J. Korean Oph. Opt. Soc. Vol. 17, No. 2, pp , June 2012? da ƒ x, ƒ ù vq k RGP e ³ w ½ 1 w» w Ÿw, w w Ÿw, ƒ w Ÿw, ½w

Similar documents
14.531~539(08-037).fm

304.fm

9(3)-4(p ).fm

10(3)-10.fm

10(3)-09.fm

605.fm

12.077~081(A12_이종국).fm

10(3)-02.fm

16(1)-3(국문)(p.40-45).fm

10(3)-12.fm

untitled

16(2)-7(p ).fm

< DC1A4C3A5B5BFC7E22E666D>

12(3) 10.fm

82-01.fm

14(4) 09.fm

untitled

416.fm

DBPIA-NURIMEDIA

07.051~058(345).fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

12(2)-04.fm

11(5)-12(09-10)p fm

50(1)-09.fm

03-서연옥.hwp

26(3D)-17.fm

50(5)-07.fm

19(1) 02.fm

12(4) 10.fm

69-1(p.1-27).fm

hwp

17.393~400(11-033).fm

15.101~109(174-하천방재).fm

<30332DB9E8B0E6BCAE2E666D>

fm

012임수진

27(5A)-07(5806).fm

<31372DB9DABAB4C8A32E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Lumbar spine

09È«¼®¿µ 5~152s

139~144 ¿À°ø¾àħ

82.fm

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

31(3B)-07(7055).fm

49(6)-06.fm

1..

10.063~070(B04_윤성식).fm

8(2)-4(p ).fm

DBPIA-NURIMEDIA

15(2)-07.fm

14(2) 02.fm

DBPIA-NURIMEDIA

07.045~051(D04_신상욱).fm

32(4B)-04(7455).fm

김수현 정주현 390, 처방에 새로운 변화가 시작되었으나 국내에서는 소프트렌 즈 각막교정술(soft lens orthokeratology)에 의한 각막 형 상 변화에 대해 진행된 연구가 전무한 실정이다. 이에 저 자들은 역방향으로 실리콘 하이드로겔 렌즈를 착용하여 굴절

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

14.fm

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

202.fm

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

Microsoft Word - KSR2012A038.doc

16(5)-03(56).fm

201.fm

04-46(1)-06(조현태).fm

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

7(4)-07.fm


27(3D)-07.fm

51(2)-09.fm

11(4)-03(김태림).fm

50(4)-10.fm

<31325FB1E8B0E6BCBA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

8(3)-15(p ).fm

27(5A)-15(5868).fm

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

06.177~184(10-079).fm

DBPIA-NURIMEDIA

41(6)-09(김창일).fm

DBPIA-NURIMEDIA

23(2) 71.fm

< D C7FC20BFC0BAEABDBAC4B520B0A2B8B7C1F6C7FCB5B5B8A620C0CCBFEBC7D120BFF8C3DFB0A2B8B7B0FA20BFF8C3DFB0A2B8B7C0C7C1F5C0C720B0A2B8B7C7FCC5C2BAF1B1B E687770>

한국성인에서초기황반변성질환과 연관된위험요인연구

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

한국 출산력의 저하 요인에 관한 연구

DBPIA-NURIMEDIA

methods.hwp

10(1)-08.fm

11(1)-15.fm

歯1.PDF

50(6)-04.fm

(2)-02(최경자).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Transcription:

Vol. 17, No. 2, pp. 143-151, June 2012? da ƒ x, ƒ ù vq k RGP e ³ w ½ 1 w» w Ÿw, 139-743 2 w w Ÿw, 580-712 3ƒ w Ÿw, ½w 621-748 nš (2012 5 14 ), (2012 6 12 ), y (2012 6 16 ) : ƒ x ù ƒ ù, vq kƒ RGP vqw ƒ e(stable centration) w w e š w. : ƒ ù ƒ 0.00~2.75 D x ƒ 29 e ù x ƒ 45 RGP yw vq k, qw vq k, v w vq k jš ƒ e w w. : RGP w e k k. s w e f ƒ f k ƒ m w f ƒ x ù, vq k k ƒ. w ù ƒ x ƒ eù x ƒ w w k ƒ f. : RGP vq k, ù ƒ x eƒ š w RGP œ. : RGP, e, ƒ x, ù, vq k gkp vq ƒ vq k š w e kƒ ƒ w q» wù. e sƒ gkp vq k w w w š š, [1] w wù ƒ k. [2] p, w gkp ƒ w w š, w 3-9 w x ù. w ƒ vq kƒ yw ƒ ƒ ew, w v w ƒ ƒ (corneal staining) w. z w gkp [3] e w š w. gkp e w e w. gkp,, Ÿw, z Ÿw š, Ì gkp p w s,, ƒ x w w w eƒ. RGP(rigid gas permeable) ƒ e ƒ ù w ƒ ù s³ w w RGP ƒ ew ƒ ƒ ƒq eƒ w w e w ƒ ùkû. [4] w, yw(alignment) vq k RGP vq k w ƒ ù ƒ f w x ƒ eù x ƒ š š ƒ ù ƒ xkƒ gkp vq k w w. 20 [5] 252 ƒ xk w x(round) ƒ 14.3%, k x(oval) ƒ 31.3%, eù x(symmetirc bowtie) ƒ 28.6%, eù x(asymmetric bowtie) ƒ 17.5%, x(irregular) ƒ 8.3% š swš RGP w xk ƒ ew w š ƒ w. [6] *Corresponding author: Mijung Park, TEL: +82-2-970-6228, E-mail: mjpark@seoultech.ac.kr 143

144 ³, w,,, ½, w, RGP RGP yw vq k w w ƒ ù ƒ ƒ RGP v z RGP ƒ. gkp ƒ eù k [5] w ƒ w ù gkp yw ww» ƒ v w. RGP ƒ x ù ƒ ù k ƒ w eƒ ƒ š w. w RGP vq kƒ yw vq, q(steep) vq, v (flat) vq ë e w w e ƒ š w. 1. 2011 3 l 10 ¾ ù y x š x wš 20~30 ƒ ù ƒ û, 112 224 ƒ x»(ct- 1000, Shin-Nippon, Japan) 3z ƒ xk d w. 224 ƒ x eù x ƒ x ƒ ƒ ù ƒ 0.00~2.75 D w wš RGP w x x ƒ 29 eù x ƒ 45, 44 74 x w. 2. 1) ƒ x ƒ x»(ct-1000, Shin-Nippon, Japan) 3z ƒ xk d wš axial x ƒ x w, Bogan ƒ xk x, k x, eù x, eù x x ù. [7] 2) x w RGP (AIR,, Korea) silicone acrylate(dk=49) 9.3 mm, Ÿw 8.5 mm, Ì 0.14 mm, 3.00 D š, f 7.30~8.50 mm¾ 0.5 mm. 3) vq k sƒ ƒ š (JP/SO 21, Shin-Nippon Commerce, Japan) ƒ 3z d w z z œw RGP vq ƒ š 1 kwš v ƒ w w. RGP 30 z w v r r w g p w x (US/SL 7F, Topcon, Japan) s ƒ e,, ù w yw k vq q w. yw vq k s [8] š ƒ w yw vq wš yw vq f w. f» Û0.10 mm qw vq( 0.10 mm) v w vq(+0.10 mm) š w. 4) e v ƒ RGP wš w w k z y k š œ» w e (Fig. 1). š e (FASTCAMultima 1024 model 16k, PHOTRON, Japan) w ƒ RGP e wš, [4] Photoshop v (Adobe photoshop 7.0) w v (pixel) wš š e vp w mm y w. œ e (0,0) t š RGP e w ƒ ƒ 3z d w s³ w. w ƒ s w 3.5 mm¾ š w g w ƒ š w. 3. m RGP s w e s³ût r t w, vq k Fig. 1. The centration of spherical RGP lens on cornea.

ƒ x, ƒ ù vq k RGP e 145 sƒw (Prism, Graphpad Software, San Diego, USA). 95%» 0.05 w Tukey HSD z w 0.05 w m w ùkü q w. ù ƒ x eù x ƒ e independent sample t-test w 95%» 0.05 m w q w. [9-11] š 1. w e x x ƒ ƒ v ƒ ù 1.25 D w, eù x ƒ v 0.75~2.75 D ƒ ù ùkü. x eù x ƒ RGP e ƒ» w e. eƒ e w vq kƒ yw ù qw ù v w w. ƒ xk, ù vq k e ƒ ùkû ù m w y (Table 1). Sorbara L. RGP œ ew [12] 9.9 mm w j RGP w w RGP ƒ l RGP» w ¾ w y [4] ƒ ƒ xk, ƒ ù v q k w w RGP w eƒ. RGP ƒ w w y» RGP w e vq k, ƒ x ƒ ù s w w j w ƒw. 2. s w e 1) x ƒ ƒ xkƒ x š ƒ ù ƒ 0~0.50 D v RGP k z vq k s w e w (Fig. 2(a)). y w vq RGP s w e ƒ» w 0.78Û0.30 mm, qw vq w 0.67Û0.24 mm, v w vq w 1.17Û0.25 mm ùkû. qw vqw s w ƒ ƒ¾ ew v w vq w k w. vq k y s w e Tukey m w, qw vq v w vq, yw vq v w vq k m w (Table 2). ƒ ù ƒ 0.75~1.25 D s w e qw vq 0.91Û0.33 mm, yw vq 1.03Û0.43 mm, v w vq k 1.20Û0.42 mm ùkù v w v q e e w š, vq k ƒ ù ƒ 0~0.50 D ƒ w e e w ùkû (Fig. 2(b)). x ƒ yw vq wš ƒ ù w 0~0.50 D ù s w e 0.78Û0.30 mm š, 0.75~1.25 D ù 1.03Û0.43 mm ùkù 0.75~1.25 D ù s w eƒ e e w (Fig. 2). ù yw vq Table 1. The lens centration in vertical direction with the fitting states analyzed by corneal astigmatism and corneal type Corneal type Corneal astigmatism (D) The distance of lens center from corneal apex in vertical direction (mm) One-way ANOVA Alignment fitting Steep fitting Flat fitting p-value Round (n=29) Symmetric bowtie (n=45) 0~0.50 0.64Û0.50 0.66Û0.52 0.67Û0.54 0.987 0.75~1.25 0.61Û0.51 0.36Û0.48 0.36Û0.31 0.215 0.75~1.25 0.17Û0.95 0.38Û0.72 0.30Û0.68 0.749 1.50~2.00 0.46Û0.66 0.56Û0.58 0.54Û0.70 0.910 2.25~2.75 0.23Û0.67 0.39Û0.47 0.25Û0.67 0.740

146 ³, w,,, ½, Fig. 2. The lens centration in horizontal direction on roundtyped cornea by the fitting states (n=29). (a) with-therule corneal astigmatism of 0~0.50 D, (b) with-therule corneal astigmatism of 0.75~1.25 D qw vq s w k ƒ j ù v w vq j ƒ ùkû y w. ƒ xkƒ x vq k s w eƒ e š, ƒ x» w ƒ xk 90% ƒ ƒ» š g š f ù ƒ ƒ ù ƒ 0~0.50 D x ƒ š s³ 0.18 mm, 0.75~1.25 D 0.26 mmƒ f., ƒ š ƒ w gkp ƒ š (Table 3). ƒ š ƒ ƒ ùš w gkp ƒ ew ƒ j ƒw. gkp e eƒ w w w eƒ ûš s k, eƒ š s j k w w s w» e y e w e. w [13] ̃ e y j. w [14-15] e y j ƒ š e ƒ j w ƒ ƒ w v ƒ. 2) eù x ƒ ƒ xkƒ eù x š ƒ ù ƒ 0.75~1.25 D Table 2. The statistical analysis of lens centration in horizontal direction Corneal type Corneal astigmatism (D) One-way ANOVA Tukey's multiple comparison test Comparison p-value Comparison p-value Round (n=29) Alignment vs steep 0~0.50 Steep alignment flat <0.001 *** Steep vs flat Alignment vs flat *** *** 0.75~1.25 0.175 ns - - ns 0.75~1.25 0.120 ns - - Alignment vs steep ns Symmetric bowtie (n=45) 1.50~2.00 Steep 0.002 ** alignment flat 2.25~2.75 <0.001 *** Steep vs flat *** Alignment vs flat ns Alignment vs steep ns Steep vs flat *** Alignment vs flat *** ns, not significantly different from each group compared ** p<0.01, *** p<0.001, significantly different from the horizontal centrations of each group compared by one-way ANOVA and Tukey s multiple comparison

ƒ x, ƒ ù vq k RGP e 147 Table 3. The correlation between the lens centration and the flattest position in cornea Corneal type Corneal astigmatism (D) Location Meridian No. of eye (%) Temporal Central Nasal Radius difference (mm) Round (n=29) 0~0.50 0.75~1.25 The flattest position in cornea 13(86.6) 1(6.7) 1(6.7) Lens centration 15(100.0) 0(0.0) 0(0.0) The flattest position in cornea 13(92.9) 1(7.1) 0(0.0) Lens centration 14(100.0) 0(0.0) 0(0.0) 0.18Û0.11 0.26Û0.12 Symmetric bowtie (n=45) 0.75~1.25 1.50~2.00 2.25~2.75 The flattest position in cornea 12(80) 3(20) 0(0) Lens centration 15(100) 0(0) 0(0) The flattest position in cornea 6(40) 9(60) 0(0) Lens centration 15(100) 0(0) 0(0) The flattest position in cornea 6(40) 9(60) 0(0) Lens centration 15(100) 0(0) 0(0) 0.10Û0.06 0.15Û0.13 0.19Û0.09 (radius of temporal meridian at 3.5 mm away from corneal apex - radius of corneal apex) - (radius of nasal meridian at 3.5 mm away from corneal apex - radius of corneal apex) v RGP s w e q, y v w vq ƒƒ w 0.72Û0.28 mm, 0.95Û0.38 mm, 1.03Û0.55 mm d q vq yw vq, v vq k f w (Fig. 3a). 1.50~2.00 D ƒ ù ƒ š eù x v s w e w q, y v w vq ƒ ƒ w 0.68Û0.28 mm, 0.95Û0.34 mm, 1.14Û 0.35 mm d š(fig. 3b), 2.25~2.75 D ƒ ù ƒ v s w e ƒƒ w 0.71Û0.23 mm, 0.78Û0.30 mm, 1.20Û0.31 mm. 1.5 D ƒ ù ƒ eù x ƒ e qw vq y w vq, v w vq s w k w y w m w k (p=0.002 in 1.50~2.00 cyl.d group, p<0.001 in 2.25~2.75 cyl.d group)(table 2). ù ƒ ù ƒ 1.50~2.00 D v yw v q v w vq s w k 2.25~2.75 D ƒ ù ƒ v v w v q yw vq w s w k ƒ j ƒw v w vq k ƒ ù. w e w w [16] s w e ƒ xk vq k y w. Tomlinson 1,000 ƒ xk d w ƒ e eƒ ƒ 21.3%, ƒ 62.4% 80% ƒ eƒ swš šw. [17] ½[4] w ƒ e ƒ x mw ƒ š w. eù x ƒ ƒ w ùküš e ƒ ƒ ew y w. x ƒ eù x ƒ w ƒ eƒ w. 3) ù x eù x ƒ s w e ƒ x ƒ x eù x ƒ w ƒ ù ƒ 0.75~1.25D ù s w e w. x ƒ y w vq w e ƒ» w 1.03Û0.43 mm š eù x ƒ w 0.95Û0.38 mm x ƒ k j w ù m w (Fig. 4a). x ƒ RGP qw vqw w 0.92Û0.33 mm, eù x ƒ w 0.72Û 0.28 mm ùkù yw vq ƒ ù ƒ x ƒ k ƒ j w ù m w (Fig. 4b). s w k v w

148 ³, w,,, ½, yw vq qw vq x ƒ eù x ƒ ƒ ù v w vq eù x ƒ s ƒ e ƒ j. ƒ x k s w e y w» w w ù ƒ ƒ x ƒ eù x ƒ e w v e ƒ m w ù vq k w w x ƒ RGP ƒ vq e eù x ƒ k j ùkú w. eù x ƒ w ƒ k ew š x ƒ w w» š xk eƒ x. eù x ƒ w k ƒ ƒ k ƒ û w w. wr, w e x ƒ ƒ yw vq wš k ƒ q ù v vq k j ùkù s w e w w ƒ x ù vq k w w j š ƒ. w eù x ƒ vq k v w e sƒ x ƒ w r ùkû eù x ƒ ƒ w w ƒ w (Fig. 4). Fig. 3. The lens centration in horizontal direction on symmetric bowtie-typed cornea by the fitting states (n=45). (a) with-the-rule corneal astigmatism of 0.75~1.25 D, (b) with-the-rule corneal astigmatism of 1.50~2.00 D, (c) with-the-rule corneal astigmatism of 2.25~2.75 D vqw x ƒ s w e w 1.20Û0.42 mm, eù x ƒ 1.03Û0.55 mm ùkù y qw vq k ƒ x ƒ k j w ùkü (Fig. 4c). s w k s³e x ƒ eù x ƒ qw vq ƒ v w vq ƒ f. ƒ v s w e s RGP eƒ ƒ x ù ƒ ù, vq k y ƒ š w. RGP w e vq kù, ƒ x, ù ùkû. RGP s w e ƒ š ƒ w ew ƒ j q. s w e s yw vq qw v q ƒ x ƒ ù v w vq eù x ƒ s ƒ k. w, v w vq k RGP

ƒ x, ƒ ù vq k RGP e 149 Fig. 4. The comparison of lens centrations on round- and symmetric bowtie-typed corneas with the same corneal astigmatism. (a) alignment fitting for corneal astigmatism of 0.75~1.25 D, (b) steep fitting for corneal astigmatism of 0.75~1.25 D, (c) flat fitting for corneal astigmatism of 0.75~1.25 D, Each symbol and circle represent mean of lens centration and standard deviation with the different fittings, respectively. Bowtie stands for symmetric bowtie-typed cornea. E: ear, N: nose, U: up, D: down ƒ ù ƒ f s w k ƒ w. w e vq k v w vq k j k w.,», sww š w ù, mw v qƒ w vq w f w vq kù ƒ xkƒ e w x w w y j ƒ w z ƒ w. w mw ƒ x RGP ƒ š y ƒ w RGP vq ƒ y. 2012 w» w ü w. REFERENCES [1] Brennan NA, Lindsay RG, McCraw K, Young L, Bruce AS, Golding TR. Soft lens movement: temporal characteristics. Optom Vis Sci. 1994;71(6):359-363. [2] Park KA, Mah KC, Lee HJ, Yi MH, Kim YM, Bae HJ. The effects on the fitting characteristics of diameter change in spherical RGP contact lens. Korean J Vis Sci. 2007;9(1): 79-88. [3] Kim JM, Kim SH. Comparison of preference and empirical fit success rates for spheric and aspheric RGP lenses. J Korean Oph Opt Soc. 2008;13(2):9-16. [4] Kim SR, Park SI, Lee SE, Park M. A comparison of lens centrations on cornea with RGP lens fitting by the mea-

150 ³, w,,, ½, sured values using keratometer and corneal topography. J Korean Oph Opt Soc. 2011;16(1):41-50. [5] Park EH, Kim SR, Park M. The comparison of fluorescein patterns between spherical RGP lens and aspherical RGP lens by corneal type and astigmatic degree. J Korean Oph Opt Soc. 2012;17(1):37-45. [6] Kim SR, Gil JY, Park CW, Kim JH, Park M. The analysis of corneal patterns in Korean 20s by corneal topography and corneal radii by astigmatic degree. J Korean Oph Opt Soc. 2011;16(3):273-281. [7] Bogan SJ, Waring GO, 3rd. Ibrahim O, Drews C, Curtis L. Classification of normal corneal topography based on computer-assisted videokeratography. Arch Ophthal. 1990; 108(7):945-949. [8] Chan JS, Mandell RB, Johnson L, Reed C, Fusaro R. Contact lens base curve prediction from videokeratography. Optom Vis Sci. 1998;75(6):445-449. [9] Hogben CA. A practical and simple equivalent for student's T test of statistical significance. J Lab Clin Med. 1964;64(2):815-819. [10] Huck SW, McLean RA. Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: a potentially confusing task. Psychological Bulletin. 1975;82(4): 511-518. [11] Kim SJ. A comparison and study on the results of ANO- COVA for the repeated measure data by general linear model and mixed model. Master thesis. Chonnam National University, Gwangju. 2006;1-30. [12] Sorbara L, Fonn D, Holden BA, Wong R. Centrally fitted versus upper lid-attached rigid gas permeable lenses. Part I. Design parameters affecting vertical decentration. International Contact Lens Clinic. 1996;23(3):99-104. [13] Carney LG, Mainstone JC, Carkeet A, Quinn TG, Hill RM. Rigid lens dynamics: lid effects. CLAO J. 1997;23(1): 69-77. [14] Carney LG, Mainstone JC, Quinn TG, Hill RM. Rigid lens centration: Effects of lens design and material density. International Contact Lens Clinic. 1996;23(1):6-12. [15] Quinn TG, Carney LG. Controlling rigid lens centration through specific gravity. International Contact Lens Clinic. 1992;19(3):84-88. [16] Kim DH, Mah KC, Kim DS, Lee HJ. The movement of RGP contact lens related to blinking velocities. Korean J Vis Sci. 2007;9(2):225-240. [17] Tomlinson A, Schwartz C. The position of the corneal apex in the normal eye. Am J Optom Physiol Opt. 1979; 56(4):236-240. [18] Cardona G, Isern R. Topography-based RGP lens fitting in normal corneas: the relevance of eyelid and tear film attributes. Eye Contact Lens. 2011;37(6):359-364. [19] Nosch DS, Ong GL, Mavrikakis I, Morris J. The application of a computerised videokeratography(cvk) based contact lens fitting software programme on irregularly shaped corneal surfaces. Cont Lens Anterior Eye. 2007; 30(4):239-248.

ƒ x, ƒ ù vq k RGP e 151 A Relationship between Corneal Type, Corneal Astigmatism and Lens Fitting States and the Stable Centration of Spherical RGP Lens Shin Gyu Lim 1, Min Ha Lee 1, Sun Mi Choi 2, Sang Hee Park 3, So Ra Kim 1 and Mijung Park 1, 1 Dept. of Optometry, Seoul National University of Science and Technology, Seoul 139-743, Korea 2 DeptU of Optometry, Jeonbuk Science College, Jeongeup 580-712, Korea 3 DeptU of Ophthalmic Optics, Kaya University, Gimhae 621-748, Korea (Received May 14, 2012: Revised June 12, 2012: Accepted June 16, 2012) Purpose: The present study was conducted to investigate whether there is any difference in the centration of spherical RGP lens on cornea according to corneal types, corneal astigmatism and lens fitting states. Methods: Spherical RGP lens was fitted on 29 eyes of round-typed cornea and 45 eyes of symmetric bowtie-typed cornea with 0.00~2.75 D of corneal astigmatism in alignment, steep or flat. Their lens centrations on cornea were analyzed by taking photographs. Results: The centration of spherical RGP lens in the vertical direction was decentrated to downward direction in all cases, and the degree of decentration was not consistent. The lens centration in horizontal direction was significantly more-decentrated to the temporal meridian as base curve of lens was increased, and the degree of decentration was different according to the corneal type, corneal astigmatism and fitting states. With the same degree of astigmatism, the lens decentration to the temporal meridian was bigger in round-typed cornea than that in symmetirc bowtie-typed cornea. Conclusions: The centration of spherical RGP lens varies depending on lens fitting states, corneal astigmatism, and corneal types. Thus, the consideration of these factors may improve the success rate in RGP lens prescription. Key words: Spherical RGP lens, Lens centration, Corneal type, Corneal astigmatism, Lens fitting states