Journal of Nutrition and Health (J Nutr Health) 2018; 51(1): 31 ~ 39 http://dx.doi.org/10.4163/jnh.2018.51.1.31 pissn 2288-3886 / eissn 2288-3959 Research Article 식품및음식의다량영양소구성성분에따른혈당반응연구 * 박미현 1 정상진 1 심재은 2 장성희 3 남기선 3 1 국민대학교식품영양학과, 2 대전대학교식품영양학과, 3 ( 주 ) 풀무원풀무원기술원 Effects of macronutrients in mixed meals on postprandial glycemic response* Park, Mi-Hyeon 1 Chung, Sang-Jin 1 Shim, Jae Eun 2 Jang, Sung-Hee 3 Nam, Ki-Sun 3 1 Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea 2 Department of Food and Nutrition, Daejeon University, Daejeon 34520, Korea 3 Corporate Technology Office, Pulmuone Co., Ltd. Seoul 06367, Korea ABSTRACT Purpose: The aim of study was to determine the effects of carbohydrate, fat, protein, and fiber contents on glycemic responses in a single food item or meal. Methods: Glycemic responses were measured in 30 healthy young adults (17 males and 13 females) with various test foods, including rice, egg whites, bean sprouts, olive oil, noodles, prune, broccoli, Korean dishes, Western dishes, and salad dishes, etc. Test foods were designed to contain various carbohydrate, fat, protein, and fiber contents in single or mixed foods or dishes. After 12 hours of fasting, participants consumed test foods, and the glycemic response was measured for a subsequent 120 min (0, 15, 30, 60, 90, and 120 min). Three hundred and fifty three glycemic responses from 62 foods were collected. The incremental area under the curve (AUC) was calculated for each test food for each subject to examine glycemic responses. Statistical analysis was conducted to identify which macronutrient (carbohydrate, fat, protein and fiber) affected the AUC using a mixed model. Results: Carbohydrates (β = 37.18, p < 0.0001) significantly increased while fat (β = -32.70, p = 0.0054) and fiber (β = -32.01, p = 0.0486) significantly reduced the glycemic response. Conclusion: It can be concluded that the glycemic response of a meal can be modified depending on the fat and fiber contents of ingredient foods, even though carbohydrate content is maintained. KEY WORDS: glucose response, area under the curve (AUC), mixed foods, glycemic index 서론 최근우리나라국민들의당뇨병, 심혈관질환등생활습관병이지속적으로증가하고있는추세이다. 1 이는지방함량이높은서구식식사의도입이주요원인으로알려져왔으나최근에는고탄수화물식사특히쌀밥같은정제된곡물식사에의해서도당뇨병, 심혈관질환, 비만등생활습관병의위험이높아진다는연구보고들이제기되고있다. 1,2. 한국인들은밥을주식으로하는식습관뿐만아니라탄수화물이주성분인부식과간식으로인해서양인들에비해섭취하고있는탄수화물섭취량이많은특징을가지고있어섭취하는탄수화물로부터유래된에너지가총섭취에너지의약 64% (2013년기준 ) 로알려져있고, 특히혈당 지수가높은탄수화물식품을많이섭취하고있는것으로보고되고있다. 3,4 혈당지수 (glycemic index, GI) 는 Jenkins 등에의해제안된것으로기준식품 ( 포도당, 흰빵등 ) 과동량의탄수화물을함유한특정식품의혈당반응정도를기준이되는식품의혈당반응정도를비교한값이다. 5,6 이에비해혈당부하지수 (glycemic load, GL) 는혈당지수에더하여식품의일반적인 1회섭취량즉, 당질의양을고려하여섭취후의혈당반응을예측하는값 ( 혈당지수 탄수화물함량 /1회섭취량 100) 이다. 7 혈당지수와혈당부하지수는탄수화물이포함된식사나식품이혈당에미치는영향력을알려주는지표로사용되고있다. 혈당지수와혈당부하지수가체중조절및당뇨병, 심혈관질환등생활습관병과관련이있다 Received: February 21, 2017 / Revised: April 5, 2017 / Accepted: January 24, 2018 * This research was supported by a grant from Pulmuone Co. To whom correspondence should be addressed. tel: +82-2-910-4777, e-mail: schung@kookmin.ac.kr 2018 The Korean Nutrition Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
32 / 식단혈당반응연구 는결과를여러연구가보고하고있어최근이에대한관심이높아지고있다. 8,9 Liu 등은혈당지수와심혈관질환사이에유의적인양의상관관계가있음을보고하였고, Denova-Gutierrez 등은혈당지수또는혈당부하지수가낮은식이를한경우보다높은식이를한경우심혈관질환위험이각각 1.56배, 2.64배높다고보고하였다. 10,11 또한 Schulze 등의연구에서는식이혈당지수수준이당뇨병발생을증가시키는식이요인으로밝혀졌으나식이혈당지수수준이높을지라도곡류를통한식이섬유소섭취량이많을경우당뇨병발병위험을낮추는것으로보고하였고, Barclay 등은혈당지수가높은식이는인슐린저항성증가와인슐린수요를증가시켜만성질환의발생을증가시키지만혈당지수가낮은식이는만성질환위험을줄이는데효과적이라고보고하고있어이에혈당지수를고려한식사에대한관심이매우높다. 12,13 혈당반응은식품에포함된당질의양에가장많은영향을받으나같은양의탄수화물식품을섭취하더라도대상자의인종, 성별및신체적특성, 식품의품종또는조리법등에따라다르게나타나고또한탄수화물종류, 다른영양소함량등에따라서도혈당반응이달라진다고보고되고있다. 2,6 인체내혈당반응은또한지방 단백질등의다량영양소함량, 이용가능한탄수화물, 식이섬유소등의영향을받아서로다른속도로소화, 흡수되기때문에식품에따라다르게나타나며특히단일식품이아닌다양한식품을함께섭취한혼합식사의영향은더크다. 1,3 그러나지금까지는이러한여러요인의혈당반응에미치는영향에관한연구가많이이루어지지않았고, 특히혼합식사후의혈당반응에대한자료가많지않은실정이다. 대부분의혈당반응연구는탄수화물을주성분으로하는단일식품을중심으로이루어져일반혼합식사의혈당반응을알기위해서는일일이측정해야하나이는쉽지않아일반적으로혼합식사의혈당반응은이를구성하는각식품의혈당지수와탄수화물함량으로대략적으로예측하는방법이종종사용되어져왔다. 14,15 국내외의연구들로부터구축한혈당지수값을이용하여성인을대상으로국민건강영양조사의 24시간회상법을통해개인별혈당지수와혈당부하지수를계산한결과의평균은각각 60.0, 182.5로보고된바미국인의 58, 128.3에비해월등히높다. 1 그러나 Hätönen 등은각혼합식사를할때마다일일이식사의혈당반응을측정하기에어렵다고하여혼합식사의혈당반응을예측하기위해이렇게각식품의혈당지수와탄수화물양과비율을사용하여계산하는경우실제혈당지수와잘맞지않는다고보고하고있으며다른영양소들이혈당에미치는영향을고려하지않는 것도그이유가될수있다고제시하고있다. 16 단일식품이아닌혼합식사의혈당반응에대한관심은높아지고있는데기존의혈당반응연구는식사중심보다는탄수화물급원식품에치중되어있어실제섭취시나타나는혼합식사의혈당반응자료가미비한데다이러한연구조차한국인을대상으로한연구는거의없어그에대한심도깊은연구가필요한실정이다. 이에본연구에서는한국사람들을대상으로단일식품또는다양한식품으로구성된혼합식사섭취후이를구성하는탄수화물, 지방, 단백질, 식이섬유소가혈당반응에미치는영향을알아보고이를통해식사의혈당반응을예측하고조절하기위한기초자료를제공하고자한다. 연구방법 연구대상및기간본연구는 2014년 3월부터 12월까지총 4차에걸쳐대상자를모집하여실험을진행하였다. 대학교내의각건물의게시판공고를통하여혈당조절에이상이없고, 당뇨병등관련질환이없는건강한 20대성인을모집하여남자 17명, 여자 13명이연구에참여하였다. 대상자로연구에참여하기전대상자는실험실을방문하여연구의전반적인설명을듣고자발적으로연구참여에동의하였고, 대상자의기초정보및혈당조절관련정보를위해당뇨병가족력여부, 현재약물복용여부, 식품알레르기여부, 실험가능한시간, 그밖에기타사항등이포함되어있는사전조사에참여하였다. 또한혈당조절능력장애여부 ( 내당력장애, 공복시포도당장애 ) 를확인하기위하여포도당 50 g과상온의물 200 ml을혼합하여만든포도당용액으로경구당부하검사 (oral glucose tolerance test, OGTT) 를실시하였다. 공복혈당 ( 정상기준 : < 110 mg/dl) 과식후 2시간후혈당 ( 정상기준 : < 140 mg/dl) 이기준을벗어난경우는혈당조절에이상이있다고판단하였다. 신체정보, 설문조사, 혈당조절이상여부등을바탕으로비정상공복혈당수치, 내당불내증이나당뇨병진단력등혈당조절에문제가있는자, 식품알레르기가있는자, 특이식사를섭취하거나약물을복용하고있는자, 기타담당연구자가대상자로부적합하다고판단되는경우연구대상자에서제외하였다. 3,17 본연구는국민대학교생명윤리심의위원회 (IRB) 의승인 ( 승인번호 : KMU- 201401-BR-007-01) 을받아진행되었다. 연구식품및음식연구식품및음식은매일 1 가지씩섭취하였고 4 차에걸쳐
Journal of Nutrition and Health (J Nutr Health) 2018; 51(1): 31 ~ 39 / 33 Table 1. Macronutrient component of test foods and dishes Test foods and dishes (n) 1) AUC Calorie (kcal) Carbohydrate Amounts of nutrients Fiber Fat Protein 1 Clam chowder soup (4) 830 170 13 (30) 0 11 (58) 5 (12) 2 Fish cake (4) 788 115 14 (51) 3 2 (16) 9 (33) 3 Black rice cake (4) 1,468 80 18 (90) 0 0 (0) 2 (10) 4 Pineapple pizza (4) 1,739 150 22 (59) 1 4 (24) 6 (16) 5 Shrimp oatmeal risotto & pickle (3) 1,468 194 22 (37) 5 13 (49) 8 (14) 6 Hot dog (4) 1,415 195 25 (51) 1 8 (37) 6 (12) 7 Chocolate cookie (4) 1,609 200 25 (50) 1 10 (45) 3 (6) 8 Mediterranean diet salad (3) 1,754 214 28 (45) 11 9 (33) 14 (22) 9 Couscous green salad (3) 1,029 295 30 (34) 6 18 (46) 17 (19) 10 Acorn jelly salad cold soup (4) 3,176 135 31 (91) 6 0 (0) 3 (9) 11 Cheese & sweet potato burrito (4) 1,911 255 33 (51) 1 9 (32) 11 (17) 12 Mushroom cream soup (4) 1,910 250 34 (53) 2 10 (35) 8 (12) 13 Ratatouille pasta (3) 1,059 274 37 (48) 7 11 (32) 16 (21) 14 Shrimp shiitake mushroom pasta (3) 1,864 308 38 (51) 2 9 (27) 16 (22) 15 Madeleine (4) 2,777 270 40 (60) 0 10 (34) 4 (6) 16 Chicken wrap, vegetable stick, coleslaw, potato & 2,355 316 40 (44) 4 15 (37) 17 (19) broccoli roast (3) 17 Eggplant cashew nut pilaf (3) 3,095 257 43 (61) 1 9 (29) 7 (10) 18 Cooked rice (8) 2,543 194 43 (89) 3 1 (5) 3 (6) 19 Cooked rice, seasame oil, olive oil (6) 2,216 284 43 (61) 3 11 (35) 3 (4) 20 Cooked rice, spicy grilled spanish mackerel, boiled 2,738 368 43 (38) 11 22 (44) 20 (18) burdock & garlic, walnut salad, heugimja dressing (3) 21 Cooked rice, water kimchi, spicy grilled sole, salad & 2,690 313 44 (49) 3 14 (35) 15 (17) garlic, mustard (3) 22 Cooked rice, egg (3) 2,810 281 45 (64) 3 1 (3) 23 (33) 23 Chicken boiled in spiced sauce & cooked rice (3) 2,868 297 45 (54) 3 8 (22) 20 (24) 24 Dried pollack rice soup (4) 4,538 250 47 (74) 1 3 (11) 10 (16) 25 Cookred rice, boiled tofu (3) 2,353 355 47 (46) 4 17 (37) 18 (17) 26 Chicken rice soup (4) 4,793 240 48 (79) 1 2 (7) 8 (13) 27 Chicken deluxe rice, vegetable stick, stir-fried garlic & 2,161 307 49 (64) 5 4 (12) 18 (24) shrimp, shives sauce (12) 28 Prune (12) 1,506 315 50 (64) 0 10 (29) 6 (8) 29 Black noodles (22) 3,218 200 50 (96) 5 0 (0) 2 (4) 30 Cooked rice (22) 3,637 231 51 (89) 4 1 (4) 4 (7) 31 Cooked rice, vegetables tick, sweet & sour tofu, 2,544 333 52 (56) 6 9 (22) 20 (22) stir-fried chicken breast in hot sauce, tofu ssamjang (3) 32 Cooked rice, egg, seasame oil, olive oil, bean sprouts 1,813 394 52 (50) 10 11 (24) 27 (26) (10) 33 Noodles (12) 3,593 375 53 (57) 0 15 (36) 7 (7) 34 Red bean porridge (4) 4,214 275 55 (81) 15 1 (3) 11 (16) 35 Dumpling (4) 3,053 443 57 (50) 1 20 (40) 11 (10) 36 Cooked rice, grilled short rib patties, cucumber kimchi, 2,464 356 57 (61) 5 8 (19) 18 (19) tofu ssamjang (12) 37 Cooked rice, chicken black bean sauce, sweet and 3,395 372 57 (57) 6 7 (16) 27 (27) sour tofu, cold jellyfish salad, mustard sauce (3) 38 Hot dog 2 piece (4) 2,955 520 58 (45) 2 24 (42) 18 (14) 39 Cooked rice, marinated grilled beef slices, cucumber kimchi, tofu ssamjang (3) 3,875 384 58 (55) 5 13 (28) 19 (18) 1) n = subjects number
34 / 식단혈당반응연구 Table 1. Macronutrient component of test foods and dishes (continued) Test foods and dishes (n) 1) 40 Cooked rice, baked cherry tomato, stir-fried shirmp & broccoli, salad (3) AUC Calorie (kcal) Carbohydrate Amounts of nutrients Fiber Fat Protein 3,318 356 59 (57) 7 15 (33) 10 (10) 41 Bibimbap, soybean paste stew, white kimchi, red chili 4,278 347 61 (67) 4 6 (15) 17 (19) paste (3) 42 Black noodles, bean sprouts (12) 3,707 350 61 (63) 10 10 (23) 13 (13) 43 Kastuobushi udon (4) 4,519 340 62 (85) 0 1 (3) 9 (12) 44 Black noodles, broccoli (10) 3,595 392 62 (60) 11 11 (24) 16 (16) 45 Cooked rice, bean sprouts (10) 3,571 252 62 (82) 14 1 (3) 11 (15) 46 Cooked rice, broccoli (10) 4,065 306 63 (77) 14 2 (6) 14 (17) 47 Cirsium setidens cooked rice (4) 4,101 350 66 (75) 2 6 (15) 8 (9) 48 Deep-fried shrimp udon (4) 4,457 360 68 (76) 2 5 (13) 10 (11) 49 Cooked rice (12) 3,456 310 69 (87) 5 2 (6) 6 (8) 50 Cooked rice, seasame oil, olive oil (12) 3,603 404 69 (69) 5 11 (25) 6 (6) 51 Spaghetti (4) 3,401 415 70 (68) 2 10 (22) 11 (11) 52 Cooked rice, egg (12) 3,784 385 71 (73) 1 8 (19) 8 (8) 53 Chwinamul cooked rice (4) 6,589 401 71 (71) 5 2 (4) 25 (25) 54 Tteok-bokki (4) 4,778 330 75 (90) 2 1 (3) 6 (7) 55 Cooked rice, bean sprouts (12) 3,388 337 76 (84) 12 2 (5) 10 (11) 56 Cooked rice, seasame oil, olive oil, bean sprouts (2) 3,603 427 76 (69) 12 11 (22) 10 (9) 57 Cooked rice, egg, seasame oil, olive oil, bean sprouts 2,351 514 78 (59) 12 11 (19) 30 (23) (12) 58 Cooked rice, fiber (12) 4,033 316 80 (88) 15 2 (5) 6 (7) 59 Cooked rice, prune, black noodles (12) 3,983 530 100 (73) 4 12 (20) 9 (7) 60 Cooked rice, black noodles (12) 4,641 544 100 (71) 4 14 (22) 10 (7) 61 Prune, black noodles (12) 3,499 515 100 (77) 5 10 (17) 8 (6) 62 Cooked rice, prune (12) 2,576 430 100 (87) 8 4 (8) 6 (5) 1) n = subjects number 총 62가지를제공하였다. 같은식품및음식을먹은경우의대상자수는 2~22명으로구성하였다. 연구식품및음식은흰쌀밥, 계란흰자, 숙주나물, 참기름 + 올리브오일, 짜장라면, 라면, 푸룬, 브로콜리, 분식류, 간식류, 면류, 비빔밥, 국밥, 한식, 양식, 샐러드등으로단독또는혼합으로섭취하여다양한탄수화물 (13 ~ 100g), 단백질 (2 ~ 30g), 지방 (0 ~ 24g), 식이섬유소 (0 ~ 15g) 를함유한식사구성이되도록계획하였다. 제공한식품및음식의구성성분은 Table 1과같다. 연구식품및음식명은우선탄수화물함량에따라오름차순으로정렬하였고, 동일탄수화물일경우에는식이섬유, 지방, 단백질함량순서로정렬한후번호를부여하였다. 단일식품을섭취하였을경우대표적인분류명으로표시하였고, 혼합식품의경우는혼합식사로표시하였다. 연구방법실험에참여하기전신체계측과바이오임피던스를이 용하여체성분분석 (Inbody720 Biospace Co Seoul Korea) 을수행하여신장과체중, 체지방을측정하였다. 모든대상자는실험전날 12시간동안공복후실험실에오전 08:00과 08:30 사이에도착하여 5분정도안정된상태로휴식을취한뒤공복혈당을측정하였다. 공복혈당측정후바로식품및음식을제공하여섭취하도록하였다. 식품및음식은매일 1가지씩제공하였고, 식사시간에따른오차를줄이기위하여 15분이내로섭취하도록하였다. 식사섭취후 15분, 30분, 45분, 90분, 120분에자가혈당측정기로 Fingertip capillary blood 방법을사용하여손가락끝에서미량의혈액을채혈하여혈당검사를시행하였다. 연구에참여하는 2시간동안섭취하는물은연구에영향을줄수있다고판단되어 100 ml 미만섭취하는것으로제한하였고, 화장실이외에자리에서움직이는것또한제한하였다. 혈당측정실험절차는 Brouns 등에서술하고있는방법
Journal of Nutrition and Health (J Nutr Health) 2018; 51(1): 31 ~ 39 / 35 을적용하였다. 17 혈당반응은 120분동안의혈당증가면적을측정하였으며혈당의증가면적은 FAO (Food and Agriculture Organization) 에서제시한방법을참고하였고, 17 Wolever & Jenkins의혈당곡선하면적 (area under the curve, AUC) 계산하는방법을사용하여공복혈당을기준으로하여증가한면적을계산하였다. 18 또한혈당을측정하기전자가혈당측정기와검사지의정확성을높이기위해바로잰의포도당대조용액을사용하여정상적으로작동하는지확인하였다. 통계처리연구를통하여수집한자료의통계처리는 SPSS 21.0과 SAS 9.3을이용하여분석하였다. 모든검정결과의유의수준은양측검정 p<0.05으로설정하여통계적으로유의하다고간주하였다. 대상자의특성분포를알기위하여 SPSS 프로그램을이용하여빈도분석및집단별평균분석을실시하였다. 각차수별로측정한대상자들의혈당반응인 AUC를종속변수로하고이에영향을미치는영양성분인자를살펴보기위해식품의탄수화물, 지방, 단백질, 식이섬유소함량을독립변수로하여자료를분석하였다. 식품들의혈당반응이모두다른대상자에게서측정된것이아니라동일인에서반복측정된경우도있고또한다른대상자에게서측정된것이있어자료가서로독립이아니라는사실을고려하여 SAS 프로그램의 Proc mixed를사용하여 Repeated measure mixed model로분석하였다. 결과 대상자특성본연구에참여한대상자의특성은 Table 2와같다. 참여한대상자는총 30 명으로남자는 17명 (56.7%), 여자는 13명 (43.3%) 으로남녀의성비율이비슷하였다. 나이의평균과표준편차는 24.15 ± 2.44세, 신장 168.40 ± 7.37 cm, 체중 63.34 ± 11.54 kg, BMI 22.20 ± 2.87 kg/m 2 이었다. 식품및음식섭취후혈당곡선하면적비교각식품및음식섭취후측정한혈당검사를바탕으로혈당곡선하면적 (AUC) 을계산한결과는 Fig. 1과같다. 식품및음식에함유된탄수화물함량이증가함에따라대체로혈당곡선하면적도증가하였다. 그러나동량의탄수화물임에도불구하고식품및음식의구성성분등에따라혈당곡선하면적에차이가있었다. 식이섬유소함량이 0 g, 지방함량이 10 g인 29번 ( 짜장라면 ) 식품보다지방함량이 0 g, 식이섬유소함량이 5 g 인 28번 ( 푸룬 ) 식품이탄수화물의함량이같음에도혈당곡선하면적이더낮았다. 32번 ( 밥, 흰자, 기름, 숙주나물 ) 음식, 31번 ( 밥, 야채스틱, 두부탕수, 닭가슴살라조기, 두부쌈장 ) 음식의경우식이섬유소, 지방, 단백질함량이높은 32번 ( 밥, 흰자, 기름, 숙주나물 ) 음식에서동량의탄수화물임에도불구하고혈당곡선하면적이낮았고, 52번 ( 밥, 계란 ) 음식, 53번 ( 취나물밥 ) 식품의경우에서는지방이 Table 2. Characteristics of subjects Total (n = 30) 1) Male (n = 17) 1) Female (n = 13) 1) Age (year) 24.15 ± 2.44 2) 25.08 ± 2.21 23.14 ± 2.32 Height (cm) 168.40 ± 7.37 173.40 ± 3.76 162.95 ± 6.42 Weight (kg) 63.34 ± 11.54 71.99 ± 7.81 53.91 ± 6.33 Body mass index (kg/m 2 ) 22.20 ± 2.87 23.93 ± 2.41 20.32 ± 2.05 1) n = number 2) mean ± SD Table 3. Multivariate regression analysis of area under the curve (AUC) of serum glucose with energy and macronutrients (carbohydrate, protein, fat, fiber) Effect Unstandardized coefficients (β) Model 1 Model 2 T value P value Unstandardized coefficients (β) T value P value Intercept 1,350.96 5.77 < 0.0001 *** 1,268.99 5.32 < 0.0001 *** Energy 8.21 1.77 0.0769 Carbohydrate 37.18 11.67 < 0.0001 *** 3.92 0.21 0.8373 Fat -32.70-2.80 0.0054 ** -95.36-2.57 0.0106 * Protein -12.93-1.39 0.1657-47.30-2.20 0.0283 * Fiber -32.01-1.98 0.0486 * -5.28-1.98 0.8111 * p < 0.05, ** p < 0.01, *** p < 0.001 Model 1: model with macronutrients only Model 2: model with energy + macronutrients
36 / 식단혈당반응연구 Fig 1. Increment of area under the curve (AUC) of serum glucose after a test meal (sorted by carbohydrate, fiber, fat and protein content, respectively) 높은 52번 ( 밥, 계란 ) 음식에서혈당곡선하면적이낮았다. 59번 ( 밥, 푸룬, 짜장라면 ) 음식, 60번 ( 밥, 짜장라면 ) 음식, 61번 ( 푸룬, 짜장라면 ) 음식, 62번 ( 밥, 푸룬 ) 음식의경우모두동량의탄수화물임에도불구하고혈당곡선하면적이각각달랐다. 탄수화물외식이섬유소, 지방, 단백질등의함량이혈당에영향을미쳐혈당곡선하면적이다양하게나타나는것을알수있었다. 이는식품및음식이함유하고있는영 양성분과혈당곡선하면적이관련있음을의미한다. 혈당곡선하면적과영양성분과의관련성각식품의영양성분 ( 탄수화물, 지방, 단백질, 식이섬유소 ) 이혈당반응곡선의혈당곡선하면적 (AUC) 에미치는영향에대한분석한결과는 Table 3과같다. 영양성분에따른회귀분석결과, 단백질을제외한탄수화물, 지방, 식이섬유소가혈당곡선하면적에유의적으로영향을주는성
Journal of Nutrition and Health (J Nutr Health) 2018; 51(1): 31 ~ 39 / 37 분으로확인되었다. 탄수화물 (β = 37.18, p < 0.0001) 의함량은혈당곡선하면적을유의적으로증가시켰고, 지방 (β = -32.70, p = 0.0054), 식이섬유소 (β = -32.01, p = 0.0486) 의함량은유의적으로혈당곡선하면적을감소시켰고단백질 (β = -12.93, p = 0.1657) 은크게영향을주지않았다. 같은영양소들을포함하여섭취열량을추가로보정한모델의경우탄수화물의영향은사라지고지방 (β = -95.36, p = 0.0106) 과단백질 (β = -47.30, p = 0.0283) 만혈당반응에영향을보이는것으로나타났다. 고찰 본연구에서는 20대건강한성인남녀를대상으로각식품의탄수화물, 지방, 단백질, 식이섬유소가혈당반응에미치는영향을알아보고자하였다. 다량영양소와식이섬유소를다양하게함유하고있는단일또는혼합식품을섭취한결과탄수화물함량이증가함에따라혈당곡선하면적도함께증가하는것으로나타났다. 이는혼합식사에서혈당반응의 90% 는탄수화물에의해설명이된다는 Wolever 등의연구와일치하였고탄수화물이포도당으로분해, 흡수되어혈액내에일정한수준의혈당으로유지되므로예측할수있는결과였다. 19 그러나동량또는비슷한함량의탄수화물에도불구하고탄수화물외식사에포함된다른영양성분 ( 단백질, 지방, 식이섬유소등 ) 에따라혈당곡선하면적에차이가있어혈당반응이다른다량영양소와식이섬유소에의해달라진다는것을확인할수있었다. Sun 등은건강한성인을대상으로흰쌀밥과기름, 단백질, 채소를단일또는혼합하여섭취시킨후혈액내당과인슐린을비교하였는데, 흰쌀밥과함께기름, 단백질, 채소를단일또는혼합으로섭취한경우가흰쌀밥만섭취한것에비해혈당반응이감소한것으로보고하였다. 2 또한 Hätönen 등은건강한성인을대상으로으깬감자와고지방, 고단백질 ( 닭가슴살 ), 샐러드를단독또는혼합하여섭취한후혈액내당과인슐린의변화를조사한결과혼합하여섭취한경우가으깬감자만섭취한경우보다유의적으로혈당반응이감소하였고, 혈당지수값이낮게나타났다고보고하고있다. 16 이는지방성분이혈당반응에영향을미쳐혈당곡선하면적이감소된본연구결과와유사하였다. 탄수화물단독또는지방과함께섭취한경우를비교한다른선행연구에서도탄수화물과지방을함께섭취한경우혈당반응이감소되었다고보고하고있으며그기작으로지방을탄수화물과함께섭취했을때위배출이느려지고, 크레아틴분비가증가되어혈당반응이낮아진다 고보고하였다. 2,20,21 이연구에서는단백질또한인슐린분비를증가시켜혈당곡선하면적을감소시키는것으로나타났고 Quek 등의연구에서도탄수화물, 고단백질을단독또는혼합하여섭취한식사의혈당반응을비교한결과단백질과탄수화물을함께섭취한식사에서식후혈당반응이유의적으로감소되었다고보고되어있어본연구에서도그관계를살펴본바단백질은혈당반응을감소시키는경향을보였으나통계적으로유의하지않았다. 24 Hätönen 는탄수화물음식, 단백질음식과더불어지방을섭취하였을때단백질의인슐린분비증가효과가감소된다고보고하고있다. Wolever 등의연구에서는탄수화물과단백질이모두혈당반응에영향을주지않는것으로나타났는데이는실험식이 14가지정도밖에없어이를분석하기위한충분한데이터가되지못해발생한것이아닌가생각된다. 또한지방과단백질이혈당반응에미치는영향은대상자가내당장애가있는사람의경우약화될수있고평상시지방식사를많이하는경우또한영향을받을수있다. 20,25 또한영양성분외에식품의물리적특성이나다른성분등이영향을미쳐그런결과가나오지않을수있다. 본연구에서단백질이영향을미치지않은이유는음식에지방이같이있는경우단백질의혈당반응이감소될수있으며이것이우리탄수화물, 지방, 단백질을모두포함한모델에서단백질영향이없어지는데기여했을가능성이있다. 지방을많이함유하는음식은단백질을함유하고있을가능성이높아그것이모델에서수학적으로지방만남고단백질은효과가없어지는결과를보였을가능성을야기했으리라생각한다. 이는섭취열량을보정했을때탄수화물의혈당반응에대한영향이없어진이유와유사하다고생각한다. 본연구에서열량보정을위해탄수화물과열량을같은모델에넣어분석한결과혈당에가장영향을미친다고알려져있는탄수화물의영향이사라짐을확인할수있었다. 본연구결과에서는단백질을제외한탄수화물, 지방, 식이섬유소가혈당곡선하면적에유의적으로영향을주었다. 탄수화물은혈당곡선하면적을증가시켰고, 지방과식이섬유소는혈당곡선하면적을유의적으로감소시키는것으로나타났다. 탄수화물을단독또는식이섬유소와함께섭취한후혈당농도를비교한연구에서도식이섬유소없이섭취한경우보다같은식사에식이섬유소를추가하였을때가식후혈당농도가유의적으로낮았다고보고되고있다. 22 식이섬유소중수용성식이섬유소는지방과마찬가지로위배출속도를느리게하고소화효소와탄수화물사이에장벽을만들면서혈당지수를낮추는기작이있다고알려져있다. 2,23 Hätönen 등은각식품의혈당지수와탄수화물비를이
38 / 식단혈당반응연구 용하여예측한혈당지수값과실제측정한혈당지수값을비교한연구에서추가된지방과단백질함유식품에의해혈당지수값이눈에띄게감소하여예측한값과실제측정한값이다르게나타났다고보고하고있고, Flint 등은혼합식사의혈당지수값은탄수화물함량의한성분이아닌지방, 단백질, 에너지함량과밀접한연관성이있다고보고하고있다. 16,26 본연구결과와함께종합해볼때혈당반응을예측시탄수화물함량과혈당지수만을고려하기보다는전체식사의지방, 단백질등을고려하여혈당반응을예측하는방법이좀더실제혈당반응과비슷할것이라생각된다. 대부분의다른연구에서는동량의탄수화물에지방, 단백질을추가하여몇가지제한된수의식품을비교하였으나, 본연구에서는탄수화물뿐만아니라단백질, 지방, 식이섬유소의함량이다양한총 62가지의식품의영양성분과혈당반응과의관련성분석하기위해회귀식을가지고관계를파악하려는시도했다는장점이있다. 그러나좀더많은식품의혈당반응결과를얻고자대상자숫자를적게, 또한동시에같은날이아닌여러날에실험을진행하며각식품마다같은대상자인원으로실험하지못하고각식품마다최소 2명, 최대 22명의혈당반응을통해결과를얻게되었다. 이에각식품의혈당반응들이같은대상자반응끼리는관계가있고다른대상자의반응과는독립이라는것을고려하여반복측정혼합모형을이용하여이를고려하여분석하였으나이로인한오차가있을것으로생각된다. 혈당부하량과달리본연구의혈액반응은각개인의포도당에의한상대적반응을고려하지않아개개인의혈당반응이그대로보여지는것이므로추후에는혈당지수와혈당부하량을이용한연구도필요할것으로생각된다. 건강한사람과혈당조절에이상이있는사람간식품의혈당반응은다르더라도유의적인차이는없다고보고되고있어 17 본연구는건강한성인만을대상자로실험을진행하였으나당뇨병과같이내당장애를가진사람에서도동일한영향을갖는지는추후연구로확인이이루어져야할것이다. 또한혈당반응은영양성분이외에식품의가공방법, 조리방법, 함께먹는음식, 익은정도, 저장기간, 탄수화물구조, 조리방법, 기타영양성분등다양한요인에의해서영향을받는다고알려져있어 3,5 단순히식품에포함된영양성분만으로혈당반응을예측하는데는한계가있을것이다. 그러나본연구는일일이식품별로혈당지수를측정하고탄수화물량만을고려하여혈당부하량을계산하여혼합식사의혈당반응을예측하는방법에서나아가섭취한식사의영양성분과혈당반응과의관련성을보여 주는연구를수행함으로써식품의영양성분중탄수화물함량만이아니라지방, 식이섬유소등이직접혈당반응에영향을미치는것을확인하였다는데의의가있다. 단일식품의혈당지수는혈당반응의조절이필요한사람들에게식품선택시중요한정보를제공하지만, 복합식품과혼합식사섭취가주를이루는현대사회에서이를일상생활에서용이하게활용하기위해서는식사를구성하는다른성분의영향에대한더많은연구가필요할것으로사료된다. 또한추후에는식사를구성하는성분외의다른요인들이혈당에미치는영향에관해서도지속적인연구가필요하다고생각된다. 요약 본연구에서는동일한끼니에섭취한각식품및음식의영양성분중에너지에기여하는다량영양소인탄수화물, 지방, 단백질과식이섬유소가혈당반응에어떠한영향을주는지를알아보고자하였다. 20대성인남녀를대상으로총 62가지의단일또는여러가지단일식품으로구성된혼합식사섭취후 2시간동안의혈당을측정하여혈당곡선하면적을계산하였다. 그결과일반적으로탄수화물함량이증가하면혈당곡선하면적이증가하였다. 그러나탄수화물이외에식품및음식에함유된지방, 식이섬유소등의함량도혈당곡선하면적에영향을준것을확인할수있었다. 탄수화물, 단백질, 지방, 식이섬유소의영양성분이혈당곡선하면적에미치는영향을분석한결과탄수화물 (β = 37.18, p < 0.0001) 은혈당곡선하면적을유의적으로증가시켰고, 지방 (β = -32.70, p = 0.0054), 식이섬유소 (β = -32.01, p = 0.0486) 는유의적으로감소시켰으며, 단백질 (β = -12.93, p = 0.1657) 은혈당반응에유의적인영향을미치지않았다. 본연구는식품및음식의영양성분중탄수화물함량만이아닌지방, 식이섬유소가서로상호작용하여혈당반응에영향을미치는것을확인하여의미가크다. References 1. Song S, Choi H, Lee S, Park JM, Kim BR, Paik HY, Song Y. Establishing a table of glycemic index values for common Korean foods and an evaluation of the dietary glycemic index among the Korean adult population. Korean J Nutr 2012; 45(1): 80-93. 2. Sun L, Ranawana DV, Leow MK, Henry CJ. Effect of chicken, fat and vegetable on glycaemia and insulinaemia to a white rice-based meal in healthy adults. Eur J Nutr 2014; 53(8): 1719-1726.
Journal of Nutrition and Health (J Nutr Health) 2018; 51(1): 31 ~ 39 / 39 3. Kim DY, Lee H, Choi EY, Lim H. Analysis and evaluation of glycemic indices and glycemic loads of frequently consumed carbohydrate-rich snacks according to variety and cooking method. J Korean Soc Food Sci Nutr 2015; 44(1): 14-23. 4. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014: Korea National Health and Nutrition Examination Survey (KNHANES VI-2). Cheongju: Korea Centers for Disease Control and Prevention; 2015. 5. Jenkins DJ, Wolever TM, Jenkins AL. Starchy foods and glycemic index. Diabetes Care 1988; 11(2): 149-159. 6. Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr 2008; 87(1): 269S-274S. 7. Kim IJ. Glycemic index revisited. Korean Diabetes J 2009; 33(4): 261-266. 8. Gaesser GA. Carbohydrate quantity and quality in relation to body mass index. J Am Diet Assoc 2007; 107(10): 1768-1780. 9. McKeown NM, Meigs JB, Liu S, Rogers G, Yoshida M, Saltzman E, Jacques PF. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. J Am Coll Nutr 2009; 28(2): 150-158. 10. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L, Hennekens CH, Manson JE. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71(6): 1455-1461. 11. Denova-Gutiérrez E, Huitrón-Bravo G, Talavera JO, Castañón S, Gallegos-Carrillo K, Flores Y, Salmerón J. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J Nutr Metab 2010; 2010: 170680. 12. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004; 80(2): 348-356. 13. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am J Clin Nutr 2008; 87(3): 627-637. 14. Du H, van der A DL, van Bakel MM, van der Kallen CJ, Blaak EE, van Greevenbroek MM, Jansen EH, Nijpels G, Stehouwer CD, Dekker JM, Feskens EJ. Glycemic index and glycemic load in relation to food and nutrient intake and metabolic risk factors in a Dutch population. Am J Clin Nutr 2008; 87(3): 655-661. 15. Murakami K, Sasaki S, Takahashi Y, Okubo H, Hirota N, Notsu A, Fukui M, Date C. Reproducibility and relative validity of dietary glycaemic index and load assessed with a selfadministered diet-history questionnaire in Japanese adults. Br J Nutr 2008; 99(3): 639-648. 16. Hätönen KA, Virtamo J, Eriksson JG, Sinkko HK, Sundvall JE, Valsta LM. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Br J Nutr 2011; 106(2): 248-253. 17. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. Glycaemic index methodology. Nutr Res Rev 2005; 18(1): 145-171. 18. Wolever TM, Jenkins DJ. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 1986; 43(1): 167-172. 19. Wolever TM, Yang M, Zeng XY, Atkinson F, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. Am J Clin Nutr 2006; 83(6): 1306-1312. 20. Gannon MC, Nuttall FQ, Westphal SA, Seaquist ER. The effect of fat and carbohydrate on plasma glucose, insulin, C-peptide, and triglycerides in normal male subjects. J Am Coll Nutr 1993; 12(1): 36-41. 21. Ercan N, Gannon MC, Nuttall FQ. Effect of added fat on the plasma glucose and insulin response to ingested potato given in various combinations as two meals in normal individuals. Diabetes Care 1994; 17(12): 1453-1459. 22. Munoz JM, Sandstead HH, Jacob RA, Johnson L, Mako ME. Effects of dietary fiber on glucose tolerance of normal men. Diabetes 1979; 28(5): 496-502. 23. Gatenby SJ, Ellis PR, Morgan LM, Judd PA. Effect of partially depolymerized guar gum on acute metabolic variables in patients with non-insulin-dependent diabetes. Diabet Med 1996; 13(4): 358-364. 24. Quek R, Bi X, Henry CJ. Impact of protein-rich meals on glycaemic response of rice. Br J Nutr 2016; 115(7): 1194-1201. 25. Cunningham KM, Daly J, Horowitz M, Read NW. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 1991; 32(5): 483-486. 26. Flint A, Møller BK, Raben A, Pedersen D, Tetens I, Holst JJ, Astrup A. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br J Nutr 2004; 91(6): 979-989.