ª Œª Œ 30ƒ 1A Á œ pp. 45 ~ 52 ª w w x Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Promine

Similar documents
14.531~539(08-037).fm

69-1(p.1-27).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

Microsoft Word - KSR2013A320

< DC1A4C3A5B5BFC7E22E666D>

10(3)-09.fm

17.393~400(11-033).fm

605.fm

27(5A)-07(5806).fm

16(1)-3(국문)(p.40-45).fm

untitled

304.fm

10(3)-12.fm

15.101~109(174-하천방재).fm

<30332DB9E8B0E6BCAE2E666D>

12.077~081(A12_이종국).fm

07.051~058(345).fm

26(3D)-17.fm

10(3)-10.fm

82-01.fm

16(2)-7(p ).fm

27(5A)-15(5868).fm

untitled

untitled

4.fm

50(5)-07.fm

11(5)-12(09-10)p fm

untitled

Microsoft Word - KSR2013A299

50(1)-09.fm

12(4) 10.fm

19(1) 02.fm

416.fm

06.177~184(10-079).fm

14(2) 02.fm

15.529~536(11-039).fm

fm

9(3)-4(p ).fm

23(2) 71.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

fm

202.fm

05.581~590(11-025).fm

27(5A)-13(5735).fm

10.063~070(B04_윤성식).fm

Microsoft Word - KSR2012A021.doc

fm

12(2)-04.fm

32(4B)-04(7455).fm

DBPIA-NURIMEDIA

10(3)-02.fm

12(3) 10.fm

3.fm

51(2)-09.fm

10(1)-08.fm

14(4) 09.fm

49(6)-06.fm

<312D303128C1B6BAB4BFC1292E666D>

82.fm

<30312DC0CCC7E2B9FC2E666D>

201.fm

27(3D)-07.fm

3-15(3)-05(이주희).fm

8(2)-4(p ).fm

7(4)-07.fm

25(3c)-03.fm

15(2)-07.fm

50(4)-10.fm

< C0E5BFC1C0E72E666D>

143.fm

31(3B)-07(7055).fm

14.091~100(328-하천방재).fm

14.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

23(4) 06.fm

17(2)-00(268).fm

13(1)-04.fm

fm

69-1(p.1-27).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

50(6)-04.fm

07.045~051(D04_신상욱).fm

10(3)-11.fm

27(4C)-07.fm

Microsoft Word - KSR2012A038.doc

85.fm

11(4)-03(김태림).fm

한 fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

27(6A)-10(5570).fm

49(6)-10.fm

( )-53.fm

(163번 이희수).fm

415.fm

( )-7.fm

( )-113.fm

fm

fm

16(4)-05.fm

29(4)-07(김봉채).fm

Transcription:

30ƒ 1A Á 010 1œ pp. 45 ~ 5 ª w w x Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence ká v Jeon, Jun-TalÁSong, Jae-Pil Abstract This study pointed on the dynamic impact of AGTG(Automated Guide-way Transit) bridge, due to concrete rail prominence. An experiment was done with 30Gm P.S.C. bridge in AGT test line in Kyungsan. An artificial prominence with 10 mm hight, was installed at the mid span of concrete rail. And computer simulation was executed for the artificial prominence. As an experiment result, in the case of with prominence, bridge acceleration responses are increased 50% at the speed range of 0 km/h~60gkm/h, and bridge displacement responses increased slightly. With these results, the prominence of concrete rail can be induce excess impact and vibration. And the computer program simulated much the same as experiments. So this program can be used for AGT bridge design and formulate the standard of concrete rail management. Keywords : bridge, railway prominence, LRT(Light Railway Train), AGT(Automated Guide-way Transit), D.I.F.(Dynamic Increment Factor), dynamic interaction AGT l gj p w w e w q wš x 30 m P.S.C. 10 mm ew ƒw x mw y w. ful v x w v ƒ sƒw. x gj p w ƒ w ƒw ù ƒ 5km/h w s³ 345%, 0 km/h l 60 km/h¾ s³ 50%ƒ ƒw gj p w ƒ w w ü w e y w. AGT y w v w ƒ w ww x w ƒ w. z AGT AGT gj p w w» z y w y w. w :,, w, ü, ƒ, y 1. ü œ w» y w» w l wš x w mw l w w, w w gj p w x» k y w š z œ w. ü (AGT, Automated Guideway Transit) l š w gj p s (CRCP, Continuously Reinforced Concrete Pavement) w. gj p s gj p s w ¼ w š y k ù gj p w ³ x w œ.(û, 004) AGT l gj p w p s w y w ³ w». w ƒw ww w e q. AGT w ƒ w ƒw x w w z Á wœ w m y (E-mail : jtjeon@inhatc.ac.kr) z Á Á lj( ) BMS (E-mail : jpsong@suretech.co.kr) 30ƒ 1A 010 1œ 45

mw. x x 30 m P.S.C. ww, w BADIA( v, 00) w ww.. gj p w w x.1 x.1.1 x ew x P.S.C x w. x 30 m t (w», 001) w œ P.S.C. x gj p š 5m 6 ƒ. 5 cm gj p w d AGT w w ü. x PSC t š, t ùkü. w ¼ 300 mm, s 100 mm š Ì 10 mm q w w ewš AGT w g, m w. gj p q xk wù x ƒw w. q Ì 10 mm q w ew. ƒ q t 1. x PSC (m) 30 (ea) k (MPa) 5,500 (m ) 0.6953 ¼ (kn/m) 17.38 p (m 4 ) 0.3385 p (m 4 ) 0.0080 k (MPa) 5,500 (m ) 0.7080 ¼ (kn/m) 17.71 p (m 4 ) 0.01848 p (m 4 ) 0.0339 k (MPa) 5,500 Ì (m) 0.50 ¼ (kn/m) 30.66 3. x AGT ( : mm).1. x x š w AGT w œ 156.96 kn(16tf), 186.39 kn(19 tf) (sw w, 1999). x œ 156.96 kn xw. 3 x ùkü. 1. x ( :mm). w. x x x x ù ww x ww x z d w, x AGT ( 5 km/h), 0 km/h, 40 km/h š 60 km/h ƒƒ z ww. gj p w w mwš w 10 mm ew,, 0 km/h, 40 km/h š 60 km/ h w w x ƒƒ z ww. x AGT ƒ w l ù w w xw» w w. d d w d 100 Hz w š 30 Hz Low-pass filter w ü e š w» w. x w š w 46

q i l. P E w w w w 0. 6 1 y AGT w - y l, e š w ƒ ƒ w ( v, ½xy, ù, 006). T 1 = -- D TM b D nv m v11 z v11 v = 1 m v1 y v11 I vx11 θ vx11 I vy11 θ vy11 4. e ( : mm) I vz11 θ vz11 j = 1 m z vj vj I θ vxj vxj I θ vzj vzj 1 U -- e D T nv K b D k R = vi1j k vi1j ( R vij z vij Ψ D v0ij vxij v = 1 i = 1j = 1 Ψ vyij D) k ( R 1 vi3j ( ) j y vi3j ( v0ij Ψ D Ψ vxi3j vyi3j D) ) () i = 1 k vi41 R vi41 l vxj i = 1j = 1 { m v11 gz ( v0ij Ψ D Ψ vxij vyij D) 1 --------------------- l vx1 l m g( z vi v0ij Ψ D Ψ vxij vyij D) vx (3) 5. ƒ e ww ( v, 00) š ƒ ƒƒ 1 st mode 3.88 Hz, 'nd mode 5.37 Hz, 3'rd mode 5.7 Hz, 4 th mode 13.18 Hz, 5 th mode 13.37 Hz, 6'th mode 14.18 Hz, 7'th mode.68 Hz š 8'th mode 5.3 Hz 8 w 30 Hz w 30 Hz low-pass filter d l w š w q. d 4 ƒ, š x 3œ w d w. 5 P.S.C. x w e ƒ. 3. gj p w x w v BADIA(Bridge-AGT Vehicle Dynamic Interaction Analysis II) w ü š w AGT y w ƒ w v. BADIAII l yw ƒ (1) Lagrange w - y w (Thomson, 1988). --- ------ T t q T U e U d ------ -------- --------- = P q i i q i q E i (1), T, U e k w e š U d w w (1) 1 U -- d D TC nv b D c R = vi1j vi1j c vi jr ( vij z v0ij Ψ D vxij v = 1 i = 1j = 1 Ψ D vyij ) ( 1 ( Ψ D vxi3j Ψ D vyi3j )) i = 1 c R vi3j vi3j c vi41 R vi41 ( ) j y v0ij (), (3) š (4) g ƒ, nv ww w. š D D original t l ùküš M b, C b š K b ƒƒ, š p ùkü. e l Ψ l ƒ w w» w w. Ψ vxinj x w w» w e l š Ψ vxinj y w w» w e l. R imj v r ùkü š x( v(00)) ü.»k»y w t 3. v w ü š w - y w ƒ w w w w ü lƒ v w. w ü 5 cm dw l w, AGT 100 mm w 3 l s³ w ƒ w. š w x s 100 m w 10 mm g w. (4) 30ƒ 1A 010 1œ 47

6. AGT y t. AGT y»y Description Nomenclature Body (ton) m v11 Mass Suspension system (ton) m vi Vehicle (ton) m v1 Suspension (kn/m) k vi1j Spring constant Tire (kn/m) Guide wheel (kn/m) k vij k vi3j Steering system (knm/rad) k vi4j Damping constant Suspension (kns/m) Tire (kns/m) Guide wheel (kns/m) C vi1j C vij C vi3j 7. (5. km/h, without prominence) Steering system (knms/rad) C vi4j From C.G. * of body to front and rear axle(m) l vxi Geometry From guide wheel to C.G. * of axle (m) l vx3 From C.G. * of body to left and right tire (m) l vy From C.G. * of body to guide wheel (m) l vz *Center of Gravity Body motions Axle motions t 3. AGT»y Description Vertical motion Lateral motion Rolling Pitching Yawing Parallel hop of front suspension system Parallel hop of rear suspension system Axle tramp of front suspension system Axle tramp of rear suspension system Steering of front suspension system Steering of rear suspension system Nomenclature z v11 y v11 θ vx11 θ vy11 θ vz11 z v1 z v θ vx1 θ vx θ vz1 θ vz 8. (5.6 km/h, with prominence) 4. x w 4.1 7 l 10 t š. 7 9 ƒ š AGT 5km/h š 40 km/h w 9. (40 km/h, without prominence) š, 8 10 10 mm ƒ š AGT ƒƒ 5km/h š 40 km/h w w š. 7 10 ƒ ƒ ƒ w 48

e q. t 5 gj p w 10 mm ƒ x w ƒ w. t 5 w w ƒ ƒ x w 17.14%, 4.7% š s³ 10.3% v y w. 10. (40 km/h, with prominence) ƒw š AGT m w z w š q w y w. š 7 l 10 ƒ x 10% j ù qx w xk. t 4 gj p w ƒ. gj p w ƒ ƒ ƒ 8.7%, s ³.3% w ƒ. AGT f ƒ j w 4. ƒ 1l 14 gj p w ƒ ƒ š. 11 13 ƒ š AGT 5km/h š 40 km/h w ƒ š, 14. 10 mm ƒ š ƒƒ 5 km/h, 40 km/h w ƒ. 1l 14 AGT m w ƒ ƒ j s ƒw y w. p 5km/h w ƒ j ƒw y w. t 6 ƒ š. ƒ ƒ 8.8% ƒ ù ƒ 60.9%¾ ƒw, w 0 km/h l 60 km/h¾ s³ 150% ƒw y w x 05 km/h 0 km/h 40 km/h 60 km/h Test Scheme t 4. gj p w gj p w gj p w ƒ ƒ ƒ ƒ (mm) (mm) ƒ ƒ (%) #1 1.087-1.087 - - # 1.10-1.10 - - s ³ 1.095-1.095 #1 1.73 1.171 1.57 1.156 98.7 # 1.310 1.189 1.9 1.17 98.6 #1 1.45 1.145 1.305 1.01 104.9 # 1.54 1.138 1.85 1.166 10.5 s ³ 1.71 1.161 1.85 1.174 101. #1 1.307 1.0 1.301 1.197 99.6 # 1.307 1.186 1.36 1.03 101.4 #1 1.9 1.189 1.41 1.14 96.0 # 1.94 1.174 1.33 1.01 10.3 s ³ 1.300 1.188 1.98 1.186 99.8 #1 1.43 1.144 1.303 1.199 104.8 # 1.37 1.13 1.333 1.10 107.7 #1 1.44 1.144 1.304 1.00 104.9 # 1.57 1.141 1.66 1.149 100.7 s ³ 1.45 1.138 1.30 1.190 104.5 #1 1.36 1.137 1.54 1.154 101.5 # 1.47 1.13 1.13 1.101 97.3 #1 1.30 1.14 1.408 1.95 106.7 # 1.89 1.170 1.40 1.7 108.7 s ³ 1.73 1.163 1.319 1.06 103.6 30ƒ 1A 010 1œ 49

x 05 km/h 0 km/h 40 km/h 60 km/h Test Scheme t 5. gj p w ƒ gj p w gj p w x ƒ ƒ (mm) (mm) #1 1.087 - # 1.10 - s ³ 1.095 (%) 1.366 - - #1 1.57 1.156-7.18 # 1.9 1.17-8.45 #1 1.305 1.01 1.373 1.073-10.66 # 1.85 1.166-7.98 s ³ 1.85 1.174-8.79 #1 1.301 1.197-11.11 # 1.36 1.03-11.55 #1 1.41 1.14 1.374 1.064-6.83 # 1.33 1.01-11.41 s ³ 1.98 1.186-10.9 #1 1.303 1.199-10.34 # 1.333 1.10-11.16 #1 1.304 1.00 1.401 1.075-10.4 # 1.66 1.149-6.44 s ³ 1.30 1.190-9.66 #1 1.54 1.154-8.67 # 1.13 1.101-4.7 #1 1.408 1.95 1.381 1.054-18.61 # 1.40 1.7-17.14 s ³ 1.319 1.06-1.17 11. ƒ (5 km/h, without prominence) 1. ƒ (5 km/h, with prominence). ƒw ƒ w š w w j ƒ w w y w. 1l 14 ƒ ful w ƒ x w w qx y w. v sww w wš w. t 7 gj p w ƒ w ƒ x w. ƒ 4.53%, 7.54% w ù ƒ - š qx x w xk. ƒ AGT e w w w q. 5. AGT l gj p w w e w q wš 30 50

13. ƒ (40 km/h, without prominence) 14. ƒ (40 km/h, with prominence) t 6. gj p w ƒ ƒ ƒ Test Scheme ƒ ƒ ƒ (%) (m/sec ) (m/sec ) 0.0319 0.0919 88.1 0.03 0.1399 603.0 s ³ 0.076 0.1159 445.6 0.1360 0.1996 146.8 0.145 0.031 163.1 05 km/h s ³ 0.1303 0.014 154.9 0.1500 0.69 179.5 0.1309 0.1896 144.8 s ³ 0.1404 0.94 16. 0.1500 0.1777 118.5 0.79 0.3364 147.6 60 km/h f 0.1890 0.571 133.1 m P.S.C. 10 mm ew ƒw x mw y w. ful v x w v ƒ s ƒw. w. 1. AGT w 10 mm ƒ ƒ ƒ 8.7% ƒ ƒ j w w.. 10 mm ƒ ƒ t 7. gj p w ƒ x Test Scheme ƒ ƒ (%) (m/sec ) (m/sec ) 05 km/h 0 km/h 40 km/h 60 km/h 0.0919-1.51 0.1399 0.0804-4.53 s ³ 0.1159-7.5 0.1996-5.65 0.031 0.1484-6.93 s ³ 0.014-6.9 0.69-4.6 0.1896 0.039 7.54 s ³ 0.94-8.36 0.1777 3.53 0.3364 0.355-30.0 s ³ 0.571 1.6 500% š s³ w 0 km/h~60 km/h s³ 50% ƒw. gj p w w w ü w k y w. w AGT w w w w AGT w w» w q. 3. w x w ƒ 17.14%, 4.7%. s³ 10.3% ƒ w. v w wš w. 4. w ƒ ƒ x w 5km/h w 4.53% ƒ w ù w 0~60 km/h s³ 1.0% y w ƒ w. 5. mw gj p w ƒ w ƒ g ü w y w š, v w y w. z wš w x mw gj p w AGT ü AGT e w w w. w w AGT k w w AGT š gj p w w ful mw»» y w w. 008w wœ w ü w. š x û (004) s œw, pp. 351-357. 30ƒ 1A 010 1œ 51

v(00) A Study on Dynamic Response Analysis and Vibration Serviceability of Bridge-AGT Vehicle Interaction System, w, w. v, ½xy, ù (006) -AGT y w, w wz, w wz, 9«, 5y, pp. 561-568. sw w (1999) l» š. w» (001) l» 3 š. Thomson, W.T.G (1988) Theory of Vibration with Applications, Prentice-Hall, pp. 196-198. ( : 009.1.8/ : 009.1.7/ : 009.1.7) 5