ISSN 0367-6315 (Print) / ISSN 2288-2162 (Online) Korean J. Soil Sci. Fert. 46(6), 615-622 (2013) http://dx.doi.org/10.7745/kjssf.2013.46.6.615 Article Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon Kyeong-Hun Park 3,4, Hye-Jeong Yun 1, Won-Il Kim, Jun-Won Kang 2, Patricia D. Millner 3, Shirley A. Micallef 4, and Byeong-Seok Kim 5 * Microbial Safety Team, National Academy of Agricultural Science, RDA, Suwon, 441-707, Korea 1 Experiment Research Institute, National Agricultural Products Quality Management Service, Seoul, 150-804, Korea 2 Germplasm Resources Lab, USDA-ARS, Beltsville, Maryland, 20705, USA 3 Environmental Microbial & Food Safety Lab, USDA-ARS, Beltsville, Maryland, 20705, USA 4 Department of Plant Science and Landscape Architecture, University of Maryland, CollegePark, Maryland, 20770, USA 5 Planning&Coordination Division, National Academy of Agricultural Science, RDA, Suwon, 441-707, Korea (Received: November 15 2013, Accepted: December 2 2013) The purpose of this study was to evaluate microbial contamination of melons in Korea. A total of 123 samples including melon fruits, leaves, seeds, soils, and irrigation water were collected from farms and markets to detect total aerobic bacteria, coliform, Escherichia coli, and pathogenic bacteria such as Bacillus cereus, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Samples were collected from Iksan and Nonsan farms to monitor bacterial levels on pre-market melons. The total aerobic and coliform bacteria on melon cultivation were between 0.43 and 6.65 log CFU g -1, and 0.67 and 2.91 log CFU g -1, respectively. Bacillus cereus, a fecal coliform, was detected in soils and melon leaves from Iksan farm at 2.95, 0.73 log CFU g -1, respectively, and in soils from Nonsan farm at 3.16 log CFU g -1. Market melon samples were collected to assay bacterial load on melon being sold to consumers. The contamination levels of total aerobic bacteria in agricultural markets, big-box retailers, and traditional markets were 4.82, 3.94, 3.99 log CFU g -1, respectively. The numbers of coliform in melon on the markets ranged from 0.09 to 0.49 log CFU g-1. Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus were not detected in any samples. The count of total aerobic bacteria on melon seeds ranged from 0.33 to 3.34 log CFU g -1. This study found that irrigation water, soil, manure and various farm work activities including post-harvest processes were latent sources of microbial contamination. These results suggest that hygienic management and monitoring of soil, water, and agricultural material should be performed to reduce microbial contamination in melon production. Key words: Melon, Microbial contamination, Foodborne pathogen, Food safety Population of total aerobic bacteria for samples collected from melon and cultivation environment. 1) *Corresponding author : Phone: +82312900152, Fax: +82312900105, E-mail: kim2000@korea.kr Acknowledgement: This work was supported by the research grant of Agriculture Science & Technology Development (Project No. PJ008751) Rural Development Admistration, Republic of Korea.
616 Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon Introduction 최근경제생활향상과건강에대한관심증가로소비자의식생활이변화함에따라채소류, 곡류및과채류등신선농산물에대한소비와관심이증가하고있다. 멜론은비타민 A, C 함량과철분및나아신등영양분이풍부하고맛과향이좋아소비자에게각광을받고있다 (Pitrat et al., 2000; Yong, 2008). 멜론 (Cucumis melo L.) 은열대지방에서주로재배되는박과의덩굴성한해살이작물로원산지는아프리카이고중앙아시아와북유럽및인도를걸쳐전세계적으로재배되고있다 (Kerje and Grum, 2000). 과실표면의그물모양유무에따라네트멜론과무네트멜론으로구분되며, 국내에서대부분이시설내에서토경재배의형태로연중재배되고있다 (Lee, 2005; Yi et al., 2004). 1970 년말에국내에서교배종멜론이재배되기시작해, 소규모로재배되다가 2000 년도에재배면적이약 700 ha 로증가하였다. 최근들어소비자의구매욕구증가로인한소비확대와가격상승등으로 2007 년이후로는재배면적이 1,600 ha 를넘었으며 2009 년생산량은약 5만톤정도로재배면적과생산량이증가하고있다 (Hong, 2009). 미국에서 1996 에서 2008 년까지보고된 82 건의신선농산물식중독사고중 13건 (15.9%) 가멜론이원인으로확인되었으며농산물재배과정중 E. coli O157:H7, Salmonella spp., Listeria monocytogenes 등과같은병원성미생물오염에의한식중독사고발생이증가하고있다 (CDC, 2013). 병원성미생물의오염경로는관개수, 토양, 잔재물과농업활동등으로알려져있으며농산물의재배단계부터철저한안전관리가필요하지만 (Painter et al., 2013), 국내에서관련연구는부족한실정이다. 국내에서멜론에관한연구는품질향상 (Kim et al., 2011a; Cha et al., 2013), 수확후관리 (Choi et al., 2001; Oh et al., 2011), 재배생리에관한연구 (Cha et al., 2006; Zhang, et al., 2006) 등이진행되고있으나, 멜론생산단계에서생물적위해요소및안전성에관한연구는매우미흡하다. 따라서, 본연구는토경재배를하는무네트멜론을대상으로생산단계에서유통단계에따른미생물오염도를평가하기위하여멜론종자, 토양및관개수, 과실과잎을채집하였다. 채집한시료에서총호기성균, 대장균군과대장균, Bacillus cereus, Listeria monocytogenes, Staphylococcus areus 등병원성미생물의오염정도를조사하였으며, 이를통해멜론의생물적위해요소및안전생산을위한기초자료로활용하고자하였다. Materials and Methods 시료채집재배과정중토양및관개수의생물적위해요소분석을위한시료는 2012 년충남논산과전북익산에위치한멜론경작지각각 3 곳에서채집하였다. 토양시료는유해미생물에대한오염가능성이높은표토 10 cm 내외의토양을대상으로각각의장소에서 10지점이상으로채집하여혼합하여사용하였으며, 관개수는 2 L 멸균채수병을이용하여수집하였다. 멜론은수확기에과실과잎부위로구분하여채집하였으며, 멸균팩에담아냉장상자로운반하여냉장고에보관하면서 1일이내에실험에사용하였다 (Table 1). 유통단계멜론의미생물분포에대한조사를하기위하여, 멜론은경기도수원시소재의대형마트, 농산물시장, 재래시장에서각각 3곳의장소에서시료를구입하여, 냉장상태로운반하였으며, 운반즉시바로실험을수행하였다. 시판중인멜론종자의미생물오염도를조사하기위하여, 경기도수원시에소재하는종묘사로부터네트가있는멜론종자와네트가없는멜론종자를구입하여실험에사용하였다. 시료전처리수집한시료중과실은멸균한칼을이용하여 25 g을정량하였고, 토양시료와관개용수는각각 25 g 과, 25 ml 을정량하였으며, 0.1% 펩톤수 225 ml 를넣어스 Table 1. Samples used in this study for investigation of microorganism contamination. Stage Sample Unit of sample No. of sample Leaf 5g 18 Cultivation Fruit 25g 18 Soil 25g 18 Irrigation water 25ml 6 Agricultural market 25g 9 Market Big-box retailer 25g 9 Traditional market 25g 9 Seed Non-net 2g 18 Net 2g 18 Total 123
Kyeong-Hun Park, Hye-Jeong Yun, Won-Il Kim, Jun-Won Kang, Patricia D. Millner, Shirley A. Micallef, and Byeong-Seok Kim 617 토마커 (Interscience, France) 로 250 rpm 에서 2분간균질화하여제조한액을 10배희석액으로간주하고미생물분석을위한시험용액으로사용하였다. 멜론종자는각각 2 g을정량하여 0.1% 펩톤수 18 ml 가담긴멸균백에담아스토마커를이용하여 2분간균질화하였으며, 멜론잎은 5g 을채집하여 0.1% 펩톤수 45 ml 을혼합하여 2분간균질화한다음, 9 ml 의 0.1% 펩톤수를이용하여 10배씩연속희석하여사용하였다. 여 30 에서 24~48 시간배양하였다. 정성분석을위해균질액을 30 에서 24 시간 1차증균하였다. 1차증균액 0.1 ml 을 Fraser Listeria broth 10 ml 에접종하고 37 에서 24 시간동안 2차증균배양하였다. 증균배양액 200 ul 를 Oxford agar 에도말하고 30 에서 24~48 시간배양하였다. 검은색환이있는갈색집락을 TSA 에순수분리한후그람염색과생화화적특성을확인하였고, Aznar 와 Alarcon (2003) 의방법에따라 PCR 로최종확인하였다. 총호기성균분석전처리된시험용액 1 ml 를 0.1% 펩톤수 9 ml 을이용하여 10배씩단계적으로희석하였다. 각각의희석된시료 1 ml 는 3M Petrifilm TM aerobic count plate (3M, USA) 위에분주하고 36±1 배양기에 24~48 시간배양하였으며, petrifilm 위에형성된적색집락을계수하였다. 대장균및대장균군분석시험용액 1 ml 를 0.1% 펩톤수 9 ml 에십진희석하고, 전처리시험용액 1 ml 와희석된시료 1 ml 을 3M Petrifilm TM E.coli/coliform plate(3m, USA) 에 1 ml 씩분주하여 36±1 에서 24~48 시간배양한후기포를수반하는청색집락을대장균양성으로, 기포를수반하는청색집락과기포를수반하는적색집락을대장균군양성으로계수하였다. 병원성미생물분석병원성미생물총 4종 (B. cereus, L. monocytogenes, Salmonella spp., S. aureus) 의분석은식품공전에준하여실시하였다 (KFDA, 2011). B. cereus 의분석을위해전처리된시험용액 1 ml 을 0.1% 펩톤수에 10 배씩연속희석하여 Mannitol Egg Yolk Polymyxin Agar (MYP, Oxoid) 에도말한후 30 에서 24 시간배양하였다. 흰색또는분홍색집락에 lecithinase 를생성하는혼탁한환을생성하는집락을선발하여 TSA 에순수분리하였으며, 그람염색및생화학성특성을확인하고 Choo 등 (2007) 의방법에따라 PCR 로최종확인하였다. S. aureus 의검출을위해서희석액 200 ul 을 Baird Parker Agar (BPA, Oxoid) 에분주하고 37 에서 24~48 시간배양한다음검정색에투명한환을갖는집락을계수하였다. 계수한집락은 TSA 에순수분리하여 Vicedo 와 Aznar (2006) 의방법에따라 PCR 로최종동정하였다. Salmonella 검출을위해시험용액 200 ul 를 XLDagar (Oxoid) 에도말한다음 37 에서 24 시간배양하였다. 가운데부분이검은붉은집락을순수분리한후그람염색및생화학적특성을확인하고 Kong 등 (2002) 의방법에따라 PCR로확인하였다. L. monocytogenes 분석을위해각각의시료를 Listeria enrichment broth (LEB, Oxoid) 에 1:9 의비율로넣어스토마커에서 250 rpm 으로 2분간균질화한다음 Oxford agar (OA, Oxoid) 에 200 ul 씩도말하 통계분석모든실험은 3회이상반복하여수행하였으며, 자료는 log CFU g -1 로환산하였고, SAS 프로그램 (ver 9.2) 을이용하여일원분산분석을실시한후 Duncan's multiple range test 를통해유의성을검증하였다. Results and Discussion 생산단계에서미생물오염정도멜론생산단계에서총호기성균의오염정도를조사한결과는 Fig. 1과같다. 총호기성균은전북익산과충남논산의위치한멜론경작지토양에서각각 6.65, 6.50 log CFU g -1 로확인되었으며, 관개수에서는각각 1.74, 0.43 log CFU g -1 로검출되었다. 익산지역에서멜론과실과잎에서총호기성균이각각 3.08, 4.65 log CFU g -1 로검출되어논산지역 3.11, 5.08 log CFU g -1 보다적게검출되었으나지역간의유의한차이는확인되지않았다 (p<0.05). 농산물에서총호기성균의검출이인체에대한유해성과의관계를직접언급할수없지만, 농식품의생산및유통 가공단계에서위생조건및잠재적인식품안전성을확인할수있는정보로사용되는것으로알려져있어 (Kang and Yoon, 2004), 재배단계에서부터오염을최소화하는관리방법이필요하다고생각된다. Gagliardi 등 (2003) 의연구에서는생산단계의멜론과실표면에서총호기성균이 2.5~3.5 log CFU g -1 수준으로오염되어있었고, 세척 Fig. 1. Population of total aerobic bacteria for samples collected from melon and cultivation environment. values with different letters within the same column differ significantly (P<0.05). Mean±Standard Deviation.
618 Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon 후에는 4.0~5.0 log CFU g -1 수준으로검출되었으며, 대장균군은수확후처리과정후 2.6~3.7 log CFU g -1 수준으로오염되어있는것으로확인되었다. 대장균군은토양과물등자연환경에넓게분포해있는세균으로식품위생상분변오염의지표로활용되고있다 (Yu et al., 2009). 전북익산에서경작지토양과, 멜론잎과과실에서각각 2.91, 1.48, 0.67 log CFU g -1 로대장균군이검출되었고, 논산에서는토양과과실에서 0.7 log CFU g -1 이하로낮게검출되었으나멜론잎에서 2.74 log CFU g -1 로비교적높게검출되었다 (Table 2). 이러한결과는 Gagliardi 등 (2003) 의연구결과와같이대장균군이토양, 관개수뿐만아니라농작업자의오염된손이나경작활동등다양한요인을통하여농산물로오염되기때문으로생각된다. Bacillus cereus 는포자를형성하는그람양성균으로작물의근권부위에있는토양속이나, 관개수, 농기구등농업환경및곡류, 과채류등에널리존재하며, 다른식품과의교차오염을통해식중독을유발하는것으로알려져있다 (Halverson et al., 1993; Jensen et al., 2003). 상추와생산환경의미생물안전성평가연구에서재배토양과퇴비에서 B. cereus 가 3.48, 1.20 log CFU g -1 수준으로검출되었으며 (Kim et al., 2011b), Park 등 (2012) 은당귀재배토양에서 B. cereus 가 3.41 log CFU g -1 수준으로검출되었다고보고하였다. 본연구에서도재배지역에상관없이 B. cereus 가토양에서 3 log CFU g -1 내외의수준으로검출되었고, 멜론잎에서 0.73 log CFU g -1 로검출되었으며, 관개수와과실에서는검출되지않았다. Salmonella enterica 와같은병원균은다양한멜론포장의토양에서검출되어왔으며, 지상부반점과껍질에긁힌상처등을통해멜론으로침입할수있다 (Gallegos-Robles et al., 2009). L. monocytogens, S. enterica 와 E. colio157 등병원성미생물들은멜론재배토양에서최소몇달에서 수개월동안생존이가능한것으로확인되었다 (Suslow et al., 2010). L. monocytogenes 는토양이나물에서쉽게발견되는미생물로멜론식중독사고원인균으로보고되어왔다 (CDC, 2008). 또한, 병원성미생물은토양개량제안으로유입될수있으며오염된분변등을통해멜론에접촉될경우식중독오염사고를일으킬수있다 (FAO/WHO, 2008). 본연구에서, 대장균군과 B. cereus 등을제외한다른병원성미생물이검출되지않아국내에서멜론은비교적안전하게재배되고있는것으로확인되었다. 하지만, 재배과정중특히, 수확시기에병원성미생물에오염된토양이나물에노출될경우멜론에서식중독오염가능성이존재한다 (FDA, 2009). 또한, 상추와깻잎등가식부위가토양과가까이재배되는농산물일수록총호기성균과병원성미생물오염도가높고, 식중독발생가능성이높은것으로보고되었다 (Jung et al., 2006; Hong et al., 2012). Ukuku 등 (2012) 은재배과정중에오염된미생물이멜론표면에존재할경우멜론과육으로의오염가능성을확인하였다. 따라서, 멜론재배단계에서플라스틱이나볏짚등을이용한토양멀칭을통하여토양과지상부와의접촉을최소화하고, 관개수를공급할경우토양이과실에묻지않도록재배단계에서부터위생관리가중요하다. 또한, 멜론의생산과정중병원성미생물에의해오염이되지않도록토양, 관개수및농자재안전관리와같은농산물우수관리인증의도입이필요하다고생각된다. 유통단계에서미생물오염정도유통단계에서멜론의미생물오염도를조사한결과는 Table 3에나타내었다. 국내에서유통되는채소류에서일반적으로검출되는총호기성균은 3.7~8 log CFU g -1 수준의넓은범위로알려져있으며 (Bae et al., 2011; Jung et al., 2012), 토양과먼지등과접촉하는기회가많을수록오염도가높은것으로보고되었다 (Jung et al., 2006). 본연구에서총호기성균은 Table 2. Levels of microbial contamination of samples collected from melon and cultivation environment. Cultivation area Iksan Type E. coli Coliform B. cereus L. monocytogenes S. aureus Salmonella spp. ---------------------------------------------- log CFU g -1 ---------------------------------------------- Leaf N.D. 1.48±1.29ab 0.73±0.64 N.D. N.D. N.D. Fruit N.D. 0.67±0.58b N.D. N.D. N.D. N.D. Soil N.D. 2.91±1.73a 2.95±0.09 N.D. N.D. N.D. Irrigation water N.D. N.D.c N.D. N.D. N.D. N.D. Leaf N.D. 2.74±0.63a N.D. N.D. N.D. N.D. Fruit N.D. 0.22±0.39b N.D. N.D. N.D. N.D. Nonsan Soil N.D. 0.67±1.15b 3.16±0.15 N.D. N.D. N.D. Irrigation water N.D. N.D.c N.D. N.D. N.D. N.D. Values with different letters within the same column differ significantly (P<0.05). Mean±Standard Deviation. N.D. : Viable cell was not detected with detection limit at < l log CFU g -1.
Kyeong-Hun Park, Hye-Jeong Yun, Won-Il Kim, Jun-Won Kang, Patricia D. Millner, Shirley A. Micallef, and Byeong-Seok Kim 619 Table 3. Populations of microorganisms in melons collected from different market place. Sampling Site Total aerobic bacteria E. coli Coliform B. cereus L. monocytogenes S. aureus Salmonella spp. --------------------------------------------------------- log CFU g -1 --------------------------------------------------------- Agricultural market 4.82±0.54a N.D. 0.21 N.D. N.D. N.D. N.D. Big-box retailer 3.94±0.42b N.D. 0.49 N.D. N.D. N.D. N.D. Traditional market 3.99±0.58b N.D. 0.09 N.D. N.D. N.D. N.D. Values with different letters within the same column differ significantly (P<0.05). Mean±Standard Deviation. N.D. : Viable cell was not detected with detection limit at < l log CFU g -1. Table 4. Microbial population of sample collected from melon seeds on the market. Type Net Cultivar Name Total aerobic bacteria E. coli Coliform B. cereus L. monocytogenes ----------------------------------------------- log CFU g -1 ----------------------------------------------- Superseji 1.56±0.24ef N.D. N.D. N.D. N.D. Monered907 2.59±0.05bcd N.D. N.D. N.D. N.D. Eolsdaebak 3.13±0.05ab N.D. N.D. N.D. N.D. SSonata 2.07±0.10de N.D. N.D. N.D. N.D. Eolsimpact 1.59±0.11ef N.D. N.D. N.D. N.D. Eolskingseuta 2.37±0.01cd N.D. N.D. N.D. N.D. Asia hwanggeum 0.33±0.58g N.D. N.D. N.D. N.D. Sweet home 1.05±0.95f N.D. N.D. N.D. N.D. Nonnet Baggeum melon 3.34±0.03a N.D. N.D. N.D. N.D. Numberone 2.21±0.04d N.D. N.D. N.D. N.D. Horunstar 2.87±0.04abc N.D. N.D. N.D. N.D. Manruhomrun 2.67±0.03bcd N.D. N.D. N.D. N.D. values with different letters within the same column differ significantly (P<0.05). Mean±Standard Deviation. N.D. : Viable cell was not detected with detection limit at < l log CFU g -1. 3.94~4.82 log CFU g -1 로비교적낮게검출되었으며판매장소에따라유의적인차이는없었다 (p<0.05). 대장균군은대형마트와농산물시장, 재래시장에서각각평균 0.49, 0.21, 0.09 log CFU g -1 로검출되어 Yu 등 (2009) 이보고한파프리카, 딸기와같은과채류평균오염수준 3.1~5.0 log CFU g -1 수준보다매우낮은오염수준을보였다. 본연구에서대형마트에서구입한시료에서대장균군이최고 2.6 log CFU g -1 으로검출되었으나 18개시료중 4개의시료에서만검출되어평균오염율이낮게조사되었다. Penteado 와 Leitao (2004) 은멜론과수박과육에 L. monocytogenes 를 2 log CFU g -1 수준으로접종한후 10~30 온도조건에서생존및증식정도를조사한결과 2일후에 9 log CFU g -1, 7 log CFU g -1 수준으로증가하는것을확인하였다. 멜론은과실을수확하여후숙을시킬경우당도와맛이증가하는특성을가지고있어, 수확후저장고에서일정기간후숙후유통이되고있는실정이다 (Kim et al., 2011a). L. monocytogens 균이멜론에오염될경우 5 저온에서도생육이가능하므로식중독위험성이높다. Ukuku (2006) 는멜론표면에서 Salmonella spp. 를인위적으로접종했을때세척을해도병원균이완전히제거되지않아병원균이멜론표면에오염될경우식중독발생위험성이높다고하였다. 2011 년미국에서멜론에오염된리스테리아로인한식중독사고로콜로라도를포함한 28 개주에서 147 명의환자가발생하였고, 33 명의사망자가보고되었다 (CDC, 2011). 국내에서유통되는멜론에서 B. cereus 등다른병원성미생물은검출되지않아미생물오염측면에서안전하다고판단된다. 하지만, 멜론을포함한농산물에서병원성미생물에의한식중독사고가증가하고있으므로 (FAO/WHO, 2008), 국내농산물에대한미생물안전성을확보하기위하여병원성미생물의관리기준및위생안전관리수립을위한연구가확대되어야할것으로생각된다. 종자에서미생물오염정도멜론종자의미생물오염도는 Table 4에나타낸바와같이총호기성균을제외하고는모든병원성미생물이검출되지않았다. 멜론종자에서총호기성균은네트유무에따라유의적인차이가확인되지않았
620 Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon 으며 (p<0.05), 조사한시료중아시아황금종자에서 0.33 log CFU g -1 로가장낮은오염도를보였으며얼스대박종자에서 3.13 log CFU g -1 로가장높은오염도를보였다. 알파파종자에서 E.coliO157:H7 과 Salmonalla spp. 이검출되었고콩과겨자종자등에서 B. creus 가검출된바있다 (Portnoy et al., 1976). 또한, Taormina 등 (1999) 은새싹종자에 B. cereus 가오염되어있을경우발아하는동안에 7 log CFU g -1 수준까지증식한다고보고하였다. 영국에서건조종자의병원성미생물오염도를조사한결과, 참깨종자, 해바라기, 알파파및멜론종자등에서 Salmonella spp. 와 E. coli 의오염을확인하였다 (Elviss et al., 2013). 국내에서 Yun 등 (2011) 은무와배추종자에서 B. cereus 가각각 1.69 와 2.5 log CFU g -1 수준으로오염되어있는것을확인하였다. 국내에서재배되는멜론종자에서병원성미생물이확인되지않았지만, 멜론종자채종과정중에서병원성미생물에노출될가능성이존재하므로 (Bankole et al., 2005), 채종과정중병원성미생물에오염되지않도록주의해야한다. 종자가발아하면서병원성미생물에오염된토양, 비료나관개수, 분변등에노출될경우재배과정중잠재적인오염원으로서작용할수있다 (Werner et al., 2007; Winthrop et al., 2003). 열처리나종자소독등을이용할경우미생물을효과적으로제어할수있으므로 (Park et al., 2009; Yun et al., 2011), 국내에서도종자의미생물저감화연구가보완되어야할것으로생각된다. Abstract 재배단계와유통단계에서멜론의미생물위해요소를조사하기위하여전북익산과충남논산에위치한멜론재배지에서토양과관개수, 식물체를채집하였다. 수원시에위치한대형마트, 농산물시장, 재래시장으로부터유통되는멜론과시판종자를채집하여위생지표세균 3종 ( 총호기성균, Coliform, E. coli) 과병원성미생물 4종 (B. cereus, L. monocytogenes, Salmonella spp., S. aureus) 을분석하였다. 멜론재배과정중총호기성균과대장균군은각각 0.43~6.65, 0.67~2.91 log CFU g -1 수준으로검출되었다. Bacillus cereus 는익산지역의토양과멜론잎에서각각 2.95, 0.73 log CFU g -1 으로검출되었고, 논산지역의토양에서 3.16 log CFU g -1 로검출되었다. 농산물시장, 대형마트, 전통시장에서멜론의총호기성균은각각 4.82, 3.94 와 3.99 log CFU g -1 로확인되었다. 유통중인멜론에서대장균군은 0.09~0.49 log CFU g -1 범위였으며, 판매장소에따라총호기성균과대장균군수준에유의적인차이가나지않았다. 모든시료에서 Listeria monocytognes, Salmonells spp., Staphylococcus aureus 는검출되지않았다. 멜론종자의총호기성균은 0.33~3.34 log CFU g -1 수준이었다. 관개수, 토양, 가축분뇨와수확후처 리를포함한다양한농업활동이미생물오염의잠재적인원인이기때문에토양, 물과농자재에대한위생관리와모니터링이안전한멜론생산을위하여수행되어야할것으로생각된다. References Aznar, R. and B. Alarcon. 2003. PCR detection of Listeria monocytogenes: a study of multiple factors affecting sensitivity. J. Appl. Microbiol. 95:953-966. Bae, Y.M., Y.J. Hong, D.H. Kang, S.G. Heu, and S.Y. Lee. 2011. Microbial and pathogenic contamination of ready to eat fresh vegetables in Korea. Korean J. Food Sci. Technol. 43:161-168. Bankole, S., A. Osho, A. Joda, and O. Enikuomehin. 2005. Effect of drying method on the quality and storability of egusi melon seeds. African J. Biotech. 4:799-803. Centers for Disease Control and Prevention (CDC). 2008. Surveillance for foodborne disease outbreaks-unitied States. Morb. Mortal Wkly Rep 60:1197-1202. Centers for Disease Control and Prevention (CDC). 2011. Multistate outbreak of listeriosis associated with jensen Farms cantaloupe- United States. August-September. Morb. Mortal Wkly Rep. 60:1357-1358. Centers for Disease Control and Prevention (CDC). 2013. Surveillance for foodborne disease outbreaks United States 1998-2008. Morb. Mortal Wkly Rep. 62. SS2. Cha, H.S., S.A. Lee, K.H. Kwon, B.S. Kim, D.J. Choi, and A.R. Youn. 2013. Effects of the Initial storage temperature of a PA film-packaged musk melon (Cucumis melo L.) during its storage. Korean J. Food Preserv. 20:14-22. Cha, J.H., B.H. Hwang, E.J. Lee, G.P. Lee, and J.K. Kim. 2006. Effect of 1-methylcyclopropene treatment on quality and ethylene production of muskmelon (Cucumis melo L. cv. Reticulatus) fruit. Kor. J. Hort. Sci. Tchnol. 24:452-458. Choi, H. K., S. M. Park, and C. S. Jeong. 2001. Comparison of quality changes in soil and hydroponic cultured muskmelon fruits. J. Korean Soc. Hort. Sci. 42:264-270. Choo, E.Y., S.S. Jang, K.S. Kim, K.G. Lee, S.G. Heu, and S.R. Ryu. 2007. Prevlence and genetic diversity of Bacillus cereus in dried red pepper in Korea. J. Food Prot. 70:917-922. FAO/WHO. 2008. Microbiological hazards in fresh leafy vegetables and herbs : Meeting report. Microbiological Risk Assessment Series 14. FAO/WHO. Rome. FDA. 2009. Guidance for industry: Guide to minimize microbial food safety hazards of melons. draft guidance. CFSAN. update version 8/24/2011. http://fda.gov/food/guidancecompliancere gulatoryinformation/guidancedocuments/produceandplanpro ducts/ucm174171.htm/ Gagliardi, J.V., P.D. Millner, G. Lester, and D. Ingram. 2003. On-farm and postharvest processing sources of bacterial contamination to melon rinds. J Food Prot. 66:82-87.
Kyeong-Hun Park, Hye-Jeong Yun, Won-Il Kim, Jun-Won Kang, Patricia D. Millner, Shirley A. Micallef, and Byeong-Seok Kim 621 Gallegos-Robles, M.A., A. Moraes, G. Alvarez-Oieda, J.A. Osuna-Garcia, I.O. Martinez, L.H. Morales-Ramos, and P. Fratamico. 2009. PCR detection and microbiological isolation of Salmonella spp. from fresh beef and cantaloupes. J. Fd. Sci. 74:M37-40. Halverson, L.J., M.K. Clayton, and J. Handelsman. 1993. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol. Biochem. 25:485-493. Hong, S.J. 2009. Harvest and postharvest technology. In: Manual of postharvest technology of melon. Ministry of for Food Agriculture Foresty and Fisheries and Nonghyup. Seoul. Korea. Hong, C.K., Y.H. Seo, C.M. Choi, I.S. Hwang, and M.S. Kim. 2012. Microbial quality of fresh vegetables and fruits in Seoul, Korea. J. Fd. Hyg. Safety. 27:24-27. Elviss, N.C., C.L. Little, L. Hucklesby, S. Sagoo, S.S. Lee, E. Pinna, and E.J. Threlfall. 2013. LACORS/HPA co ordinated food liaison group studies : microbiological aseessment of fresh herbs from retail premises in the united kingdom uncovers an international outreak of salmonellosis. pp21. Jensen, G.B., B.M. Hansen, J. Eilenberg, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5:631-640. Jung, K.S., E.J. Roh, K.Y. Ryu, W.I. Kim, K.H. Park, D.H. Lee, K.H. Kim, J.C. Yun, and S.G. Hur. 2012. Monitoring of pathogenic bacteria in organic vegetables form Korean market. Korean J. Soil Sci. Fert. 45:560-564. Jung, S.H., M.J. Hur, J.H. Ju, K.A. Kim, S.S. Oh, J.M. Go, Y.H. Kim, and J.S. Im. 2006. Microbiological evaluation of raw vegetables. J. Fd Hyg. Safety. 21:250-257. Kang, S.T. and J.Y. Yoon. 2004. Foodmicrobiology. hyunseul press. pp. 414-430. Kerje, T. and M. Grum. 2000. The origin of melon, Cucumis melo: A review of the literature. Acta Hort. 510:37-44. KFDA. 2011. Food Standard Code. Korea Food and Drug Administration, Seoul, Korea. Kim, J.Y., K.H. Kwon, K.H. Gu, and B.S. Kim. 2011a. Selection of quality indicator to determine the freshness of muskmelon (Cucumis melo L.) during Distribution. Korean J. Food Preserv. 18:824-289. Kim, S.R., J.Y. Lee, S.H. Lee, W.I. Kim, K.H. Park, H.J. Yun, B.S. Kim, D.H. Chung, Y.C. Yun, and K.Y. Ryu. 2011b. Evaluation of microbiological safety of lettuce and cultivation area. J. Fd. Hyg. Safety. 6:289-295. Kong, R.Y., S.K. Lee, T.W. Law, S.H. Law, and R.S. Wu. 2002. Rapid detection of six types of bacterial pathogens in marine waters by multiples PCR. Water Res. 36:2802-2812. Lee, S.H. 2005. Melon cultivation. Rural development administration. suwon. Korea. Oh, S.H., R. Bae, and S.K. Lee. 2011. Current status of research on the postharvest technology of melon (Cucumis melo L.). Krean J Food Preserv. 18:442-458. Painter, J.A., R.M. Hoekstra, T. Ayers, R.V. Tauxe, C.R. Braden, F.J. Angulo, and P.M. Griffin. 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerg Infect Dis. 19:407-145. Park, E.J., J.H. Kwon, and Y.K. Lee. 2009. Germination rate and microbial safety during cultivation of disinfected seeds. Korean J. Food Preserv. 16:292-298. Park, K. H, B. S. Kim, J. J. Lee, H. J. Yun, S. R. Kim, W. I. Kim, J. C. Yun, and K. Y. Ryu. 2012. Biological hazard analysis of Angelica gigas Nakai on production and marketing steps. Korean J. Soil. Sci. Fert. 45:1216-1221. Penteado, A. L. and M. F. F. Leitao. 2004. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Food Microbiol. 92:89-94. Pitrat, M., P. Hanelt, and K. Hammer. 2000. Some comments on infraspecific classification of cultivars of melon. Acta Hort. 510:29-36. Portnoy B.L, J.M. Gtoepfert, and S.M. Harmon. 1976. An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable sprouts. Am. J Epidemiol. 103:589-594. Suslow, T., A. Sbodio, G. Lopez, P. Wei, and K.H. Tan. 2010. Melon food safety: 2010 Final Report. California Melon Research Board. http://www.cmrb.org/documents/files/201101 100859 01.pdf. Taormina P.J., L.R. Beuchat, and L. Slutskert. 1999. Infection associated with eating seed sprouts. J. Emerg. Infect. Dis. 5:6266-634. Ukuku, D.O. 2006. Effect of sanitizing treatments on removal of bacteria from cantaloupe surface and re-contamination with Salmonella. Fd. Mcirobial. 23:289-293. Ukuku, D.O., M. Olanya, D.J. Geveke, and C.H. Sommers. 2012. Effective of native microflora, waiting period, and storage temperature on Listeria monocytogenes serovars transferred from cantaloupe rind to fresh-cut pieces during preparation. J. Food Prot. 75:1912-1919. Werner, S., K. Boman, I. Einemo, M. Erntell, R. Helisola, B. de Jong, A. Lindqvist, S. Lofdahl, A. Meeuwisse, G. Ohlen, M. Olsson, I. Persson, A. Runehagen, G. Rydevik, U. Stamer, E. Sellstrom, and Y. Andersson. 2007. Outbreak of Salmonella stanley in Sweden associated with alfalfa sprouts, July-August 2007. Eurosurveillance 12:3291. Winthrop, K.L., M.S. Palumbo, J.A. Farrar, J.C. Mohle-Boetani, S. Abbott, M.E. Beatty, G. Inami, and S.B. Werner. 2003. Alfalfa sprouts and disinfection with heat and chlorine. J Food Prot. 66:13-17. Vicedo, A.B. and R. Aznar. 2006. PCR based procedures for the detection and quantification of Staphylococcus aureus and their application in food. J. Appl. Microbiology. 100: 353-364. Yi, S.I., Y.S. Kwon, K.M. Bae, and J.H. Song. 2004. Recent progress for the variety classification and denomination of oriental melon and melon (Cucumis melo L.). Kor J Hort Sci
622 Analysis of Microbiological Contamination in Cultivation and Distribution Stage of Melon Technol. 22:515-522. Yong, S.S. 2008. Food value of muskmelon. RDA. Suwon. Korea. Yu, Y.M., Y.N. Youn, Q.J. Hua, G.H. Cha, and Y.H. Lee. 2009. Biological hazard analysis of paprikas, strawberries and tomatoes in the markets. J. Fd Hyg. Safety. 24:174-181. Yun, H.J., K.H. Park, E.K. Hong, T.H. Kim, S.R. Kim, W.I. Kim, J.C. Yun, and K.Y. Ryu. 2011. Effects of improved heat treatment on microbial reduction and germination in sprout vegetable seeds. Korean J. Food Sci. Technol. 43:611-617. Zhang, C.H, H.M. Kang, and I.S. Kim. 2006. Effect of using waste nutrient solution fertigation on the musk melon and cucumber growth. J. Bio-Env. Cont. 15:400-405.