t elucidate the effect f cbalt cntents n the bicmpatibility and crrsin resistance. Increasing C cntents, the hardness f the annealed allys tends t be reduced. In aged allys, cbalt decreased the increments f hardness by aging treatment. Cbalt decreased the critical pitting temperature (CPT) in 6% FeCl 3 + 1% HCl slutin, but imprved the andic plarizatin behavir in Hanks' balanced salt slutin and artificial saliva slutin. Repassivatin rate in artificial bdy slutins was imprved by increasing cbalt cntents, but didn't shw the linear relatinship t PRE number f the allys. The experimental allys shwed the nn-cyttxicity because f its high crrsin resistance. (ReceivedG January 4, 2008) Keywrds : super austenitic stainless steel, cbalt, bicmpatibility, pitting, andic plarizatin, repassivatin 1. ƒ y y, y ã wš. v w ƒ y w š, f š [1~3]. j, š, w 4ƒ. Bne plate, bne screw, hip jint, dental implant, guide wire, stent v p š [4].» w w (Bicmpatibility).» *Crrepnding authr : Yung Sik Kim [Tel: +82-54-820-5504, E-mail: yikim@andng.ac.kr] p, û k, q w wš š, w x š. w v ü ¾., ü û ü»yw w w ùký w [5~6]. x š l, C- Crw, Ni-Tiw, Ni-Crw, Ti w.» bne screw, bne plate l z ü C-Cr w ƒ ey ùš Ti wš. ù Ti bne screw head q j», e z w» w ƒ head w š w Ti û x w -209-
210 Á Áû Á ³kÁ½ Á½.» 316L l ü ü û ü ƒ w, ƒ p f w w -w š [7],, v,»w s ùkü š [8~9]. w w» w Ni C w ü lù p y k ü lù p l w ƒ v w. wr l» %~ % Ni w. ü» {w» w w j w. f w e ƒ w w y w. ù l» lù p, 10 ~ 30% Ni w, w C š w ù, l p e C w w ƒ w. Fe- 31Cr-27Ni-1.6M-1.5W-0.26N» Cw 0% 10%¾ y k w w w l», p, p, w e C w w sƒ w. 2. x 2.1 xw r w t w (99.9%), Cr(99.9%), Ni(99.9%), M(99.9%), W(99.8%), Si(99.2%), Mn(99.8%), C(99.5%), Fe-Cr-N(Fe-58%Cr-6.2%N) w ww.» w š q w 40 kw 15 (400 C) w z w, Ni, M, W, Cr, C n w. k x z Mn, Si wš w ƒ w z Al, Ca-Si, Ti Al-fil k ¾ k k. w ƒ w z Pwer ü 2~3 k jš, 1,580 C 200 150 20T ( : mm) j» Ceramic Mld kw šp(ingt) w. šp mw Ì 5mm q w š, w j» w z œ r w» w 1,125 C 5 ww. w xw Cr w» œ, r w 850 C 5, 30 z r wì w. t 1 x w w ùkü. 2.2 d d ƒƒ r 1.5 cm 1.5 cm j» w s SiC paper w #600¾ w z j»(b-scale) 7z d w š w ù s³ w. 2.3 œ d x» 1 l w w» w g ew. ƒƒ x r 2cm 2cm j» w r SiC paper #120¾ w z ASTM G48-00 t ³ x ww [10]. ASTM G48-00 t ³ w œ d w r, 6% FeCl 3 +1% HCl x 24 e z 5mg w œ w. x ASTM G48-00 ³ 5 C û œ Table 1. Chemical cmpsitin f the experimental allys(wt%) Ally Cr M W Si Ni Mn C N C Fe PRE A29C1 31.4 1.60 1.48 0.83 26.0 0.60 0.038 0.25 0.06 bal. 46.6 A29C2 31.5 1.46 1.55 0.74 26.8 0.55 0.023 0.25 3.12 bal. 46.4 A29C3 30.2 1.74 1.68 0.82 28.3 0.64 0.025 0.26 6.55 bal. 46.5 A29C4 31.0 1.81 1.75 0.88 28.7 0.64 0.023 0.26 9.89 bal. 47.6 *PRE(Pitting Resistance Equivalent) = %Cr + 3.3(%M + 0.5%W) + 30%N
ù 10 C, r sƒwš 5mg w ú 5 C û, r s ƒw.. x ( C)=2.5x%Cr+7.6x%M+31.9x%N 41.0 2.4 x x w r 2cm 2cm j» w, v r w û w w, s š w. r t SiC paper #600¾ w 2 1cm ù s. r x ¾ f l w. sl kp(mdel Gamry DC 105) w š» sy y (SCE), š w. 100 ml/min 30 k»w 1mV/sec w x ww. x p» w 50 C, 0.5N HCl + 1N NaCl yw w š, ü p» w 37 C œ (Hanks' Balanced Salt Slutin) [11] 37 C œk (Artificial Saliva Slutin) w [12]. œ œk t 2 t 3 ùkü. 2.5 ky d ky d x 0.5N HCl + 1N NaCl yw œ (Hank's Balanced Salt Slutin(HBSS)), œk (Artificial Saliva Slutin) ww. sl kp(gamry DC 105) w 35 C k»w 0.5N HCl + 1N NaCl l -200mV(SCE) w 20 y k, š w k (+100mV(SCE)) w Á wz 46«4y (2008 4 ) 211 Table 3. Cmpsitin f artificial saliva slutin Cnstituents Cncentratin(g/s) KCl 0.40 NaCl 0.40 CaCl 2 2H 2 O 0.795 NaH 2 PO 4 2H 2 O 0.78 Na 2 S 9H 2 O 0.005 CO(NH 2 ) 2 1.00 Distilled Water 1,000 ml ƒw ky w, 37 C k» w œ œk 1,000 mv(sce) 20 y k, š w k (+100 mv(sce)) ƒw ky w. ky k ƒ z l y 0.001sec 30 k v x y d w. 1 ky w ùkü [13]. k ƒ k ƒ w. 2.6 s x s x w ƒ r 4 wš agar 0.5 cm 2ƒ ƒœw ethylene xide gas ³w z ³ w. Gutta Percha w š Table 2. Cmpsitin f Hanks' Balanced Salt Slutin(HBSS) Cnstituents Cncentratin(g/s) KCl 0.40 KH 2 PO 4 0.06 NaCl 8.005 Na 2 HPO 4 0.048 D-Glucse 1.005 Phenl Red 0.01 EDTA 1.5mM Distilled Water 1000 ml Fig. 1. Mathematical mdel fr btaining repassivatin index(n) [13].
212 Á Áû Á ³kÁ½ Á½ glass w. α-mem s L-929 cell w š petri dish s 10 ml ƒw 24 w. α-mem wš 45~50 C Eagle's agar medium 10 ml ƒƒ petri dish ƒw 30 ew. Eagle's agar medium š y z neutral red vital stain 10 ml ƒ w r w, 30 ew. w r w z 37 C, 5% COg» 24 w. Petri dish š k j» w Zne index wš, inverted phase cntrast micrscpe (CK2, Olympus, Japan) k sƒ w Lysis index w. r 4 zne index lysis index s³w respnse index w [14~16] (Respnse index = Declrizatin / Lysis index). t 4 k w sƒ, t 5 s w sƒ š. 3. x š 3.1 Cw y lù p l p e w Fig. 2. Effect f heat treatment n the hardness f A29C allys; (a) C cntents, (b) aging time. 2 j» w d w A29C w e w š., A29C1 91.6HRB, A29C2 91.5HRB, A29C3 89.6HRB, A29C4 91.2HRB 5% C ƒw A29C3 ƒ û ùkû. wr Table 4. Declrizatin index Declrizatin Descriptin f declrizatin (Zne) index 0 N detectable zne arund r under sample 1 Zne limited t area under sample 2 Zne nt greater 5 mm in extensin frm sample 3 Zne nt greater 10 mm in extensin frm sample 4 Zne greater than 10 mm in extensin frm sample 5 Zne invlving entire plate Table 5. Lysis index Lysis index Descriptin f zne 0 N bservable lvsis 1 Up t 20% f the zne lysed 2 Over 20% t 40% f the zne lysed 3 Over 40% t 60% f the zne lysed 4 Over 60% t 80% f the zne lysed 5 Over 80% lysed within the zne z, 1,125 C 5 z 850 C 5, 30, 180 z w A29C š, z ¼ ƒw š, ƒ A29C4 < A29C3 < A29C2 < A29C1 ùkû. 5% C ƒw A29C3 A29C1, A29C2, A29C4 w 2~5HRB û ùkû., z w r 850 C 180 z ww r 2HRB~5HRB š, C w w A29C1 w ƒ j ùkû., y e C w, jš, z ww, w ƒ j ƒw [15], Cƒ ƒz j ùk û.
w Á wz 46«4y (2008 4 ) 213 3 A29C w z œ ùkü. A29C1 75 C, A29C2ƒ 70 C, A29C3 70 C, A29C4 65 C ùkû, C ƒw œ û ùkû. z w r w r 5~30C û œ ùkþ, z ƒ w œ û z w ü w., z ƒw w œ w š, C w w A29C1 C ƒ w w A29C4 r œ ƒ ƒ j y š. 180 z w r C w ƒw œ û w š C w ƒ w w w w ùkû. C ƒ w x k v w y y y p w, e w [11]. 4 50 C, 0.5N HCl + 1N NaCl yw A29C (10 y (-0.6V (SCE)) z 10 e z ) 4 xw 350 mv w ùkùš š, C w ƒw ky, i c ƒw ùkû. k A29C3ƒ ƒ ùkû, A29C1 A29C2ƒ w ùk ûš, C ƒ w w A29C4ƒ ƒ ùk û ù œ w. 5 50 C, 0.5N HCl + 1N NaCl A29C z (850 C 5 ) (10 y Fig. 4. Andic plarizatin curves f A29C allys in deaerated 50 C, 0.5N HCl + 1N NaCl. Fig. 3. Effects f (a) C cntents(a) and (b) aging time at 850 C n the critical pitting temperature f A29C allys. Fig. 5. Andic plarizatin curves f A29C aged fr 5 minutes at 850 C in deaerated 50 C, 0.5N HCl + 1N NaCl.
214 Á Áû Á ³kÁ½ Á½ ( 0.6V(SCE)) z 10 e z ) ùkü. A29C2, A29C3, A29C4 300 mv(sce) ƒ ƒwš š, w š ù, A29C1 0mV(SCE) w ƒ ƒw w k š. 6 850 C 30 z w xw A29C3 +300 mv(sce) ƒ ƒwš ù w w kƒ w ùkùš, A29C1 ƒ ƒ j ùkû. 3.2 lù p l p e Cw w 7 37 C, œ A29C (10 y ( 1.0 V(SCE)) z 10 e z ) ùkü. C w ƒw ƒwš, i c w ùkû, 0.5N HCl + 1N NaCl yw C w ƒw k w w š. œ w, ƒ ƒw y w. w z w PRE Niw ƒ œ k k ƒ ƒw z [17]. 8 37 C, œk A29C (10 y ( 1.0 V(SCE)) z 10 e z ) ùkü 7 ƒ C w Fig. 6. Andic plarizatin curves f A29C aged fr 30 minutes at 850 C in deaerated 50 C, 0.5N HCl + 1N NaCl. Fig. 7. Andic plarizatin curves f annealed A29C allys in deaerated 37 C, Hanks' balanced salt slutin. Fig. 8. Andic plarizatin curves f annealed A29C allys in deaerated 37 C, artificial saliva slutin. ƒw ƒ û ùkùš, i c ùkù. 9 37 C, œ A29C ky ùkü. xw ƒ w k v š, ƒ w ky ùküš 10 A29C1 0.613, A29C2 0.618, A29C3 0.637, A29C4 0.625 C w ƒ k w ky ƒ f, ƒ k ƒ û ùkùš w k ƒ ew. w Cw ƒw k v
w Á wz 46«4y (2008 4 ) 215 Table 6. Cyttxicity f A29C allys Fig. 9. Current-time curves fr btaining repassivatin index in 37 C, Hanks' balanced salt slutin. Sample A29C1 A29C2 A29C3 A29C4 Psitive (Gutta Percha) Negative (glass) Declrizati n index Lysis Index Respnse Index Cyttxicity 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 0 0 0/0 nne(-) 3 4 3/4 mderate(++) 0 0 0/0 nne(-) w x s x mw sƒw [14]. t 6 lù p l A29C s x t ùkü. xw ùküš ùkû. k 0 ùkû, s 0 ù kùš s sƒ. s x sƒ xw w A29C w œ w ƒ 46» ü»» sƒ w s x C w w wü w ƒ. 4. Fig. 10. Effect f C cntents n repassivatin index in 37 C, Hanks' balanced salt slutin. y Cr 2 O 3 /Cr(OH) 3 ƒ ƒw» [18]. 9 37 C, œ i p, i c, œ w (PRE) ky (n) ùkü œ ky (n)ƒ f k ƒ ù, œ w w w š., œ w y y œ w ùkü, œ ƒ wì w y ü dw». Fe-31Cr-1.7M-27Ni-0.25N» Cw 0% 10%¾ y k w w w l», p, p, w e C w w sƒw. 1) A29 w C ƒw, w w. w w z ww, z ¼ ƒw ù, Cw ƒw ƒ ƒ y w. 2) A29 w C ƒw œ û w. w w z ww, z ¼ œ ƒ w
216 Á Áû Á ³kÁ½ Á½ ù, Cw w ƒ y w., Cw w w» ù, z ww C p z ƒ w ùkû. w œ d ew w. 3) œ, Cw ƒw k ƒ, œk ƒ j. œ w ky C w ƒw ƒw, w w ew. ù w PRE w. wr s x, 4 r s ùkû. ( ) w w w ( y : R05-2003-000-10664-0). REFERENCES 1. H. B. Lee, Plymer Science and Technlgy, 5, 6, 566 (1994). 2. C. P. Sharma and M. Szycher, J. Bimater Appl. 15, 359 (2001). 3. J. B. Park and R. Lakes, Bimaterials : An Intrductin, 2nd, Plenum Press, NY (1988). 4. Y. G. Kim, J. The Krean Institute f Electrical and Electrnic Material Engineers, 15, 18 (2004). 5. K. A. Grss and C. C. Berndt, 2nd Plasma-Technik Sympsium 3, 159 (1991). 6. K. T. Oh, G. N. Kim and Y. S. Kim, Met. Mater. -Int. 42, 1, 64 (2004). 7. P. Haudrechy, B. Mantut and A. Frappax, Cntact Dermatitis 37, 113 (1997). 8. J, R. Fisher and G. A. Rsenblum, J. Am. Med. Assc. 248, 1065 (1982). 9. J. K. Bass, H Fine and G. J. Cisners, Am. J. Orthd. Dentfac. Orthp. 103, 280 (1993). 10. ASTM, Standard Test Methds fr Pitting and Crevice Crrsin Resistance f Stainless Steels and Related Allys by Use Ferric Chlride Slutin, ASTM G48-00 (2000). 11. Y. R. Y, S. G. Jang, K. T. Oh, J. G. Kim and Y. S. Kim, J. Bimedical Materials research Part B: Applied Bimaterials, n line-press (2008). 12. K. T. Oh, Y. S. Kim, Y. S. Park and K. N. Kim, J. Bimedical Materials research Part B: Applied Bimaterials, 69B, 183(2004). 13. F. P. Frd, Crrsin 52, 375 (1996). 14. ISO, Dentistry-Preclinical Evaluatin f Bicmpatibility f Medical Devices Used in Dentistry-Test Methds fr Dental Materials, ISO 7405 (1997). 15. K. T. Oh, D. K. Kang, C. G. Shn, Y. R. Y, Y. S. Kim, 13th Asian-Pacific Crrsin Cntrl Cnference, Paper P-031, Osaka, Japan (2003). 16. Y. R. Y, S. H. Jen, H. H. Ch, Y. S. Kim, The 5th Asian Cnference n Electrchemistry(ACEC 2005), p.1p53, May 9 ~ 12, Shanghai China (2005). 17. Y. S. Kim, Y. R. Y, C. G. Shn, K. T. Oh, K. N. Kim, J. H. Yn, H. S. Kim, Materials Science Frum, 475-479, 2295 (2005). 18. H. H. Ch, Influence f Allying Elements n the Crrsin Prperties f Super Stainless Steels fr Bimaterial, Thesis f MS, Andng Natinal University (2007).