42.1(20) fm

Similar documents
10(3)-10.fm

14.531~539(08-037).fm

10(3)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

605.fm

10(3)-02.fm

12.077~081(A12_이종국).fm

69-1(p.1-27).fm

10(3)-12.fm

11(5)-12(09-10)p fm

untitled

DBPIA-NURIMEDIA

304.fm

16(1)-3(국문)(p.40-45).fm

9(3)-4(p ).fm

416.fm

50(5)-07.fm

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

16(2)-7(p ).fm

fm

50(1)-09.fm

untitled

12(2)-04.fm

8(2)-4(p ).fm

fm

19(1) 02.fm

82-01.fm

untitled

hwp

15.101~109(174-하천방재).fm

DBPIA-NURIMEDIA

17.393~400(11-033).fm

07.051~058(345).fm

82.fm

12(3) 10.fm

32(4B)-04(7455).fm

03-서연옥.hwp

10(1)-08.fm

<30312DC0CCC7E2B9FC2E666D>

31(3B)-07(7055).fm

49(6)-06.fm

03이경미(237~248)ok

51(4)-13.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

10.063~070(B04_윤성식).fm

202.fm

09È«¼®¿µ 5~152s

14(2) 02.fm

82-02.fm

415.fm

14(4) 09.fm

(2)-02(최경자).fm

untitled

2.대상 및 범위(계속) 하천 하천 등급 하천명 연장 (km) 연장 (km) 시점 금회수립현황 종점 지방 하천 함안천 경남 함안군 여항면 내곡리 경남 함안군 함안면 함안천(국가)기점 검단천 경남 함안군 칠북면 검단리 칠원천 6.70

<30332DB9E8B0E6BCAE2E666D>

15(2)-07.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

fm

<312D303128C1B6BAB4BFC1292E666D>

서론 34 2

23(2) 71.fm

11(4)-03(김태림).fm

26(3D)-17.fm

07.045~051(D04_신상욱).fm

04-46(1)-06(조현태).fm

16(5)-06(58).fm

11(1)-15.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Microsoft Word - KSR2012A103.doc

25(6)-12(조윤아).fm

82-08.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

41.4(8) fm

83-07.fm

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

fm

DBPIA-NURIMEDIA


69-1(p.1-27).fm

7(4)-07.fm

21(1)-5(10-57)p fm

DBPIA-NURIMEDIA

( )-94.fm

27(5A)-07(5806).fm

49(6)-10.fm

93.fm

01.01~08(유왕진).fm

57.fm

11(5)-7(09-37)p fm

19(2)-02.fm

14.fm

8(3)-01.fm

418.fm

Microsoft Word - KSR2012A038.doc

51(2)-09.fm

16(4)-05.fm

Microsoft Word - KSR2013A299

41(6)-09(김창일).fm

12(4) 10.fm

26(1)-11(김기준).fm

Transcription:

KOREAN J. FOOD SCI. TECHNOL. Vol. 42, No. 1, pp. 119~123 (2010) p w w p *Áw 1 w w, 1 w t l Sensory Profiling of Rice Wines Made with Nuruks Using Different Ingredients Seung-Joo Lee* and Byung-Hak Ahn 1 Department of Food Service Management, Sejong University 1 Brewing Research Center, Korea Food Research Institute The Korean Society of Food Science and Technology Abstract The quantitative sensory profiles of rice wines made with nuruks using eight different cereal ingredients were developed using sensory descriptive analysis. Two appearances, eight aromas, eight flavors and tastes, and two mouthfeel related sensory attributes were evaluated by a panel of 10 judges. The sample made of black rice nuruk had the highest intensity in red color, while the other samples had similar ranges in yellow color. The mean sensory intensities of the samples prepared with black rice and glutinous rice nuruks were high in sweet, fruit taste, pungent, and sour, while those samples prepared using non-glutinous rice, buckwheat, hull-less barley, unpolished rice nuruks had overall high intensities in grain, fermented aroma, bitter, and astringent attributes. Based on the principal component analysis of the descriptive data, samples were primarily separated along the first principal component, which accounted for 53% of the total variance between the rice wines with high intensities of red color, sweet, and fruit taste versus bitter, astringent, and yellow color. Key words: Korean rice wine, Nuruk, fermentation, sensory analysis, descriptive analysis ù m w š w k, xk w(1). m w š(,,, ) w w w š(,,,,,, q ) ƒ š,» š yš qƒ 360 w û»» w(2). ù» e w» š w z š w w ƒ ³. ù '88v» ù my v»š» w w x k,, j,,,»k w t qš. m ká»w w š ƒw wš w w w z w p (2,3). m š y z w sƒ wš *Corresponding author: Seung-Joo Lee, Department of Food Service Management, Sejong University, Seoul 143-147, Korea Tel: 82-2-3408-3187 Fax: 82-2-3408-4313 E-mail: sejlee@sejong.ac.kr Received November 14, 2009; revised December 3, 2009; accepted December 4, 2009 w y z ³y t.» e x¾ Aspergillus q zƒ š w w» m š, w r t w e» w (3,4). w w ù, w ³ w m t w w xj w (2). w m w q z w (5-8) ƒ ³ w m w t yw p w ƒ w(9-15). ù w ³ y g p w š w. zyƒ ³ y w» yw»w, ü w š(,,,,, x,, x) w m wš w 8 p (generic descriptive analysis method) w. w š 19 w 119

120 w twz 42 «1y (2010) w z y mw y ùkü 8 š w x w. (nonglutinous rice, NGR), (glutinous rice, GR) (buckwheat, BW), x(unpolished rice, UPR), (hull-less barley, HLB) û, (waxy black rice, WBR) w, x(unpolished glutinous rice, UGR) (black rice, BR) xt w w. z Saccharomyces cerevisiae(fermivin No.7013, Inra, Narbonne, Servian, France) w. 8 š w m ƒ š qw z 40% w ƒx(20 14 cm, Ì 2cm) wš 25 o C 2, 40 o C 2 w z cold room w w. ƒ š w x ww. swš w z 4 ew 1 ƒ» w z Ÿ q» š q ù zl 30 w þƒk z w. 1 ( 14%, 16.2%, ƒ š 0.5%, z 0.07%)w 25 o C 1 zw z 2 ( 31.4%, ƒ š 0.6%, 36.8%) w 20 o C 16 zw w. w w t 24-37 û 4, 6 10 wš» m x. Lee (16) w xw w. 6z q z wš w w q š ƒ 5 w š w z q mƒ. w p w k wš w w ƒ. p w k wš w, p k w m q m š 5 matching test mw q p w qwš q w mw w. z x w t w š w w z z mw 3 sƒw. ƒ z 40-60. sƒ Table 1. x ùt t»w 18-21 o C, Williams' latin square(17) w y ywš x ƒƒ Table 1. Sensory attributes, definitions and physical standards Attribute Code Written definition Physical standards Appearance attributes Yellowness yellow Intensity of yellow color No physical standards Redness red Intensity of red color No physical standards Aroma attributes Sweet sweet The smell associated with grain syrup Grain syrup 15 g/150 ml distilled water Ripe fruit fruit The smell associated with ripe fruits similar to pears Crushed pear 15 g/100 ml distilled water Grain grain The smell associated with crushed barley and other grains Crushd unpolished rice and barley 4 g/20 ml distilled water Pungent pungent Pungent olfactory sense 0.2 ml vinegar/100 ml distilled water Alcohol alcohol The smell associated with alcohol 25%(w/v) Ethanol solvent solvent Tthe smell associated with solvent thinner Paint moldy moldy The smell associated with mold growth or mildew 2-Ethyl-1-hexanol 0.1%(w/v) Fermented ferment The smell associated with activated yeast Fermented sugar solution (20%) for 24 hr by 1.5 g yeast Flavor/taste attributes Sweet sweet_t Basic taste descriptor characterized by a solution of sucrose Sucrose 6% (w/v) Fruity flavor fruit_t flavor similar to pears Crushed pear 15 g/100 ml distilled water Grain flavor Grain_T flavor similar to Crushed barley and other grains Sour sour Basic taste descriptor characterized by a solution of organic acid Citric acid 0.25%(w/v) Alcohol flavor alcohol-t Alcohol 25%(w/v) Ethanol Crushd unpolished rice and barley 4 g/20 ml distilled water Bitter bitter Basic taste characterized by a solution of caffeine, quinine and certain alkaloids Anhydride caffeine 0.1%(w/v) fermented flavor ferment_t Yeasty Yeast 0.1% in 10% warm sugar solution overnight Mouthfeel/after taste attributes Astringent astrin Mouthfeel of dryness Aluminium sulfate 0.1%(w/v) full-body body full- bodyness while tasting No physical standards

w w w. ƒ w 2z sƒƒ š 10 (0:, 9: w) w sƒ w. m m w (analysis of variance), (correlation analysis) (principal component analysis) Statistical Analysis Systems(SAS, Cary, NC, USA) for Windows 7.2 XLSTAT ver. 2007.1(Addinsoft, NewYork, NY, USA) w w. (sample), (judge), x(rep) wš *, *x, *x y q w. š 8 š w m(,,,,, x,, x) w w w w. (three way analysis of variance), ƒ (sample) w (grain taste) g(alcohol taste) w w ƒ ùkû(p<0.05). y(judge * sample) (redness), w(fruit), gw(alcohol), w(grain taste), (sour), g(alcohol taste), (fermented taste), (astringent), (full-body) w ƒ ùkù ƒ sƒw ùkû. w û y ùkù sƒƒ w p 121 ù ƒ ùkù w sƒ wš ƒ yw. x(rep) sƒ ww ùkû. 8, 10 2z d w s³ Fisher Least Significant Difference (LSD) Table 2. p (BW) (HLB) w (yellow) ƒ w ùkû. ùkþù, (BR) w (red) ù kû. (WBR) w (BR) w w» w ù w ùkü. w p r w p 5 w û ùkû, ƒw w š w p. 8 (NGR) w w(sweet) ƒ ùkûš x(ugr) w ƒ ƒ û. w(fruit) w z l»w (18), (BR) (NGR) w ƒ ùkû. ww(grain) ƒ j š (BR) w ƒ û ùkû. jw w(pungent) (GR) (BR) w w ùkþ.» ý(solvent), q ý(moldy)»y ù w p û ùkûù x(ugr) w ƒ ùk Table 2. Mean sensory attribute intensity ratings a,b for eight rice wine samples determined by descriptive analysis from a panel of ten judges over duplicate replications (BR: black rice, BW: buckwheat, GR: glutinous rice, HLB: hull-less barley, NGR: non-glutinous rice, UGR: unpolished glutinous rice, UPR: unpolished rice, WBR: waxy black rice). Attribute codes are defined in Table 1 Attributes codes LSD (5%) BR BW GR HLB NGR UGR UPR WBR yellow 0.81 1.80 c 5.25 a 4.10 b 5.85 a 3.75 b 3.80 b 3.70 b 3.40 b red 0.55 6.15 a 1.60 cd 2.05 c 1.65 cd 1.35 d 1.15 d 1.20 d 3.45 b sweet 0.89 4.55 ab 3.75 bc 3.95 bc 4.55 ab 5.10 a 3.15 c 3.85 bc 4.60 ab fruit 0.97 4.50 a 2.60 cd 3.35 bc 3.65 ab 4.15 ab 2.30 d 3.20 bcd 3.75 ab grain 0.97 2.35 b 3.90 a 2.95 ab 3.65 a 3.00 ab 3.35 a 3.90 a 3.80 a pungent 0.90 5.05 a 3.60 b 4.70 a 3.40 b 3.70 b 3.40 b 3.45 b 3.50 b alcohol 0.88 3.55 bc 4.30 ab 3.30 c 3.50 bc 4.60 a 3.50 bc 4.70 a 3.70 bc solvent 0.88 2.25 b 2.00 b 2.25 b 2.00 b 2.30 b 3.95 a 2.75 b 1.95 b moldy 0.69 1.65 c 2.40 b 1.65 c 1.85 bc 1.80 bc 3.20 a 1.70 c 2.10 bc ferment 1.06 2.25 c 4.05 a 2.60 bc 3.55 ab 3.25 abc 3.60 ab 4.10 a 3.50 ab sweet_t 0.94 3.95 ab 2.85 cd 4.10 a 2.95 cd 3.60 abc 2.35 d 3.50 abc 3.05 bcd fruit_t 0.87 4.40 a 2.35d 3.75 ab 2.70 cd 2.75 bc 2.00 d 3.25 bc 3.40 bc Grain_T NS 2.45 2.95 2.65 3.25 3.30 3.00 3.55 2.90 sour 0.93 6.90 a 6.35 abc 6.80 ab 5.25 d 5.45 cd 5.75 cd 5.90 bcd 6.35 abc alcohol-t NS 3.30 4.10 3.25 4.20 4.15 3.70 3.70 3.70 bitter 1.04 2.90 cd 3.90 abc 2.70 d 4.10 ab 3.90 abc 4.60 a 3.00 cd 3.25 bcd ferment_t 0.79 2.95 b 4.45 a 2.75 b 4.60 a 4.25 a 4.10 a 4.00 a 4.15 a astrin 0.74 3.75 b 3.90 b 3.45 b 4.15 ab 4.00 b 4.75 b 3.70 b 3.55 b body 0.63 3.00 b 3.15 ab 2.80 b 3.60 a 3.70 a 3.30 ab 2.95 b 2.95 b a Scale ranging from 0 to 9. b Means with the same letter in a row are not significantly different at α=0.05 by Fisher s least significant difference (LSD) tests, NS denotes no significant difference.

122 w twz 42 «1y (2010) Fig. 1. Principal component analysis (PCA) loadings for (a) sensory attributes and (b) the eight rice wine samples (BR: black rice, BW: buckwheat, GR: glutinous rice, HLB: hull-less barley, NGR: non-glutinous rice, UGR: unpolished glutinous rice, UPR: unpolished rice, WBR: waxy black rice). Attribute (vector) codes are defined in Table 1. û. w(ferment) x(upr) (BW) w ƒ ùkûš (BR) w ƒ û. p r p w (sour) w ùkù w vw. (sweet_t) û (GR) (BR) w w š x (UGR) w ƒ û ùkû. (sour) (BR), (GR) w ƒ ùkûš (HLB) w ƒ û. x(ugr) w (bitter) (astrin) ùkü wz t»y w vw. (GR) (bitter), (ferment_t), (astrin) ƒ û ùkù»y w ù w vw. w w w p zƒ w p w ùkû(19). (principal component analysis) Fig. 1 ( ùkü p w). Fig. 1a) p k wš Fig. 1b) s ùkü., (PC) lk r 53% 18% ƒƒ twš. p w s PC1 r (red), Table 3. Matrix of correlations for sensory attributes of rice wines profiled by descriptive analysis (n=10 judges X 2 replications) Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1. yellow 1.00 2. red -0.72 1.00 3. sweet -0.16 0.36 1.00 4. fruit -0.49 0.65 0.90 1.00 5. grain 0.64-0.61-0.30-0.58 1.00 6. pungent -0.59 0.72 0.18 0.51-0.85 1.00 7. alcohol 0.05-0.38 0.17-0.01 0.37-0.41 1.00 8. solvent -0.18-0.33-0.69-0.57-0.04-0.23-0.07 1.00 9. moldy 0.18-0.34-0.67-0.76 0.29-0.49-0.16 0.69 1.00 10. ferment 0.59-0.71-0.35-0.63 0.93-0.91 0.57 0.17 0.41 1.00 11. sweet_t -0.46 0.44 0.46 0.68-0.61 0.79 0.02-0.44-0.86-0.68 1.00 12. fruit_t -0.66 0.79 0.41 0.72-0.57 0.81-0.24-0.43-0.75-0.73 0.84 1.00 13. Grain_T 0.46-0.74 0.03-0.22 0.64-0.80 0.69 0.16 0.02 0.77-0.32-0.54 1.00 14. sour -0.55 0.66-0.13 0.15-0.41 0.77-0.34-0.23-0.22-0.56 0.52 0.70-0.82 1.00 15. alcohol_t 0.69-0.56 0.24-0.15 0.55-0.75 0.49-0.17 0.20 0.66-0.55-0.73 0.67-0.80 1.00 16. bitter 0.49-0.52-0.24-0.49 0.30-0.67 0.04 0.45 0.76 0.48-0.85-0.90 0.36-0.72 0.70 1.00 17. ferment_t 0.63-0.56 0.04-0.32 0.74-0.92 0.44 0.00 0.40 0.83-0.76-0.78 0.71-0.79 0.93 0.74 1.00 18. astrin 0.24-0.38-0.41-0.48 0.06-0.47-0.09 0.72 0.78 0.30-0.74-0.75 0.25-0.61 0.41 0.91 0.48 1.00 19. body 0.41-0.38 0.37 0.10 0.02-0.46 0.23 0.06 0.17 0.21-0.37-0.58 0.48-0.84 0.80 0.76 0.65 0.62 1.00 a Bold numbers indicate significant correlation coefficients (p<0.05).

(sour), jww(pungent), (fruit_t), (sweet_t) ùkû š r (bitter), w(ferment), ww(grain), (yellow)ƒ sw ùkþš ƒ¾ sw ƒ. PC2 ƒ w qý(moldy),» ý(solvent), (astrin) ùkûš w(fruit), (sweet) p w ùkü. w w yw (Table 3). PC1 w ùkü (r= 0.72) ùkþ(p<0.05). w PC1 w ƒà w(fruit), jww(pungent), (sweet_t), (fruit_t), (sour) ùküš(p<0.05), w / wp PC1 w w (ferment), ww(grain), (ferment_t) ùkü. p»y w (r=0.91), qý(r=0.78),» ý(r=0.72) ùkü(p<0.05). s r PC1 ƒ r (BR)ƒ ù kû (sour), jww(pungent) ƒ wš w(fruit), (sweet), (fruit_t) ù kû. w ww(grain), w(ferment) ƒ û. (BR) ƒ¾ (GR) w p ù, jww w û ùkþ. 3 ew (BW), x(upr), (HLB), (NGR) w w w p ùkþ ww(grain), w(ferment), (ferment_t) ùkûš jww(pungent), (sour) û ùkû. 4 PC2 w sw (HLB) (NGR) w(sweet) w(fruit) ùkû. 4 ew x(ugr)»y ù w (20) (bitter), (astrin), q ý(moldy),» ý(solvent) ƒ š w p ƒ û ùkù wz t šw w. w w w p ùkü y m w p yƒ ƒw ùkû. w (20),, qý,» ý»y w ùkûš w w ùkû. w p ùkü,,,,, x wš ù q ƒ» y ùkü sww. wz 7 š k mw ³ wš mw y»wš w. t» (GA073303). w p 123 1. Lee SR. Hankuk eui Balhyo Sikpum (Fermented Foods of Korea). Ewha Press, Seoul, Korea. pp. 142-155 (1986) 2. Lee MK, Lee SW, Yoon TH. The bibliographical study on nuruk. J. East Asian Soc. Dietary Life 4: 19-29 (1994) 3. Lee SS, Kim KS, Eom AH, Sung CK, Hong IP. Production of Korean traditional rice wines made from cultures of the single fungal isolates under laboratory conditions. Korean J. Mycol. 30: 61-65 (2002) 4. Chung HK. Characteristics and present status of Korean traditional alcoholic beverage. Korean J. Diet. Culture 4: 311-318 (1989) 5. Jo GY, Lee CW. Isolation and identification of the fungi from nuruk. J. Korean Soc. Food Sci. Nutr. 26: 759-766 (1997) 6. Kim HS, Hyun JS, Kim J, Ha HP, Yu TS. Characteristics of useful fungi isolated from traditional Korean nuruk. J. Korean Soc. Food Sci. Nutr. 26: 767-774 (1997) 7. Lee JH, Yu TS. Identification and characteristics of lactic acid bacteria isolated from nuruk. Korean J. Biotechnol. Bioeng. 15: 359-365 (2000) 8. Lee SH, Jung HJ, Yeo SH, Kim HS, Yu TS. Characteristics of á- Amylase of, a new species, Aspergillus coreanus NR 15-1. Korean J. Biotechnol. Bioeng. 19: 301-307 (2004) 9. Lee MK, Lee SW, Yoon TH. Quality assessment of yakju brewed with conventional nuruk. J. Korean Soc. Food Sci. Nutr. 23: 78-89 (1994) 10. Lee MK, Lee SW, Bae SM. The quality of yakju brewed from many kind of nuruk. J. East Asian Soc. Dietary Life 1: 99-111 (1991) 11. Lee TS, Choi JS. Volatile flavor components in mash of takju prepared by using Aspergillus kawachii nuruks. Korean J. Food Sci. Technol. 37: 944-950 (2005) 12. Park CS, Lee TS. Quality characteristics of takju prepared by wheat flour nuruks. Korean J. Food Sci. Technol. 34: 296-302 (2002) 13. Jung HK, Park CS, Park HH, Lee GD, Lee IS, Hong JH. Manufacturing and characteristics of Korean traditional liquor, hahyangju prepared by Saccharomyces cerevisiae HA3 isolated from traditional nuruk. Korean J. Food Sci. Technol. 38: 659-667 (2006) 14. Han H, Lee TS, Noh BS, Lee DS. Quality characteristics in mash of takju by using different nuruk during fermentation. Korean J. Food Sci. Technol. 29: 555-562 (1997) 15. Lee TS, Han EH. Volatile flavor components in mash of takju prepared by using Rhizopus japonicus nuruks. Korean J. Food Sci. Technol. 32: 691-698 (2000) 16. Lee SJ, Kwon YH, Kim HR, Ahn BH. Chemical and sensory characterization of Korean commercial yakju. Food Sci. Biotechnol. 16: 374-380 (2007) 17. Schlich P. Uses of change-over designs and repeated measurements in sensory and consumer studies. Food Qual. Prefer. 4: 223-235 (1993) 18. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. Cereal-based fermented foods and beverages. Food Res. Int. 36: 527-543 (2003) 19. Kim HR, Jo SJ, Lee SJ, Ahn BH. Physicochemical and sensory characterization of a Korean traditional rice wine prepared from different ingredients. Korean J. Food Sci. Technol. 40: 551-557 (2008) 20. Lee SJ, Lee KG. Understanding consumer preferences for rice wines using sensory data. J. Sci. Food Agric. 88: 690-698 (2008) x