Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 1, 23-30,

Similar documents
03-16-김용일.indd

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 4, , 서론. (Heo, 2013). (Park et al., 2

08원재호( )

<B0A3C1F6315FC6EDC1FDC0A7BFF8C8B82E687770>

09구자용(489~500)

53-62_성상민_저완_1차수정.indd

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

14.이동천교수님수정

인문사회과학기술융합학회

09권오설_ok.hwp

1-1. (, 2013). A-C:, D:.,.,,.,. 1 (,, ), 2,

03-서연옥.hwp

DBPIA-NURIMEDIA

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

14.531~539(08-037).fm

74-정성혁2.indd

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

04김호걸(39~50)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

09오충원(613~623)

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

433대지05박창용

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, 29-38, 2014., GPS/ IMU.. Rickard et al.(2008). Ya

???? 1

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

21-32_김세열_저완_2차수정.indd

p 19; pp 32 37; 2013 p ㆍ 新 興 寺 大 光 殿 大 光 殿 壁 畵 考 察 ; : 2006

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

09È«¼®¿µ 5~152s

012임수진

DBPIA-NURIMEDIA

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

06_ÀÌÀçÈÆ¿Ü0926

45-51 ¹Ú¼ø¸¸

김기남_ATDC2016_160620_[키노트].key

04_이근원_21~27.hwp

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

03-ÀÌÁ¦Çö

< B3E2BFF8BAB828C8AFB0E629312E687770>

DBPIA-NURIMEDIA

03이경미(237~248)ok

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

Lumbar spine

LiDAR A utomatic D etection for Misclassified A erial LiD A R D TD

18권2호

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

디지털포렌식학회 논문양식

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

02¿ÀÇö¹Ì(5~493s

°í¼®ÁÖ Ãâ·Â

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

DBPIA-NURIMEDIA

~41-기술2-충적지반

DBPIA-NURIMEDIA

02À±¼ø¿Á

DBPIA-NURIMEDIA

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

DBPIA-NURIMEDIA

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

년AQM보고서_Capss2Smoke-자체.hwp

63-69±è´ë¿µ

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<B8F1C2F72E687770>

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

<31325FB1E8B0E6BCBA2E687770>

DBPIA-NURIMEDIA

Coriolis.hwp

Microsoft Word - KSR2014S042

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

10(3)-09.fm

< C6AFC1FD28C3E0B1B8292E687770>

#Ȳ¿ë¼®


example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

DBPIA-NURIMEDIA

À±½Â¿í Ãâ·Â

I

09이훈열ok(163-

PJTROHMPCJPS.hwp

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

2014_ pdf

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

139~144 ¿À°ø¾àħ

08김현휘_ok.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

Transcription:

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 1, 23-30, 2015 http://dx.doi.org/10.7848/ksgpc.2015.33.1.23 ISSN 1598-4850(Print) ISSN 2288-260X(Online) Original article KOMPSAT-2 영상과항공 LiDAR 자료를이용한 3 차원해안선매핑 Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data 정윤재 1) Choung, Yun Jae Abstract A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces. Keywords : Coastal Zones, Shorelines, NDWI, LiDAR, KOMPSAT-2 Imagery 초록,. LiDAR KOMPSAT-2., LiDAR DSM( ). KOMPSAT-2 NDWI( ), NDWI., 2. DSM 2 3. 3 0.90m 0.10m., 3,. :,,, LiDAR, KOMPSAT-2 Received 2015. 01. 14, Revised 2015. 02. 12, Accepted 2015. 02. 28 1) Member, Research Institute of Spatial Information Technology, GEO C&I Co., Ltd. (E-mail: choung12osu@gmail.com) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 23

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, 23-30, 2015 1. 서론 (shorelines) (coastal zones) (Lee 2012; Li et al., 2003; Shalowitz, 1964)., (Wie and Jeong, 2006)., (Liu et al., 2009), 3., (Lee and Kim, 2007). LiDAR, (Lee and Kim, 2007; Liu et al., 2009; Choung et al., 2013).. Kim et al.(2005) Corona. Wie and Jeong(2006) LiDAR. Lee and Kim(2007) RTK-GPS. Kim and Song(2012). Lee(2012) LiDAR. Liu et al.(2009) Choung et al.(2013) LiDAR Lake Erie. Kim et al.(2013) Landsat.,. LiDAR (Liu et al., 2009; Choung et al., 2013)., LiDAR, (Liu et al., 2009)., KOMPSAT-2 2 LiDAR 3., KOMPSAT-2 NDWI( ). ISODATA(Iterative Self-Organizing Data Analysis Technique) NDWI. 2., LiDAR DSM, 2 DSM 3. 2. 연구대상지역과데이터 7km, (coastal erosion) (Eom et al., 2010). KOMPSAT-2 (KARI: Korea Aerospace Research Institute), 4 (Blue: 450 520nm, Green: 520 600nm, Red: 630 690nm, NIR: 760 900nm), 1m (Oh et al., 2012). KOMPSAT-2 1m DEM(Digital Elevation Model) Table 1. Attributes of the LiDAR data used in this research Sensor ALTM(Airborne Laser Terrain Mapper) Gemini 167, Optech Data acquisition time January, 2012 Average point density 1.5 points/1 Horizontal datum GRS 80 Vertical datum MSL(Mean Sea Level) at Incheon Bay Horizontal accuracy 15cm Vertical accuracy 5cm 24

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data, 2012 7 29, GRS(Geodetic Reference System) 80, georeferencing RMSE(Root Mean Square Error) 0.8m. LiDAR Table 1. 40cm. Eq. (1) Green Green, NIR NIR(Near Infra-Red). Eq. (1) KOMPSAT-2 Green NIR NDWI. NDWI Fig. 2. 3. 3 차원해안선매핑 3 KOMPSAT-2 NDWI, ISODATA, 2, LiDAR DSM, DSM 3 6. 3 Fig. 1. Fig. 2. NDWI imagery generated from KOMPSAT-2 imagery Fig. 1. Flow chart for mapping 3D shorelines 3.1 NDWI 영상생성 NDWI Gao(1996), (Xu, 2006). NDWI, (McFeeters, 1996), Eq. (1) (McFeeters, 1996; Xu, 2006). (1) Fig. 2, NDWI,. 3.2 물과육지클러스터의분할 NDWI 2,. NDWI. (Jensen, 2004). (unsupervised classification) 25

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, 23-30, 2015 (supervised classification), (Jensen, 2004; Wharton and Turner, 1981). ISODATA NDWI,,. NDWI Fig. 3. Fig. 4. Generated 2D shorelines Fig. 3. Water and land clusters generated from the NDWI imagery 3.3 2 차원해안선추출 NDWI, 2. ArcGIS 10.1 Conversion Tools (polygon), (polyline) 2. 2 Fig. 4. 3.4 DSM 생성 LiDAR, 2 3. 2 3, LiDAR DSM. (MOLIT(Ministry of Land Infrastructure and Transport), 2010). LiDAR (Choung et al., 2012; Lee et al., 2004)., LiDAR DSM., LiDAR (1.5points/ ) DSM 1m. LiDAR DSM Fig. 5. 26

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data 3 Fig. 6. 4. 연구결과및논의 3 70 (checkpoints). 100m. LiDAR. 70 3 Appendix 1. 3 Fig. 7. Fig. 5. One section of DSM generated using LiDAR point cloud 3.5 3차원해안선구축 KOMPSAT-2 2 LiDAR DSM 3. Fig. 7. Checkpoints and reference shorelines for measuring the accuracies of the generated 3D shorelines Fig. 6. Constructed 3D shorelines 3 70 3. Table 2 3. 27

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, 23-30, 2015 Table 2. Statistical results showing the vertical and horizontal accuracies of the constructed 3D shorelines Horizontal accuracies (m) Vertical accuracies (m) Mean 0.90 0.10 Max 3.71 1.91 Standard Deviation 0.76 0.15 Table 2, 3 0.90m, 0.10m. Fig. 8(a), (beach coast) 3 NDWI,. Fig. 8(b), (bluff coast) 3 NDWI,. Fig. 8, 3,. 5. 결론 ( (a) (b) Fig. 8. Examples showing the 3D shorelines in the various coastal areas LiDAR ) 3., 2, LiDAR 2 LiDAR 3. KOMPSAT-2 LiDAR 3, 3 0.90m 0.10m,,. 3. 3 28

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data, 3. 3, 3.,.,. 감사의글 / (NRF-2014M1A3A3A03067386). References Choung, Y., Li, R., and Jo, M. (2013), Development of a vector-based method for coastal bluffline mapping using LiDAR data and a comparison study in the area of Lake Erie, Marine Geodesy, Vol. 36, No. 3, pp. 285-302. Choung, Y., Park, H., and Jo, M. (2012), A study on mapping 3-d river boundary using the spatial information datasets, Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 1, pp. 87-98.(in Korean with English abstract) Eom J., Choi, J., Ryu, J., and Won, J. (2010), Monitoring of shoreline change using satellite imagery and aerial photograph: for the Jukbyeon, Uljin, Korean Journal of Remote Sensing, Vol. 26, No. 5, pp. 571-580.(in Korean with English abstract) Gao, B. (1996), NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, Vol. 58, No. 3, pp. 257-266. Jensen, J. (2004), Introductory Digital Image Processing (3rd Edition), Prentice Hall, Upper Saddle River, NJ. Kim, G., Choi, S., Yook, W., and Song, Y. (2005), Coastline change detection using CORONA imagery, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 23, No. 4, pp. 419-426.(in Korean with English abstract) Kim, M., Sohn, H., Kim, S., and Jang, H. (2013), Automatic coastline extraction and change detection monitoring using Landsat imagery, Journal of the Korean Society for Geospatial Information System, Vol. 21, No, 4, pp.45-53. (in Korean with English abstract) Kim, I. and Song, D. (2012), Investigation of coastal erosion status in Geojin Port Area, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 30, No. 1, pp. 67-73.(in Korean with English abstract) Lee, I. (2012), Instaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery, Ph.D. dissertation, The Ohio State University, Columbus, OH, USA, 224p. Lee, J., and Kim, Y. (2007), Coastline change analysis using RTK-GPS and aerial photo, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 25, No. 3, pp. 191-198.(in Korean with English abstract) Lee, G., Koh, D., and Kim, W. (2004), Efficient construction of topographic data for flood mapping using digital map, Journal of the Korean Association of Geographic Information Studies, Vol. 7, No. 1, pp. 52-61.(in Korean with English abstract) Li, R., Di, K., and Ma. R. (2003), 3d shoreline extraction from IKONOS satellite imagery, Marine Geodesy, Vol. 26, No. (1-2), pp. 107-115. Liu, J., Li, R., Deshapnde, S., Niu, X., and Shih, T. (2009), Estimation of blufflines using topographic LiDAR data and orthoimages, PE&RS, Vol. 75, No. 1, pp. 69-79. Mcfeeters, S. (1996), The use of normalized difference water index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, Vol. 17, No. 7, pp. 1425-1432. MOLIT (2010), Guidebook for Management of Coastal Areas, Publication No. 11-1611000-001595-01, MOLIT, 29

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, 23-30, 2015 Seoul, 207p. Oh, K., Jung, H., and Lee, K. (2012), Comparison of image fusion methods to merge KOMPSAT-2 panchromatic and multispectral images, Korean Journal of Remote Sensing, Vol. 28, No. 1, pp. 39-54. Shalowitz, A. (1964), Shore and Sea Boundaries, Volume 2, National Oceanic and Atmospheric Administration, National Ocean Service, Washington, D.C., USA, 631p. Wharton, S. and Turner, B. (1981), ICAP: an interactive cluster analysis procedure for analyzing remotely sensed data, Remote Sensing of Environment, Vol. 11, pp. 279-293. Wie, K. and Jeong, J. (2006), Development of shoreline extraction algorithm using airborne LiDAR data, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 24, No. 2, pp. 209-215.(in Korean with English abstract) Xu, H. (2006), Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery, International Journal of Remote Sensing, Vol. 27, No. 14, pp. 3025-3033. Appendix 1. 3D coordinates of the 70 checkpoints Point ID X(m) Y(m) Z(m) 1 410301.2 407261.34 0.11 2 410356.55 407178.13 0.13 3 410417.58 407099.04 0.02 4 410476.22 407018.04-0.10 5 410538.77 406939.95-0.12 6 410601.03 406861.63-0.17 7 410665.13 406784.84-0.20 8 410780.18 406713.7-0.20 9 410852.52 406708.76-0.34 10 410954.45 406709.75 0.27 11 411020.07 406664.26-0.07 12 411001.06 406615.23-0.15 13 411034.6 406554.78-0.36 14 411037.94 406518.77-0.29 15 411038.5 406449.12-0.35 16 410980.53 406415-0.26 17 410960.33 406380.93 0.01 18 410915.03 406314.01-0.21 19 410932.58 406257.07-0.25 20 410882.03 406191.97-0.24 21 410804.78 406168.17-0.01 22 410725.86 406131.74 0.01 23 410696.21 406063.18-0.25 24 410717.23 405974.23-0.09 25 410790.95 405973.11-0.02 26 410807.57 406017.68-0.08 27 410803.07 405946-0.05 28 410776.06 405870.65-0.05 29 410733.34 405803.74-0.13 30 410771.02 405711.42-0.22 31 410820.7 405624.87-0.03 32 410878.57 405562.41-0.10 33 410895.47 405474.06-0.12 34 410941.79 405439.91 0.01 35 410950.04 405382.55-0.06 36 410945.34 405303.58-0.15 37 410999.34 405219.76-0.17 38 411055.78 405139.3-0.17 39 411097.18 405069.21-0.01 40 411166.43 404999.06-0.16 41 411209.05 404956.71 0.18 42 411284.22 404949.32 0.15 43 411295.98 404889.08 0.01 44 411383.72 404891.23-0.18 45 411439.82 404958.07 0.01 46 411459.57 404871.11-0.11 47 411497.51 404821.75-0.18 48 411469.95 404761.6-0.26 49 411522.06 404779.38-0.16 50 411491.16 404691.88-0.04 51 411458.75 404762.51-0.17 52 411457.62 404716.29-0.09 53 411421.24 404633.51-0.21 54 411409.45 404594.07-0.13 55 411337.52 404535.1-0.17 56 411294.46 404514.87-0.12 57 411280.5 404439.57-0.12 58 411274.2 404371.63-0.19 59 411211.12 404341.39-0.16 60 411225.73 404268.31-0.17 61 411313.18 404248.44-0.18 62 411336.7 404153.5-0.11 63 411308.28 404141.46-0.04 64 411275.86 404225.67-0.09 65 411201.42 404205.25-0.17 66 411189.79 404166.84 0.03 67 411123.63 404115.99-0.13 68 411081.76 404025.28-0.17 69 411065.82 403928.4-0.01 70 411096.41 403856.07 0.11 30