45(3)-15(유승곤).fm

Similar documents
43(6)-07.fm

국706.fm

국705.fm

한1009.recover.fm

44(3)-16.fm

06국305.fm

43(5)-11.fm

국9209.fm

국816.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

45(3)-07(박석주).fm

44(5)-10.fm

44(4)-06.fm

국9409.fm

43(4)-08.fm

42(3)-10.fm

국707.fm

10(3)-02(013).fm

12.077~081(A12_이종국).fm

10(3)-06(021).fm

44(5)-03.fm

06국306.fm

국9308.fm

44(2)-11.fm

44(2)-08.fm

14.fm

°ø±â¾Ð±â±â

44(2)-02.fm

DBPIA-NURIMEDIA

14.531~539(08-037).fm

( )국11110.fm

국8411.fm

44(1)-13.fm

untitled

44(2)-06.fm

국8410.fm

43(4)-11.fm

국906.fm

82-01.fm

Microsoft Word - KSR2012A172.doc

10(3)-10.fm

(1)-01(정용식).fm

PDF

45(2)-14.fm

( )-103.fm

(최준우).fm

43(4)-06.fm

19(1) 02.fm

Microsoft Word _kor.doc

16(3)-08.fm

10.063~070(B04_윤성식).fm

Microsoft Word - KSR2012A132.doc

45(2)-02(최대근).fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

10(1)-08.fm

PDF

source.pdf

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

untitled

Áß2±âÇØ(01~56)

( )39.fm

00....

Microsoft Word - KSR2013A320

45(1)-05.fm


fm

17(1)-06.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

44(2)-05.fm

587.eps

00-1CD....

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha

18(3)-10(33).fm

국8412.fm

121_중등RPM-1상_01해(01~10)ok

국817.fm

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Microsoft Word - KSR2013A299

05À±Á¸µµ

44(4)-08.fm

10(3)-09.fm

10 (10.1) (10.2),,

< B9DAC2F9B9E82E666D>

43(6)-13.fm

16(5)-03(56).fm

?

(72) 발명자 장종산 대전 중구 수침로 138, 103동 204호 (태평동, 유등 마을쌍용아파트) 박용기 대전 유성구 어은로 57, 119동 302호 (어은동, 한 빛아파트) 황동원 경기 안양시 만안구 양화로147번길 7, 102동 403호 (박달동, 박달동동원베네스

83.fm

04_이근원_21~27.hwp


45(2)-01(이철휘).fm

50(4)-10.fm

책임연구기관

제 9 도는 6제어항목의 세팅목표의 보기가 표시된 레이더 챠트(radar chart). 제 10 도는 제 6 도의 함수블럭(1C)에서 사용되는 각종 개성화 함수의 보기를 표시하는 테이블. 제 11a 도 제 11c 도까지는 각종 조건에 따라 제공되는 개성화함수의 변화의

특허청구의 범위 청구항 1 도로, 주차장, 고가교량, 빌딩, 하폐수처리장의 배수부를 통해 유입되는 오염수를 수질정화시스템에 공급하는 오염수유입부와; 상기 오염수유입부에 연결되어 공급된 오염수 중에 함유된 비중 큰 토사류 및 고형물류와 입 자가 큰 협잡물, 각종 쓰레기

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

44(2)-07.fm

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

Microsoft Word - KSR2012A009.doc

44-4대지.07이영희532~

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007, pp. 269-276 l lm n go o i kçmy Ç Çl 305-764 re o 220 (2006 11o 10p r, 2007 3o 19p }ˆ) The Optimum Stabilization Conditions of -containing Pitch Fiber Sang Yong Eom, Chang Ho Lee, Kwan Ho Park and Seung Kon Ryu Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea (Received 10 November 2006; accepted 19 March 2007) k o op r kr s p o l p o p l o rs, l v kr s l op m pqp p m. l p op kr e kr m, o p rp l p v. kr o ˆ pp 71~82 wt.% tp, l p l p o p p ˆ pp k. kr rl l p o p pp (C=O)m e (-COOH) p el p p p p ˆ e l o r l. ˆ op o p v l rr ƒ rp, t rq Œ rq p l op l pqm k r, ˆ r t p p k pl. srp 0.5 wt.% o o o 280 o Cl 3 hr r kr s p re pl. h Abstract -containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the increase caused by the catalytic activity of to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in concentration. In the considerations of the aggregation behaviors of the particles, the optimum stabilization conditions of 0.5 wt.% containing petroleum-based pitch fiber were suggested as 280 o C, 3 hr. Key words: Pitch Fiber, Stabilization, Carbonization, -containing CF, Catalytic Activator 1. vp p yp qn p l rqm r p, p rqm r p ns p pl p OH radical eˆ. ml OH radicalp qnl p o o p pp tl kp s t vp tp k eˆ p. ˆk p pn n, m rp lp p np } pp l To whom correspondence should be addressed. E-mail: skryu@cnu.ac.kr ep p. o vp pn o m p m p vl ~ eˆ l v tp, o ˆp rs o l p p ˆ (supercritical carbon dioxide)m o v (metal organic chemical vapor deposition)p n m [1-3]. o ˆ o(activated carbon fiber, ACF) rsl l kv n rp, Ryu [4]p o ƒ p np e m l o ˆ o rs mp rs ~rp l n., ˆ op rs rp v,, kr, 269

270 l nëp} Ë Ëod ˆ p p. v o l p ˆ r k op ˆ ov o l k 300 o Cl kr ( p, ) rp p p. p kr rp srp llv ˆ o p v rs nl q m p n tn r p k r p. ˆ rl kr rp ~ l p r kr o s m ˆ p e ˆ pr ˆ t pp o e ˆ p l o l [5]. kr rl k l l Fitzer [6] Mochida [7] p kr e dm, m ove p rr eˆ pl ˆ op s mp, Jung [8]p s pd op kr o p Œ ˆ ˆ qp svp o p te yp skin-core s v v m., kr re r (viscous flow)p v o l Park [9]p m p n ol Œeˆ q mp op r s Ž s ˆ lpl p m l p kr pp n p lv m. pm p p p p k r l pl p m m qe p n p m l e l rp kr p r np n p l. l Donnet [5]p r pn l, ms, p v, m p n mp kr rp eˆv m. Lee [10]p v v l p o op kr l p m mp e p 1/10 200 o C r m lpl ˆ pp 5~9 wt.% v mpp p. ˆ rl kr rl p s p l v l m l, p t pp ˆ p ˆ pp. ˆ pp 600 o C p l p lv CO, CO 2 H 2 O, p m p l pl ˆ pl H 2 m CH 4 p p k r [11]., Lee [12]p v v o op ˆ p kk nm Š e p p s m p p l v ˆ v, r vl p l p m. v vp l p op kr ˆ rl p, r rp o p oeˆ ˆ o rs[13-15] l pl p p o op k r ˆ rl p l p l erp. p p m l qnp ˆ eˆ pp, Table 1. Properties of naphtha cracking bottom (NCB) oil and reformed isotropic pitch Softening point ( o C) o45 o3 2007 6k Elemental analysis (wt.%) Molar ratio Solubility (wt.%) a C H N Diff. (C/H) BI QI k m p rp o ˆ o rse r kr s l l n., l o v l ƒ l l ~ p l o o rs, l s l kr eˆ p ˆ l rs ˆ op pqp p p f o ˆ o rse r kr s p rp p. s o ˆ op p p ˆ om, q. 2. 2-1. m e l n o o o Kim [16]p re l q o(naphtha cracking bottom oil) v l lp ƒ l, p ~ o l Ryu [4]p rk p titanium dioxide(, 99.5%, M.P 200 o C, Degussa) 0.25 0.5 wt.% np l ll. q om v p p Table 1l nk m. l r(softening point)p Mettler FP 800(USA)l p r mp, JIS K2425l p benzene insoluble(bi) ASTM D2318-81 l p quinoline insoluble(qi)p r m. 2-2. op kr 10 cm p r pr (k 3 g)p o r l 2 o C/minp kr m (250 o C, 280 o C, 310 o C) v dm ql o l ~ e (0, 0.5, 1, 2, 3 e )p l m. kr op ˆ v o l 10 o C/min 1,000 o C v dm p m l 30 ove mp, 900 o Cl 60 v s ˆ o rs m. kr, ˆ r r p r l p p mp, TG (TGA 2050, TA instruments)p ee m. o kr o l l o k k o o (EA 1110, CE instrument, Italia)p ee m, FT-IR (Travel IR, SensIR technologies)p kr e p m. t rq (SM-500, TOPCON)p op ˆ mp, o p Žˆ p r s o l Œ rq (JEM-2010, JEOL) XRD (D/MAX-2200, Japan)p ee m. s o ˆ op p ASAP 2010 (Micromeritics, USA)p pn l 77 Kl v m p r m. Density (g/cm 3 ) Aromaticity (Fa) NCB - 90.12 6.84 0.09 2.95 1.10 - - 1.068 0.82 Pitch 247.2 92.84 5.07 0.18 1.91 1.53 32.5 1.1 1.051 0.88 a BI, benzene insoluble; QI, quinoline insoluble

3. y 3-1. l m Table 2l np o op p re m. l m p p ƒ p r m k l [17, 18]p m v ƒ p l r k 40 o C r p m p, oel p 5~10 o C p m rpl. p ƒ p np m e p ~, p p v q n l o, r m, p l m p e l p o p v o m r m v r kvp k p. l l r m e lv lp 1,000 m p p m rp m. o op r kr s 271 l op m p(weight loss ratio)p Fig. 1l ˆ l. p op l,. v v op p p kv 800 m/min p l r p e l p p 40 wt.% p m. o op n, p op nm l op l p lp ƒvp k p. p np l p o ˆ o rs l [19, 20]l ˆ p p p v qn l r p v p. 3-2. go oq lm kr rt op v p pp p q n p v p rrp k t. Fig. 2 k r e l kr m m o Table 2. Characteristics of -containing pitch fibers content (wt.%) Elementary analysis (wt.%) C H O Atomic ratio (C/H) Average diameter (µm) Spinning temp. ( o C) Spinning speed (m/min) 0.00 92.84 5.07 0.56 1.53 29 283 ~ 286 950~1,000 0.25 92.66 4.83 0.78 1.60 41 288 ~ 292 675~725 0.50 92.58 4.77 0.88 1.62 48 294 ~ 298 600~650 Fig. 1. The thickness and weight loss ratio of circular shaped pitch fiber with respect to winding speed: (a) pure pitch, (b) 0.5 wt.% -containing pitch. Fig. 2. Weight increase of pitch fibers as a function of stabilization time at different (a) temperature without and (b) content, 280 o C. Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

272 l nëp} Ë Ëod l ˆ p. l kr m p v, p p lvp k pp e p l l v rr v p l. p tp ol n l pl l l, }} p p. Jung [8]p kr e p v o p pl v kk p ˆ k m p t ˆ o llv l p p. kr ol p m l. o kr op kr e p l v m, o p p v p p m. p p prl [8] m p o p k ˆ ˆ qp svp o p te yp skincore s v v p p Ž. v, kr e o l rp p, p p, p p. rp o p p p o p r p p. Fig. 3p kr rp o ˆ eˆ r l ˆ r pp e p. ˆ pp kr r p v m kr e p l, k r m p k. v, kr e p l p v ˆ pp kvp k p p p ˆ rp ˆ pp CO, CO 2, H 2 O p p. ˆ pp n, Lee [12]p e p 77~82 wt.%p l l 71~82 wt.% p p p. p kr m m e l p pv l p p p lv. o ˆ p kr e p l m. k m v p n, v p p n p r l ˆ pp p p m ˆ. p p p ˆ p, o l p k l [18, 21]p v l l p q qn m ˆ p pp ve k p Ž., o p p ˆ pp p p pp, kr e p ˆ pp p p v l p l p p Ž. o om kr op lkr p p s o l p p TG Fig. 4l ˆ l. p o 300 o C t e q, p l k p vp kr op n pl p qn p lkr p v p. kr o p k v m p m v l qn ˆ -ˆ pl t pp ppp k p. 3-3. go i n o op kr e l p kr m m o p Fig. 5l ˆ l. o v kp op n Table 2l re m p Fig. 3. Carbonization yields of stabilized fibers as a function of stabilization time at different (a) temperature without and (b) content, 280 o C. o45 o3 2007 6k Fig. 4. TGA curves of 0.5 wt.% -containning (a) pitch fiber and (b) stabilized fiber.

o op r kr s 273 Fig. 6. FT-IR spectra of (a) pitch fiber, (b) stabilized fiber, and (c) 0.5 wt.% -containing stabilized fiber. Fig. 5. Oxygen and hydrogen contents as a function of stabilization time at different (a) temperature without and (b) content, 280 o C. 0.6 wt.%, 5.1 wt.%mp, kr r l m p kr s l p pp 22.3 wt.% v v, 2.4 wt.% v m. p kr l p p p ˆ p el, qn p v pp p. p v p k kr e v m o p p. v, kr m p p p kp kp, o p r p p p kp k. v, ˆ p k kr m o p rp p p k. Lee [10]p l l p v m l v p v, p r e v v p n p. p f kr e v rp pp o ppp k p. rp tp l ˆp p l v kk o Fig. 6l om kr op FT-IR ˆ l. op n 3,030 cm -1 l s C-H e v 2,920 cm -1 l v s C-H e v l p p, kr o 1,700 cm -1, 1,600 cm -1, 1,260 cm -1 l C=O, C=C, C-O e v l p l. 0.5 wt.% o op kr l p mll p l. p kr rp k o (C=O), e (-COOH) qn l p ˆ pp pl l kr o, p pp veˆ l p ppp k pl. 3-4. l lm Š Fig. 7p t rq p ˆ op p p. o v kp op p kt o op l p p vp l. p p vp Ryu [4]p m v, l lv. l particle size(21 nm)l n ƒrpp k p, p kr ˆ rt p p ~ l p Ž. p vp pv p o l SEM-EDS(electron dispersive spectra) p m Fig. 7(d)l ˆ, o Žˆ p sq p pl. l Au el p e r vp o l Žp m p. l m p r op n kl llp e (burn-off) 60 wt.% p p op n l p k o ˆ o r~l p p lpp m p. Fig. 8l ˆ op v m p ˆ l. m p r rp Type-Ip p p p 20 Å p pp k p. m p p Table 3l r m. l m p p o p v v, r p p k p. p e p p t ˆ p v p p ~ l t p m p. Hisashi [20] 0.3 wt.% ~ lp np 23.3 Å p l, Shigeyuki [1]p 2.5 wt.% ~ 47.3 Åpp mp p o p v eˆ ˆ op j v eˆ p Ž., op rp l p n o o, ˆ, p, Hisashi Shigeyuki p ~ Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

274 l nëp} Ë Ëod Fig. 7. SEM photos of (a) non-containing CF, (b) 0.5 wt.% -containing CF, (c) 0.5 wt.% -containing ACF and (d) EDS of 0.5 wt.% -containing ACF. Fig. 8. Adsorption isotherms of N 2 on several content -containing ACFs. vrrp l. Fig. 9 XRD p l o p sq e p p. XRD l k p m p o o45 o3 2007 6k kr o, ˆ o ˆ ol (anatase) m p 2θ=25 o l p sq p p p., r r~rp rp p r p ˆ p p p Lu [22]p, o ˆ p XRD m n o. Ryu [4]p l l o ˆ o l k v kkpp m. Fig. 10p 0.5 wt.% o ˆ op Œ rq (TEM) vp op l pq v kpp k p. p o op k r rt p pq ~ l p Ž. o ˆ o s rp o vp o ˆ op rsl p. p r l sr l n. k l l Jung [23]p v p vl Ž m, Shigeyuki [1]p o o / ˆ ~ t p p o ˆ mv p l kv eq p pl l n.

o op r kr s 275 Table 3. Pore characteristics of ACFs activated at 900 o C for 1 h content (wt.%) S BET (m 2 /g) V T (cc/g) V micro (cc/g) V meso (cc/g) D p (Å) Burn-off (wt.%) 0.00 1,195 0.4255 0.4027 0.023 14.24 37.6 0.25 1,703 0.7375 0.6683 0.0692 17.32 58.4 0.50 1,742 0.7885 0.7022 0.0863 18.11 63.5 p p p l o op n o p p p l n r p r p m s o ˆ op n l kr s p sr n p. e p, o p 0.5 wt.% p n 280 o C, 3 hrp r kr s p re. p l q vl ep lp lp pl. y Fig. 9. XRD curves of 0.5 wt.% -containing (a) pitch fiber, (b) ACF and (c) (anatase). Fig. 10. TEM photos of 0.5 wt.% -containing ACF. 4. o p o kr, ˆ rp ~ o ˆ o rs mp, k m p p pl. (1) o p r m p ƒ p n k 5~10 o C kp, r k 300~400 m/min k r~rp p lvp k p. (2) kr m o p rp l p v, o op n l p kr r m o p p ˆ p pp. (3) o ˆ ol 20 Å p p p o p v l ˆ op v, op l pl p p p l. 1. Shigeyuki, K., Hisashi, T., Hajime, Y., Yoshio, Y., Noriko, Y. and Minoru, S., Synthesis of Activated Carbon from Organometallics/coal Composites, The 23th Conference on Carbon Materials, Chiba, Japan, Dec.(1996). 2. Narihito, T., Hiroshi, I., Norihiko, S. and Yoshiaki, F., Preparation of Titanium Dioxide/activated Carbon Composites Using Supercritical Carbon Dioxide, Carbon, 43(11), 2358-2365(2005). 3. Zhang, X., Zhou, M. and Lei, L., photocatalyst Deposition by MOCVD on Activated Carbon, Carbon, 44(2), 325-33(2006). 4. Ryu, S. K., Eom, S. Y., Yim, K. S. and Edie, D. D., Pore Characteristics of -Containing Activated Carbon Fibers, Korean Chem. Eng. Res., 42(3), 288-295(2004). 5. Donnet, J. B., Wang, T. K., Peng, J. C. M. and Rebouillat, S., Carbon Fibers, 3rd ed., Marcel Dekker Inc., New York, 1-83(1998). 6. Fitzer, E., Frohs, W. and Heine, M., Optimization of Stabilization and Carbonization Treatment of PAN Fibres and Structural Characterization of the Resulting Carbon Fibres, Carbon, 24(4), 387-395(1986). 7. Matsumoto, T. and Mochida, I., Oxygen Distribution in Oxidatively Stabilized Mesophase Pitch Fibre, Carbon, 31(1), 143-147 (1993). 8. Jung, D. H., Lee, Y. S. and Rhee, B. S., The Stabilization of Mesophase Pitch Based Carbon Fiber, HWAHAK KONGHAK, 29(1), 89-96(1991). 9. Park, Y. D., Mochida, I. and Matsumoto, T., Extractive Stabilization of Mesophase Pitch Fiber, Carbon, 26(3), 375-380(1988). 10. Lee, J. K., In, S. J., Lee, D. W., Rhee, B. S. and Ryu, S. K., Stabilization of the Isotropic Pitch Fibers Drived from Petroleum with Nitric Acid Vapor, HWAHAK KONGHAK, 28(6), 669-675 (1990). 11. Suzuki, T. and Hamaguchi, M., Proceedings, the 19th Biennial Conf. on Carbon, Penn. State University, USA, 166(1989). 12. Lee, J. K., In, S. J., Rhee, B. S. and Ryu, S. K., Carbonization of Isotropic Pitch Fiber Oxidized with Nitric Acid Vapor or Hot Air, HWAHAK KONGHAK, 29(4), 433-439(1991). Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

276 l nëp} Ë Ëod 13. Ryu, S. K., Kim, S. Y., Gallego, N. and Edie, D. D., Physical Properties of Silver-containing Pitch-based Activated Carbon Fibers, Carbon, 37(10), 1619-1625(1999). 14. Eom, S. Y., Cho, T. H., Cho, K. H. and Ryu, S. K., Pore Size Distribution of Metal(Ag, Cu, Co)-containing Activated Carbon Fibers, HWAHAK KONGHAK, 38(5), 591-596(2000). 15. Oya, A., Wakahara, T. and Yoshida, S., Preparation of Pitch-based Antibacterial Activated Carbon Fiber, Carbon, 31(8), 1243-1247 (1993). 16. Kim, M. C., Eom, S. Y., Ryu, S. K. and Edie, D. D., Reformation of Naphtha Cracking Bottom Oil for Preparation of Carbon Fiber Precursor Pitch, Korean Chem. Eng. Res., 43(6), 745-750(2005). 17. Cho, T. H., Kim, S. Y., Cho, K. H. and Ryu, S. K., Melt-spinning of Silver-containing Precursor Pitches, HWAHAK KONGHAK, 38(3), 338-342(2000). 18. Yim, K. S., Eom, S. Y., Ryu, S. K. and Edie, D. D., Microporosity and Behaviors of Metal(Ag,Cu,Co)-Containing Activated Carbon Fibers, HWAHAK KONGHAK, 41(4), 503-508(2003). 19. Lee, Y. S., Basova, Y. V., Edie, D. D., Reid, L. K., Newcombe, S. R. and Ryu, S. K., Preparation and Characterization of Trilobal Activated Carbon Fibers, Carbon, 41(13), 2573-2584(2003). 20. Hisashi, T., Shigeyuki, K., Hisashi, T., Makiko, I., Hajime, Y., Takayoshi, K. and Juji, M., Synthesis of Mesoporous ACF and Their Adsorption, The 23th Conference on Carbon Materials, Chiba, Japan, Dec.(1996). 21. Oya, A., Yoshida, S., Alcaniz-Monge, J. and Linares-Solano, A., Formation of Mesopores in Phenolic Resin-Derived Carbon Fiber by Catalytic Activation using Cobalt, Carbon, 33(8), 1085-1090(1995). 22. Lu, Y., Zhu, Z. P. and Liu, Z. Y., Effect of Catalyst on the Growth of Carbon Nanotubes Using a Detonation Approach, New carbon materials (China), 19(1), 1-6(2004). 23. Jung, S. C., Kim, S. C. and Seo, S. G., Photocatalytic Activity of the Film Grown by Chemical Vapor Deposition, HWAHAK KONGHAK, 39(4), 385-389(2001). o45 o3 2007 6k