7(4)-07.fm

Similar documents
10(3)-09.fm

14.531~539(08-037).fm

10(3)-12.fm

10(3)-02.fm

69-1(p.1-27).fm

< DC1A4C3A5B5BFC7E22E666D>

12.077~081(A12_이종국).fm

304.fm

605.fm

82-01.fm

10(3)-10.fm

untitled

12(2)-04.fm

03-서연옥.hwp

07.051~058(345).fm

32(4B)-04(7455).fm

16(1)-3(국문)(p.40-45).fm

12(3) 10.fm

82.fm

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

50(1)-09.fm

19(1) 02.fm

10(1)-08.fm

17.393~400(11-033).fm

<30332DB9E8B0E6BCAE2E666D>

fm

26(3D)-17.fm

9(3)-4(p ).fm

14(4)-14(심고문2).fm

50(5)-07.fm

07.045~051(D04_신상욱).fm

11(5)-12(09-10)p fm

31(3B)-07(7055).fm

14.fm

16(2)-7(p ).fm

416.fm

11(1)-15.fm

14(4)-09(임주훈).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

< D303628B0ADB9CEBCAE29B4DCBAB82E666D>

<312D303128C1B6BAB4BFC1292E666D>

202.fm

15.101~109(174-하천방재).fm

38(6)-01.fm

untitled

untitled

8(3)-01.fm

04김호걸(39~50)ok

14(4) 09.fm

12(4) 10.fm

Microsoft Word - KSR2012A038.doc

이상훈 심재국 Vegetation of Mt. Yeonin Provincial Park Department of Life Science, Chung-Ang University The forest vegetation of Mt. Yeonin Provincial Park

14(2) 02.fm

<30312DC0CCC7E2B9FC2E666D>

DBPIA-NURIMEDIA

11(2)-03(김수옥).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

49(6)-06.fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

27(5A)-07(5806).fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

415.fm

< C0E5BFC1C0E72E666D>

201.fm

7(4)-10.fm

06.177~184(10-079).fm

50(4)-10.fm

16(4)-05.fm

8(2)-4(p ).fm

82-08.fm

fm

4.fm

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

15(2)-07.fm

11(4)-03(김태림).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

(2)-02(최경자).fm

23(2) 71.fm

04.fm

10(1)-05(서희철).fm

DBPIA-NURIMEDIA

04-46(1)-06(조현태).fm

51(2)-09.fm

27(3D)-07.fm

fm

49(6)-10.fm

51(4)-13.fm

16(5)-06(58).fm

15(1)-05(김진희1).fm

3-15(3)-05(이주희).fm

fm

50(6)-03.fm

26(1)-11(김기준).fm

18211.fm

41(6)-09(김창일).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

Microsoft Word - KSR2013A320

인문사회과학기술융합학회

3.fm

Transcription:

w» wz, 7«4y(2005) Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 4, (2005), pp. 282~288 ƒ ù k š w k 1 Á 2 Á 1 Áy y 1 Á 1 Á x 1 Á û 1 1 w û, 2 w (2005 11 15 ; 2005 12 2 ) Aboveground Carbon Storage of Quercus acuta Stands by Thinning Intensity Sang-Tae Lee 1, Yeong-Mo Son 2, Kyung-Jae Lee 1, Jaehong Hwang 1 S Jae-Chae Choi 1, Hyeon-Chul Shin 1 and Nam-Chang Park 1 1 Southern Forest Research Center, Korea Forest Research Institute Jinju, 660-330, Korea 2 Korea Forest Research Institute, Seoul, 130-712, Korea (Received November 14, 2005; Accepted December 2, 2005) ABSTRACT This study was carried out to estimate aboveground carbon contents associated with four years of thinning treatment of Quercus acuta stands in Wando Arboretum, Jeonnam. Stand thinning was conducted over four years using stand table projection for each thinning treatment. Ten sample trees were cut in the surveyed area. Estimation of aboveground biomass was made using the equation model W = ad+ bd 2 where W is oven dry weight and D is DBH in cm. The total aboveground biomass for each intensity treatment area was : control (148.4 ton/ha), light (105.6 ton/ha), moderate (68.7 ton/ ha) and heavy (39.1 ton/ha). Aboveground carbon storage for Quercus acuta stands was found by multiplying dry weigh t (ton/ha) by 0.5. Carbon storage and increment after four years was: control (74.2 tonc/ha), light (52.8 tonc/ha), moderate (34.3 tonc/ha) and heavy thinning intensity area (38.2 tonc/ha). Key words : Carbon storage, Thinning intensity, Biomass, dry weight, Quercus acuta I.» w y x j y» q ƒ ƒw w» w. p y y» y w w, ùy j y ƒ. ùy»z y w w. w j p ƒ ƒ š œm ƒ, w w» w ƒ š. p 1997 hm»z y ƒ w x, w e w. ù ù ƒ k «ƒ j ƒ. k «w ƒ š ww k (Alban and Perala, 1992; Latitat et al., 2000). x» yk x 280 ppm 368 ppm 31% ƒ š Corresponding Author : Sang-Tae Lee(s_stlee@hanmail.net)

Lee et al.: Aboveground Carbon Storage of Quercus acuta Stands by Thinning Intensity 283. y ƒ k ƒ š { w y w w. p ùy 60% yk w, k { ùy ƒ j w, k» w. w yw k s ƒw» w ƒ w. Birdsey(1992) ƒ k sƒ w w, McPherson and Simpson (1999) yk w tw. w Tans et al.(1990) k w, Kurtz et al.(1992) k w» yk ƒ w tw. ü Park(1999)ƒ ù ù w k š sƒw. ¾ k š w x w. ù œ y š w š x w». w k «y yw k š w œ y y š w» š w. p ù m 65%ƒ, k ƒeƒ» ƒ d mw k «y w v w. ƒ ù ù w û s ù y tw»z y ù x ƒe š q. ƒ ù mw x, x w ƒ ù k š y wš w. ¾ ƒw w k š y w ƒ mw k š w» œw w. II. 2.1. y û ü ewš ù y Ÿ w swš. s ƒ ù, ù, yeù, ù. ü ƒ ù w š ƒ ù x ƒ ù, ƒ ù - ù, ƒ ù - ù, ƒ ù - ù j 4 w (Kim et al., 2002). w ewš, 20~25 o, m yw wd ù,, ù, yeù, vù xw, s y Table 1. Table 1 1997 y x y {š Table 1. The characteristic of stand thinning treatment in Quercus acuta Thinning intensity Control Light Moderate Heavy Age class DBH(cm) Height(m) 10.7 9.3 4.0-14.5 3.4-16.7 10.5 9.1 5.4-13.2 4.9-14.6 III 10.9 9.8 8.1-12.4 6.2-17.2 10.7 9.9 7.3-13.2 6.2-14.5 Remained tree(n/ha) 1,300 1,025 900 750

284 Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 4 s 4.0~14.5 cm, š 3.4~17.2 m s š, ƒ ù w ˆ û q. z ha 1,300, 1,025, 900 š 750. x ù w» tƒ» w {š w» ƒ ù w ww, s III š. 2.2. 2.2.1. t d y w» w t d(stand table projection) w. m x y dw, ƒ t»k y w.» d» ƒ w. t d» 5~10 w» y ùkü (Pienaar and Harrison, 1988; Nepal and Somers, 1992). s x s w (growth index ratio or movement ratio) (1) w w.» g ù 4, š i ùkü. t Growth Index Ratio = - 100 (1) i 2.2.2. k š ƒ ù w 20 mü 20 m j» w, ƒ 6~24 cm ¾ w w. t t ew w z w ƒ w, ü s³ 16 cm, s III, s³ š 13 m. 20 cm w d w, w w 2m m 10 cm Ì q w. ƒ w Table 2. Tested Biomass equation models for Quercus acuta where W is weight variables and D is DBH(cm) and a, b, c is parameters Estimation equation DBH variable I W = a + bd 2 II W = ad+ bd 2 III W = a + bd + cd 2 w, 1 2 ƒ w. w x ƒ ù d w, q ƒ w d w 85 o C» w ¾ w, ƒƒ d w. ƒ ù w x w (2004) ww x, t d š š» { š w 1 x w x Table 2. Table 2 z w ƒ f w» w w ƒ e w, I, II, III w 1/D ƒ e w 2, x w w. w ùkü w z R 2 (coefficient of determine) w ( w, 2004). ƒ ù w w ù, y ƒ ù ƒ w w. kƒ» ù, x w w š w. w ƒ k, k ƒ ù k š y w. III. š 3.1. ƒ ù y ƒ

Lee et al.: Aboveground Carbon Storage of Quercus acuta Stands by Thinning Intensity 285 Fig. 1. Comparison of the future DBH distribution after 4 years with current year DBH distribution in Quercus acuta. y dt w w Fig. 1. Fig. 1 ha 1,300, x 3 ¾ w w. s 10~24 cm 10~30 cm¾ y. x 140.04 m 3 /ha, 4 z d 190.22 m 3 / ha ƒw d.» ha 1025, t d w

286 Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 4 Table 3. Dry weight of sample tree of Quercus acuta (unit : kg) Height(m) DBH(cm) Stem Leaf 2 year Leaf 1 year Branch 2 year Branch 1 year 9.9 4.8. 5.1 0.17 0.11 0.27 0.09 9.7 6.5 12.1 0.19 0.19 0.37 0.11 13.5 8.9 25.5 0.37 0.47 0.45 0.12 11.4 100. 33.4 0.44 0.32 0.80 0.30 11.9 120. 45.5 0.36 0.52 0.75 0.29 14.3 140. 78.9 0.40 0.40 0.80 0.44 14.2 15.7. 104.7 0.57 0.78 1.49 0.51 14.1 180. 77. 0.83 0.61 1.83 0.38 14.9 200. 156.5 0.44 0.52 1.23 0.57 15.3 22.3. 221.2 0.77 0.76 2.33 0.64 3 w ùkû s x 6~20 cm 6~26 cm y. y 85.46 m 3 /ha d 133.33 m 3 /ha ƒw. ha 900, dt x 2 ¾ w d. sƒ 8~22 cm 8~26 cm¾ y, x 54.40 m 3 /ha d 83.87 m 3 /ha ƒw d.» ha 750 x w x s 4 ¾ w d w ƒ w j ùkû. dt w s» sƒ 8~18 cm 4 d 8~26 cm¾ y. x 60.55 m 3 /ha, 4 z d 94.42 m 3 / ha ƒw d. 3.2. x ƒ ù w» w t 10, t ƒ 1, 2 w, d s Table 3. Table 3 ƒ ù s 75% wš, ƒ 2 14%, 1 0.8% wš ùkû. 1, 2 w j ùkù ù, ƒ Table 4. Dry weight estimation equation of individual tree biomass of Quercus acuta, where W is weight in kg and D is DBH in cm Model Parameters a b c W = a + bd 2-6.2186 0.3996-0.9366 W = ad+ bd 2-1.1928 0.4470-0.9685 W = a + bd + cd 2 12.96743-3.3941 0.2328 0.9397 1 w 2. ƒ ù {š 1 w w Table 4. {š w x, w š w ƒ w 1/D 2 ƒ e w. Table 4 w {š x w 1/D 2 ƒ e w I~III w ƒ 0.9366~0.9685 s š. x w ùkü ùkû, x W=aD+bD 2 w 4 z w. 3.3. x k š ƒ ù w 4 z d Table 5. R 2

Lee et al.: Aboveground Carbon Storage of Quercus acuta Stands by Thinning Intensity 287 Table 5. Aboveground estimated biomass production(ton/ ha) 2003 year and after four years of thinning treatment of Quercus acuta Thinning intensity Year Predicted increasing ratio.(%) 2003 2007 Control 104.2 148.4 29.8 Light 65.8 105.6 37.7 Moderate 48.5 68.7 29.4 Heavy 46.5 76.4 39.1 Table 5 s ƒ 104.2 ton/ha, 65.8 ton/ha ƒƒ. ƒ ù x k 4 z x s ƒ 148.4 ton/ha, 105.6 ton/ha š ƒƒ 76.4, 68.7 ton/ha ùkû. w Son et al.(2004) ù w 119.46~224.12 ton/ha w û e, Park and Lee(2002)ƒ šw û Ÿ, sw ù 42.00~88.32 ton/ha w ùkû, w w we š ùkû. p, ƒ ù z š w y j, ƒ š w ƒ w 39.1% ƒ š. ƒ w k š w 50% w Table 6 (Alban and Peralam 1992). Table 6 ƒ k š 52.1 tonc/ha, 32.9t onc/ha ùkû, z 4 d k š 74.2 tonc/ha, 52.8 tonc/ha, 34.3 Table 6. Aboveground estimated carbon content(tonc/ha) 2003 and after four years of thinning treatment of Quercus acuta Year Thinning intensity 2003 2007 Control 52.1 74.2 Light 32.9 52.8 Moderate 24.2 34.3 Heavy 23.3 38.2 tonc/ha š 38.2 tonc/ha d. k š, ùkù. ƒ ù w ƒ» k w., Park(1999) ù ù k š s³ 39 ù 48.85 tonc/ha, s³ 40 ù 57.49 tonc/ha ù, ƒ ù w û e, ù w e š. ù ƒ ù s³ 20~30 w ù k š q. ù ù ƒ ƒƒ 835, 907 ƒ ù û, w e š, w e š. š w ƒ ù k š» ƒ w, ù ù w û, s š w k š w q. w ù s³e(ovington, 1965) 87.3 tonc/ha w w s š ƒ û û ù kû. ƒ ù w w w kv, ƒ œ»,»z y k š sƒ d w w. p ù wù ƒ ù û w swš, w»»z y» sƒ mw ƒe k. IV. û ƒ ù 4 k š w» w. 4 dt w, s W

288 Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No. 4 =ad+bd 2 x w w. (148.4 ton/ha), (105.6 ton/ha), (68.7 ton/ha) š (39.1 ton/ha) s. ƒ ù 4 k š 0.5 w w, (74.2 tonc/ha), (52.8 tonc/ha), (34.3 tonc/ha) š k š 38.2 tonc/ha. x w, 2004: sƒ d l. 125pp. Alban, D. H., and D. A. Perala, 1992: Carbon storage in Lake States aspen ecosystem. Canadian Journal of Forest Research 22, 1107-1110. Birdsey, R. A., 1992: Carbon Storage and Accumulation in United States Forest Ecosystems. USDA-USFG Gene. Tech. Rep. NE-244 137pp. Kim, S. O., S. C. Chin and C. J. Oh, 2002: The Community Structure of Quercus acuta Forest at Wando Warm- Temperate Forest Arboretum. Journal of Korean Forest Society 91(6), 781-792. Kurtz, W. A., M. J. Apps, T. M. Webb and P. J. McNamee, 1992: The carbon budget of the Canadian Forest Sector : Phase I. Inf. Rep. NOR-X-326, Forestry Canada, Edmonton, Alberta. 56pp. Latitat, E., T. Karjalainen, D. Loustau and M. Lindner, 2000: Contribution of forests and forestry to mitigate greenhouse effects. Biotechnology, Agronomy Society and Environment 4(4), 241-251. McPherson, E. G., and J. R. Simpson, 1999: Carbon Dioxide Reduction through Urban Forestry : Guideline for Professional and Volunteer Tree Planters. USDA- USFS Gen. Tech. Rep. PSW-GRT-171. 237pp. Nepal, S. K., and G. L. Somers, 1992: A generalized approach to stand table projection. Forest Science 38,: 120-133. Ovington, J. D., 1965: Organic production, turnover and mineral cycling in woodlands. Biological Revolution 40, 295-336. Park, G. S., 1999: Aboveground and Soil Carbon Storage in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju. Journal of Korean Forest Society 88(1), 93-100. Park, G. S., and S. W. Lee, 2002: Biomass and Net Primary Production of Quercus serrata Natural Stands in Kwangyang, Muju, and Pohang Areas. Journal of Korean Forest Society 91(6), 714-721. Pienaar, L. V. and W. M. Harrison, 1988: A stand table projection approach to yield prediction in unthinned even-aged stand. Forest Science 34, 804-808. Son, Y., I. H. Park, M. J. Yi, H. O. Jin, D. Y. Kim, R. H. Kim and J. O. Hwang, 2004: Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19, 21-28. Tans P. P., I. Y. Fung, and Taro Takahashi, 1990: Observational constraints on the global atmospheric CO 2 budget. Forset Science 247, 1431-1438.