ๆญฏ PDF

Similar documents
<C7A5C1F620BEE7BDC4>

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial๋ฐ beta๋ถ„ํฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค. k Bin(n, ฮธ):

untitled

R์„ ์ด์šฉํ•œ ํ…์ŠคํŠธ ๊ฐ์ •๋ถ„์„

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>

untitled

???? 1


์ •๋ณด๊ธฐ์ˆ ์‘์šฉํ•™ํšŒ ๋ฐœํ‘œ

๊ตฌ๋กœ๊ตฌ๋ฏผ์ฒด์œก์„ผํ„ฐ ์—ฌ์„ฑ์ „์šฉ ๊ธฐ๊ตฌํ•„๋ผํ…Œ์Šค ๊ฐ•์ขŒ ์‹ ์„ค ๊ตฌ๋กœ๊ตฌ์‹œ์„ค๊ด€๋ฆฌ๊ณต๋‹จ์€ ์‹ ๋„๋ฆผ์ƒํ™œ์ฒด์œก๊ด€์—์„œ 2014๋…„๋„๋ถ€ํ„ฐ ์‹œํ–‰ํ•˜์—ฌ ์ฃผ๋ฏผ์˜ ํฐ ํ˜ธ์‘์„ ์–ป๊ณ ์žˆ๋Š” ๊ธฐ๊ตฌํ•„๋ผ ํ…Œ์Šค ๊ฐ•์ขŒ๋ฅผ ์ผ์ž๋กœ ๊ตฌ๋กœ๊ตฌ๋ฏผ์ฒด์œก์„ผํ„ฐ์— ํ™•๋Œ€ ์‹œํ–‰ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ตฌ๋กœ๊ตฌ ๊ด€๋‚ด ๊ณ ๊ฐ๋“ค์˜ ๋‹ˆ์ฆˆ๋ฅผ ๋ฐ˜์˜ํ•œ ๊ธฐ

PowerPoint Presentation

๋ถ€๋ฌธ๋ณ„ ์—๋„ˆ์ง€์› ์ˆ˜์š”์˜ ๋ณ€๋™ํŠน์„ฑ ๋ฐ ๊ณตํ†ต๋ณ€๋™์— ๋ฏธ์น˜๋Š” ๊ฑฐ์‹œ์  ์š”์ธ๋“ค์˜ ์˜ํ–ฅ๋ ฅ ๋ถ„์„

KCC2011 ์šฐ์ˆ˜๋ฐœํ‘œ๋…ผ๋ฌธ ํœด๋จผ์˜คํ”ผ๋‹ˆ์–ธ์ž๋™๋ถ„๋ฅ˜์‹œ์Šคํ…œ๊ตฌํ˜„์„์œ„ํ•œ๋น„๊ฒฐ์ •์˜คํ”ผ๋‹ˆ์–ธํ˜•์šฉ์‚ฌ๊ตฌ๋ฌธ์—๋Œ€ํ•œ์—ฐ๊ตฌ 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion

cat_data3.PDF

csr11ํ˜ธ ์ตœ์ข…

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 


567๋Œ ํ•œ๊ธ€๋‚  ๊ธฐ๋… ๋ˆ„๊ตฌ๋‚˜ ์•Œ์•„์•ผ ํ•  ํ•œ๊ธ€ ์ด์•ผ๊ธฐ 10+9

๊ณตํœด์ผ ์ „๋ ฅ ์ˆ˜์š”์— ๊ด€ํ•œ ์‚ฐ์—…๋ณ„ ๋ถ„์„

Chapter4.hwp

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

Main Title

์‹œ์ž‘ํ•˜๊ธฐ ์‹œ์ž‘ํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์œผ๋ฉด ๋‹ค์Œ ์„ค๋ช…์— ๋”ฐ๋ผ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•œ๋‹ค. 1๋‹จ๊ณ„: ํ—ˆ๋ฝ๋ฐ›๊ธฐ ํด๋Ÿฝ์„ ๋– ๋‚˜๋Š” ํšŒ์›์—๊ฒŒ ์— ์‘ํ•ด ์ค„ ๊ฒƒ์ธ์ง€ ๋ฌผ์–ด๋ณธ๋‹ค. ์ด ์„ค๋ฌธ ์กฐ์‚ฌ๋Š” ํด๋Ÿฝ์˜ ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•ด ํ–ฅํ›„ ๊ฐ™์€ ์ด์œ ๋กœ ์ดํƒˆํ•˜๋Š” ํšŒ์›๋“ค์ด ์—†๋„๋ก ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋ฉฐ, ์‘๋‹ต ๋‚ด์šฉ์€ ๋Œ€์™ธ๋น„๋กœ ์ฒ˜

03-์ตœ์‹ ๋ฐ์ดํ„ฐ

Press Arbitration Commission 62


์œ„ํ•ด ์‚ฌ์šฉ๋œ ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ณ ์ž ํ•œ๋‹ค. ์‹œ๊ฐํ™”์™€ ์ž๋ฃŒ๊ตฌ์กฐ๋ฅผ ๋™์‹œ์— ํ™œ์šฉํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์ด ๊ฐ€์ง€๋Š” ํ•œ๊ณ„์™€ ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์‹œ๋„๋“ค์„ ์‚ดํŽด๋ด„์œผ๋กœ์„œ ์†Œ์…œ๋„คํŠธ์›Œํฌ์˜ ๋ถ„์„์„ ์œ„ํ•œ ์ ‘๊ทผ ๋ฐฉ์•ˆ์„ ๊ณ ์ฐฐํ•ด ๋ณด๊ณ ์ž ํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ์ธํ„ฐ๋„ท ์ปค๋ฎค๋‹ˆํ‹ฐ์ธ MLBPark ๊ฒŒ์‹œํŒ


๊น€๊ฒฝ์žฌ ์•ˆํ˜„์ฒ  ์ง€๋Šฅ์ •๋ณด์—ฐ๊ตฌ์ œ 17 ๊ถŒ์ œ 4 ํ˜ธ 2011 ๋…„ 12 ์›”

164

hwp

2016แ„‚แ…งแ†ซ แ„แ…ณแ„…แ…ฆแ†ซแ„ƒแ…ณ แ„Žแ…ขแ†จแ„†แ…ฉแ†จแ„Žแ…กแ„…แ…ณแ†ฏ แ„’แ…ชแ†ฏแ„‹แ…ญแ†ผแ„’แ…กแ†ซ แ„‰แ…ตแ„Œแ…กแ†ผ แ„‹แ…จแ„Žแ…ณแ†จ.numbers

ร€รผร€รšร‡รถยนรŒยฐรฆ-รรŸยฑรž

PowerPoint ํ”„๋ ˆ์  ํ…Œ์ด์…˜

cha4_ocw.hwp

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770>

์กฐ์‚ฌ์—ฐ๊ตฌ ๊ถŒ ํ˜ธ ์—ฐ๊ตฌ๋…ผ๋ฌธ ํ•œ๊ตญ๋…ธ๋™ํŒจ๋„์กฐ์‚ฌ์ž๋ฃŒ์˜๋ถ„์„์„์œ„ํ•œํŒจ๋„๊ฐ€์ค‘์น˜์‚ฐ์ถœ๋ฐ์‚ฌ์šฉ๋ฐฉ์•ˆ์‚ฌ๋ก€์—ฐ๊ตฌ A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

ยผยบยฟรธรรธ รƒรขยทร‚-1

์ œ 9 ๋„๋Š” 6์ œ์–ดํ•ญ๋ชฉ์˜ ์„ธํŒ…๋ชฉํ‘œ์˜ ๋ณด๊ธฐ๊ฐ€ ํ‘œ์‹œ๋œ ๋ ˆ์ด๋” ์ฑ ํŠธ(radar chart). ์ œ 10 ๋„๋Š” ์ œ 6 ๋„์˜ ํ•จ์ˆ˜๋ธ”๋Ÿญ(1C)์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๊ฐ์ข… ๊ฐœ์„ฑํ™” ํ•จ์ˆ˜์˜ ๋ณด๊ธฐ๋ฅผ ํ‘œ์‹œํ•˜๋Š” ํ…Œ์ด๋ธ”. ์ œ 11a ๋„ ์ œ 11c ๋„๊นŒ์ง€๋Š” ๊ฐ์ข… ์กฐ๊ฑด์— ๋”ฐ๋ผ ์ œ๊ณต๋˜๋Š” ๊ฐœ์„ฑํ™”ํ•จ์ˆ˜์˜ ๋ณ€ํ™”์˜

Microsoft PowerPoint - AC3.pptx

12(3) 10.fm

methods.hwp

001์ง€์‹๋ฐฑ์„œ_4๋„


<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

<30352DC0CCC7F6C8F B1B3292DBFACB1B8BCD2B1B3C1A42E687770>

๊ณต๊ธ‰์—…์ฒดํ‰๊ฐ€๋ฅผ ์œ„ํ•œ DEA ๋ชจํ˜•์˜ ํ™•์žฅ

I

07_ร€ยฑร€รฅร‡รตยฟรœ_0317

ๆญฏ์—‘์…€๋ชจ๋ธ๋ง

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

Software Requirrment Analysis๋ฅผ ์œ„ํ•œ ์ •๋ณด ๊ฒ€์ƒ‰ ๊ธฐ์ˆ ์˜ ์‘์šฉ

nonpara1.PDF

์—ฌํ–‰๊ธฐ

???? 1

DY1932(๋‹จ๋ฉด).hwp

Buy one get one with discount promotional strategy

878 Yu Kim, Dongjae Kim ์ง€๋ง‰ ์šฉ๋Ÿ‰์ˆ˜์ค€๊นŒ์ง€๋„ ๋ฉˆ์ถค ๊ทœ์น™์ด ๋งŒ์กฑ๋˜์ง€ ์•Š์•„ ์‹œํ–‰์ด ์ข…๋ฃŒ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ์—๋Š” MTD์˜ ์ถ”์ •์ด ๋ถˆ๊ฐ€ ๋Šฅํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ตœ๊ทผ ์ด SM๋ฐฉ๋ฒ•์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด O Quigley ๋“ฑ (1990)์ด ์ œ์•ˆํ•œ CRM(Continu

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

SS Term #3.doc

์œ ํ•œ์ฐจ๋ถ„๋ฒ•์„ ์ด์šฉํ•œ ๋‹ค์ค‘ ๊ธฐ์ดˆ์ž์‚ฐ ์ฃผ๊ฐ€์—ฐ๊ณ„์ฆ๊ถŒ ๊ฐ€๊ฒฉ๊ฒฐ์ •

ๅคง ้Ÿ“ ๆ”ฟ ๆฒป ๅญธ ๆœƒ ๅ ฑ ( ็ฌฌ 23่ผฏ 1 ่™Ÿ ) ๋œ์ง€ ์˜ค๋ž˜๋‹ค. ๊ตญํšŒ๊ฐ€ ๋ณธ์—ฐ์˜ ์ž„๋ฌด๋ฅผ ๋‹ค ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฌผ๋ก  ์˜ํšŒ๊ฐ€ ๊ตญ๋ฏผ๋“ค๋กœ๋ถ€ํ„ฐ ๋ถˆ์‹  ๋ฐ›๋Š” ๊ฒƒ์€ ์šฐ๋ฆฌ๋‚˜๋ผ๋งŒ์˜ ๋ฌธ์ œ๋Š” ์•„๋‹ˆ๋‹ค. ๋ฌธ์ œ๋Š” ๊ตญ๋ฏผ๋“ค์ด ๊ตญํšŒ์— ๋Œ€ํ•œ ๋ถˆ์‹ ์ด ๋„ˆ๋ฌด ํฌ๋ฉฐ ์—…๋ฌด ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ์— ๋Œ€ํ•ด์„œ๋„ ์•„์ฃผ ๋ถ€์ •์ ์œผ

44-4๋Œ€์ง€.07์ด์˜ํฌ532~

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.1-25 DOI: * An Analysis on Content

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp ๊ตญ์†Œ์  ๊ฐ•๋ ฅ ๋‹จ์œ„๊ทผ ๊ฒ€์ • ์ตœ๋ณด์Šน1), ์šฐ์ง„์šฑ2), ๋ฐ•์œ ์„ฑ3) ์š”์•ฝ ์‹œ๊ณ„์—ด ์ž๋ฃŒ๋ฅผ ๋ถ„์„ํ•  ๋•Œ, ์‹œ๊ณ„์—ด ์ž๋ฃŒ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”

B-05 Hierarchical Bayesian Model์„ ์ด์šฉํ•œ GCMs ์˜ ์ตœ์  Multi-Model Ensemble ๋ชจํ˜• ๊ตฌ์ถ•

ๆญฏ4์ฐจํ•™์ˆ ๋Œ€ํšŒ์›๊ณ (์žฅ์ง€์—ฐ).PDF

Slide 1

โ‘ ๊ตญ๋ฌธ์ง€๋ฆฌํ•™ํšŒ์ง€-์ฃผ์„ฑ์žฌ-OK

Data Industry White Paper

1. ์„œ ๋ก 

DBPIA-NURIMEDIA

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

untitled

00....

<313120B9DABFB5B1B82E687770>

๋ ˆ์ด์•„์›ƒ 1

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

06_ร€รŒร€รงรˆร†ยฟรœ0926

์ œ3์žฅ.ppt

04๊น€ํ˜ธ๊ฑธ(39~50)ok

์‚ฌํšŒํ†ต๊ณ„ํฌ๋Ÿผ

์‚ฐ์„ ์ƒ์˜ ์ง‘์ž…๋‹ˆ๋‹ค. ํ™˜์˜ํ•ด์š”

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<BAB8C7E8BFACB1B8BFF82D BFACC2F7BAB8B0EDBCAD2DB3BBC1F62834BFF92035C0CF292E687770>

ๆญฏTCํ”„๋กœ๊ทธ๋ž˜๋ฐ๋งค๋‰ด์–ผ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * Relationship Betw

ํ™•๋ฅ ๊ณผํ†ต๊ณ„ ๊ฐ•์˜์ž๋ฃŒ-1.hwp

ร€ยฑยฝร‚ยฟรญ รƒรขยทร‚

HCCP ํŒจ๋„ ์ด์Šˆ ๋ธŒ๋ฆฌํ”„ ๋ถ„์„ - ๊ธฐ์—…์˜ ์กฐ์ง๋ฌธํ™”๋ฅผ ๊ด€๊ณ„, ํ˜์‹ , ์œ„๊ณ„, ๊ทธ๋ฆฌ๊ณ  ์‹œ์žฅ๋ฌธํ™”๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ๊ฐ ์กฐ์ง ๋ฌธํ™”๊ฐ€ ๊ตฌ์„ฑ์›๋“ค์˜ ์ง๋ฌด๋งŒ์กฑ ๋ฐ ์กฐ์ง๋ชฐ์ž…์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๋ถ„์„ ํ•จ. ์ง๋ฌด๋งŒ์กฑ์€ ์ผ์˜ ๋‚ด์šฉ, ์ž„๊ธˆ, ๊ทธ๋ฆฌ๊ณ  ์ธ๊ฐ„๊ด€๊ณ„์— ๋Œ€ํ•œ ๋งŒ์กฑ์œผ๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•˜์˜€๊ณ ,

แ„€แ…ตแ†ทแ„€แ…ตแ„‚แ…กแ†ท_ATDC2016_160620_[แ„แ…ตแ„‚แ…ฉแ„แ…ณ].key

์ž‘์šฉ์†Œ์˜ ํ–‰๋ ฌํ‘œํ˜„๊ณผ ๊ทธ ์‘์šฉ

UML

2014 ์ž๊ฒฉ์—ฐ์ˆ˜ ์ œ1๊ธฐ_์ˆ˜์ •.hwp

SWยนรฉยผล-ยณยฏยฐยณร†รทร‡ร”ร‡ยฅรรถ2013

abstract.dvi

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

KD hwp

public key private key Encryption Algorithm Decryption Algorithm 1

Transcription:

2 2 3 3 2 5 2 5 22 6 23 8 3 Bayesian network 3 Bayesian robabilistic method 32 8 33 20 34 2 35 25 i

4 27 4 network toology 27 42 32 43 35 5 39 5 39 52 39 6 42 43 ii

morhological analysis word sense disambiguation morheme

word sense disambiguation word sense disambiguation 2 aanese to Korean machine translation word sense disambiguation collocation [ 96] [ 98] collocation attern 2

machine learning natural language rocessing corus morhological analysis word sense disambiguation [Gale 92] [Brown 9] 2 arallel corus 50 context 3 : m : n 40% 3

machine learning Bayesian network corus 2 3 Bayesian network 4 5 6 4

2 2 2 direct transfer ivot [ 94] arsing idiom 2 3 noun noun article verb unctuation 22 5

2 noun noun[ ] article[ ] verb unctuation 23 3 22 2 6

2 7 kara 2 + 3 4 5 3

2 kara 5 50% context kara 60% Bayesian network formalization 23 8

2 Bayesian network formalization kara + kara gendou chichi kangaeru kuru kuru comlement tegami + ga + V N N2 2 discrete value comlement + 9

2 V N N2 2 0

3 Bayesian network 3 Bayesian network Bayesian network Heckerman 95 deendency causal relationshi causality robabilistic semantics rior knowledge data overfitting 3 Bayesian robabilistic method Bayesian robabilistic method N N heads tails hysical robability N

3 Bayesian network N uncertainty N Θ θ θ arameter Θ uncertainty robability density function θ ξ ξ X l l l N D X x X N x N rior robability distribution θ ξ x N D ξ D Θ θ ξ D θ ξ θ D ξ = D ξ D ξ = D θ ξ θ ξ dθ 2 D θ ξ Θ 2

3 Bayesian network D θ θ h t θ ξ θ θ θ D ξ = 3 D ξ h t D θ ξ θ D ξ rior robability distribution osterior robability distribution h t binomial samling sufficient statistics Θ N X N + = heads D ξ = X N + = = heads θ ξ θ D ξ dθ θ θ D ξ dθ E θ D ξ θ 4 Θ rior robability distribution beta distribution θ ξ Beta Γ α α h α t = θ αh αt Γ α h Γ αt θ θ 5 α h α t hyerarameter α α h α t Γ Γ x xγ x Γ 3

3 Bayesian network osterior robability distribution Heckerman 95 Γ α + N θ D ξ = Γ α + h Γ α h t θ + t θ = Beta θ α + h α α h + h α t + t + h t t 6 θ α h θbeta θ α α dθ = 7 α h t N α h + h X N + = heads Dξ = 8 α + N rior robability distribution θ ξ imagined future data equivalent samles Heckerman 95 beta rior robability θ ξ = 04Beta20 + 04Beta20 + 02Beta22 9 04 4

3 Bayesian network 02 hidden variable binomial distribution x s ξ = f x s 0 fxs s likelihood function X Gaussian hysical robability distribution µ v x s ξ = 2πv / 2 e 2 x µ / 2v s = {µ v} rior Bayes theorem osterior 5

3 Bayesian network D s ξ s ξ s D ξ = 2 D ξ s arameter S xn D ξ xn + s ξ s D ξ + = ds 3 closed form binomial multinomial normal Gamma Poisson multinomial samling X discrete r x x likelihood function k X = x s ξ = s k = r k 4 s s s arameter s s i binomial samling hysical robability D X x X N x N 6

3 Bayesian network sufficient statisticsn N r N i D x i multinomial samling conjugate rior robability Dirichlet distribution s ξ = Dir s α α r Γ α r Γ α k = k k = r s αk k 5 α α α r α k k r osterior robability distribution s D ξ = Dir s α + N α + N r r 6 imagined future data equivalent samles Dirichlet distribution conjugate rior robability distribution D k αk + N k X N + = x D ξ = sk Dir s α + N α r + N r ds = 7 α + N quantity marginal likelihood evidence D ξ 7

3 Bayesian network Γ α D ξ = Γ α + N r k N k k = Γ αk Γ α + 8 ξ ξ 32 Bayesian network joint robability distribution X X X n X conditional indeendence assertion S 2 local robability distribution P S directed acyclic grah S X X i Pa i S X i S S X joint robability distribution 8

3 Bayesian network n x = Pa i= x i i 9 P Π x S P hysical robability Bayesian robability rior knowledge Heckerman f a s g j 9

3 Bayesian network 20 33 Bayesian network X joint robability distribution f = = ' ' f j g s a f j g s a f j g s a j g s a f j g s a f 20 discrete variable = = ' ' ' ' ' ' ' ' f f s a f j f g f s a f j f g f s a f j f g s a f s a f j f g s a f j g s a f 2 2 a s a s f

3 Bayesian network conditional indeendence assertion Howard Shachter Lauritzen ensen conditional indeendence assertion NP-hard Cooer aroximate inference NP-hard undirected cycle toology roblem domain 34 Bayesian network local robability distribution X hysical joint robability distribution h n x z S = x a z S s i= i i i h 22 2

3 Bayesian network z i x i a i z i S h arameter z s z z n S h hysical joint robability distribution S hyothesis random samle D x x N D x l l case z s uncertainty Z s rior robability density function z s S h D z s D S h z i x i a i z i S h local distribution function robabilistic classification regression conditional indeendence assertion unrestricted multinomial distribution linear regression with Gaussian noise generalized linear regression unrestricted multinomial distribution X i X r i discrete value Pa i configuration multinomial distribution 22

3 Bayesian network x i k i a z Pa i = z ijk j i a z S i qi i ri k= 2 h i qi j= = z q = ijk > 0 X Pa i i r Pa i i 23 arameter z ij = zij2 zijr i 24 unrestricted Pa i osterior robability distribution z s D S h closed form D missing data D comlete z ij h i z S = z s n q i= j= ij S h 25 [Siegelhalter and Lauritzen 90] arameter indeendence 23

3 Bayesian network h i z D S = z s n q i= j= ij D S h 26 z ij z ij rior robability distribution Dirz ij α ij α ijri osterior distribution h ij ij ij ij z D S = Dir z α + N α + N ijr i ijri 27 case configuration x N+ D S h z s x h D S E h D S z z s N + = n i= ijk 28 D n n h h h N + D S = zijk z s D S dz s = zijk zij D S i= i= x dz ij 29 7 24

3 Bayesian network x h N + D S = N i= α α ijk ij + N + N ijk ij 30 35 2 4 V N N2 2 5 5 causal relationshi rior knowledge corus random samle local robability distribution udate N discrete variable 25

3 Bayesian network inference 26

4 4 4 network toology causal relationshi fitness criterion searching method 5 2 27

4 N: : N2: 2: N2 V: V 2 2 N N2 2 28

4 2 2 6 ga karadeni madewo discrete variable 2 5 4 2 29

4 00 7 900 4000 semantic class natural language rocessing semantic Wordnet [ 96] [ 82] [ 98] [ 98] 22 2 3 gakkou kaisha P 30

4 yoru toki T hohoemi ai AC koe kanji AF kangae rigai AR en metoru AU juuji sikaku AT hou kisoku AI katana enitsu CI idou setsyoku AP itami nemuri AB ame kaze AN gakumei densai ASP kami mokuzai CMT kuruma jikatetsu CT terebi razio CMA tegami denwa ACM satyou souri CS okane taiya CC me mimi kutsi CH eigou kankokugou AL hazimari AS ketsumatsu kureru G iu hanasu S iku kuru D kiku ukeru R sinsetsuda B daisetsuda REL kinzuru L kazaru C siru kangaeru K kaeru kiru TR sinu neru HC 3

4 nakasareru yorokobu kanasii 2 PA F V 3 N N2 22 cycle unrestricted multinomial distribution 3 42 V 2 N N2 corus incomlete data comlete data 3 32

4 V hazimaru TR N zi T 2 N2 incomlete case - Monte-Carlo Gibbs samling Gibbs samling X = {X X n } joint robability distribution x Gibbs samler x fx X assign 2 X i unassign n 3 X i fx 4 2 3 fx fx E x fx Gibbs samler irreducible X configuration configuration 33

4 rior robability distribution equivalent samle size 5 equivalent samles [Heckerman 95] Gibbs samling corus incomlete data D = {y y N } y l incomlete case D c D X il h h x' il Dc \ xil S x' il Dc \ xil S = 3 h x" D \ x S x" il il c il D c \ x il x il X il 8 h D S = n qi r Γ αij i Γ αijk + Nijk i= j= Γ αij + Nij k = Γ αijk 32 i j 34

4 configuration k comlete data D c 25 27 osterior robability density z s D c S h 000 43 4 kara de V 2 N2 N V suteru D wo N gomi CC Nmado CC V N V iu S 35

4 N tachiba CS N N N tokyo P made N kyoto P N Ngatsu T 4 2 N2 V N 36

4 37 2 2 N V V N V N V N V N V N V N V N N V argmax argmax argmax argmax argmax argmax = = = = = = 33 2 3 2 N = = = = = = V N N N N N N N 2 2 2 2 2 2 2 argmax argmax argmax argmax argmax argmax 34 4

4 = argmax N = argmax N 35 context 38

5 5 5 7000 rerocessing case V N 2 N2 kara de 723 2367 52 4 kara de 80% 3 % kara 44 28 889% + 73 56 902% 44 39 886% 27 89 87% 45 27 876% 723 639 884% 39

5 de 996 907 9% 203 089 905% 68 34 798% 2367 230 899% 3 kara 723 44 73 44 27 45 28 56 39 89 27 884% de 996 203 68 907 089 34 889% 4 kara de 300% 508% 598% 703% 884% 899% 4 kara de 40

5 4

6 6 Bayesian network corus context corus arsing 00% word sense disambiguation 42

[ 94] 994 [ 97] 24 284-296 997 98 270-280 998 96 Wordnet 996 [ 98] 998 96 996 [ 95] 995 [ 98] 998 [ 9] Technical Reort No 900 99 [ 82] : 982 [ 90] : 990 [Allen 95] Allen Natural Language Understanding Benjamin Cummings 995 [Brown 9] Brown P F Pietra S A D Pietra V D and Mercer R L Word-sense disambiguation using statistical method In Proceedings of Association for Comutational Linguistics ACL 264-270 99 [Charniak 9] Charniak E Bayesian Networks without Tears AI Magazine Vol 2 No 4 50-63 99 [Charniak 94] Charniak E Statistical Language Learning Cambridge MA:MIT Press 994 [Cherkassky 98] Cherkassky V and Mulier F LEARNING FROM DATA Concets Theory and Methods ohn Wiley & Sons 998 [Cooer 90] Cooer G Comutational comlexity of robabilistic inference using Bayesian belief networks Research note Artificial Intelligence Vol 42 393-405 990 [Gale 92] Gale W A Church K W and Yarowsky D A A method for disambiguating word senses in a large corus Comuters and the Humanities 992 43

[Heckerman 95] Heckerman D A Tutorial on Learning With Bayesian Networks Technical Reort MSR-TR-95-06 Microsoft Research Redmond WA 995 [Howard 8] Howard R and Matheson Influence diagrams In Howard R and Matheson editors Readings on the Princiles and Alications of Decision Analysis Vol 2 72-762 Strategic Decisions Grous Menlo Park CA 98 [ensen 90] ensen F Lauritzen S and Olsen K Bayesian udating in recursive grahical models by local comutations Comutational Statistics Quarterly Vol 4 269-282 990 [ensen 96] ensen F An Introduction to Bayesian Networks Sringer 996 [Lauritzen 88] Lauritzen S and Siegelhalter D Local comutation with robabilities on grahical structures and their alication to exert systems Royal Statistical Society B Vol 50 57-224 988 [Mitchell 97] Mitchell T M MACHINE LEARNING McGraw-Hill 997 [Pearl 87] Pearl Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference San Mateo CA:Morgan Kaufmann 987 [Shachter 88] Shachter R Probabilistic inference and influence diagrams Oerations Research Vol 36 589-604 988 [Siegelhalter and Lauritzen 90] Siegelhalter D and Lauritzen S Sequential udating of conditional robabilities on directed grahical structure Networks Vol 20 579-605990 44