w wz 21«1y Kor. J. Clin. Pharm., Vol. 21, No. 1. 2011 Adenosine x w x Á w w w (2010 12 21 Á2011 3 25 Á2011 3 25 ) Pharmacological Action of Adenosine on the Cardiovascular System Hyung Soo Ann and Young Me Lee College of Pharmacy, Dongduk Women's University, Seoul, 136-714, Korea (Received December 21, 2010ÁRevised March 25, 2011ÁAccepted March 25, 2011) Bolus intravenous injection of adenosine resulted the temporal decrease of systemic blood pressure and heart rate in the anesthetized rats. Adenosine also resulted the persistent decrease of contractility and heart rate in the isolated spontaneously beating rat right atria. Both of the above inhibition effets of adenosine were increased by the pretreatment of NBI (nitrobenzylthioinosine), whitch is an adenosine transport inhibitor, but decreased by the pretreatment of 8- phenyltheophy1line, which is an adenosine antagonist. In isolated thoracic aorta ring segment of normotensive rats, intact rings were relaxed by adenosine (42.3±8.7%) and ATP (85.9±15.8%) in the concentration of 10-4 M, but rubbed rings were relaxed by adenosine (35.2±1.9%) and ATP (11.3±9.0%) in 10-4 M. After pretreatment of L-NAME (N-Nitro-Larginine methyl ester), which is an NO inhibitor, adenosine-induced relaxation was not affected, but ATP-induced relaxation was significantly inhibited (P < 0.01). Meanwhile, adenosine resulted almost same as vasorelaxation in isolated thoracic aorta of SHR comparing to those of normotensive rats. But, vasodilation responses of ATP in intact rings of SHR are significantly inhibited comparing to those of normotensive rats. Adenosine-induced relaxation is attenuated after 8- phenyltheophylline pretreatment, but increased after NBI pretreatment. However, ATP-induced relaxations are not affected by 8-phenyltheophylline or NBI pretreatment. These results suggested that the hypotensive effects of adenosine was due to the decrease of contractile force and heart rate through the A1 receptor and vasodilation are mediated by A2 receptor of the vascular smooth muscle. And, the heart protective and vasodilation effects of adenosine might suggest that it would be useful in the acute treatment of coronary artery disease. Key words - adenosine, ATP, vasodilation, hypotensive effect Adenosine sü ATPw w, ƒ ATP w w ü w nucleoside. sü energy ƒeƒ, x sy w. 1), adenosine ATP l wš x y g x œ ƒ k y ùkü. 2) 1978 Burnstock purine adenosine ey w P 1 ATP ey w P 2 w, 3) Londos adenosine P 1 sü w P s w R Correspondence to : x w w w w š 23-1, ) 136-714 Tel: +82-2-940-4524, Fax: +82-2-940-4195 E-mail: hyungsoo@dongduk.ac.kr w š, R A 1 (Ri) A 2 (Rs) ƒ w. 4) x, aensosine A1, A2A, A2B, A3 4ƒ, A1 w adenylate cyclase ùkü še y, A2 x sy adeny1ate cyclase z ùkü ey. 5), adenosine z A1 ƒ w, wš, w w w. 6), A1 adenosine A2A x ƒ jš ƒ k. Adenosine» 7)., A1 w s + K ƒ k y jš w ƒ, w, adenosine sü camp ƒ w Ca ++ 6
Adenosine x w 7 j wš,» k., w w adrenaline w., s z β-z y y adenylate cyclase w camp mw Ca channel ww ++. 8) wr, adenosine w x y A2 adenylate cyclase y y j. ù w x y» w š., ++ üv s NO w, Ca y y j K channel w š + w. 9), adensone z NECA w x ƒz ƒ NO w NAME e adenosine A2A w x y NO w š w. 10) w, Adenosine x y NO ƒ jš, K channel open w + ƒ w š w. w 11) adenosine x, m, ù, x ƒ j, w s sü» ƒ., adenosine üv s, üv s šw. w, w ù ƒ üv s ùkü, üv s w š w. 12-14) Adenosine A2B A3 mw x y w, y A2B yƒ, A3 š w. 15) adenosine e» w, w x w» w, š x y. ü ATP w adenosine w z ùkü. Adenosine A1 z x w, w š ùkù. 16), w adenosine A1 ¼w e. Adenosine x y 17) w w xx y x y yw z» w. ù w. x w adenosine w» ³ wš w, w x üv sƒ šx { w sy s üv s w ƒƒ w ATP üv s x mwš w. x x S-(P-nitrobenzyl)-6-thio-inosine (NBI, C 17 H 17 N 5 O 6 S MW=419.4), N-nitro-L-arginine methylester HCL (L-NAME MW=269.7), N 6 -cyclohexyl adenosine (CHA, C 16 H 23 N 5 O 4 FW=308.3), 5'-(N-ethylcarboxamido)-adenosine (NECA, C 12 H 16 N 6 O 4 FW=308.3) Sigma Chemical (St, Louis, Mo) l w w. x 250 g Sprauge-Dawley f w, šx Okamoto Spontaneously Hypertensive Rat w. x y 25% urethane (6 mg/kg s.c.) ketamine (5 mg/kg, i.m.) 30 k w w k w ƒ x wš, 10% heparin canule, z Grass Model 7E polygraph transduser amplifier g x d w. n w n saline needle jš 30 g. adenosine 0.03, 0.1, 0.3 mg/ kg ƒƒ bolus w. k z 8- phenyltheophylline 10 mg/kg 75% dimethylsulfoxide w k NBI 10 mg/kg w e w z adenosine 0.03, 0.1, 0.3 mg/kg ƒƒ bolus w.» y» x l s³ x w, x y d w. y Ether k l w 95% O 2 5% CO 2 sy k 37 C o Krebs-Henseleit (KCL 4.8 mm, CaC1 2 1.75 mm, MgSO 2 7H 2 O 1.2 mm, KH 2 PO 4 1.0 mm, NaCl 118.0 mm NaHCO 3 27.2 mm, Glucose 11.1 mm, EDTA 0.03 mm ƒwš ph 7.4 ) w ü z 20 ml organ bath ü x wš 2g resting tension. 1 y k z, organ bath ü n wš y polygraph v ùkü. y n e 100% w ùkü. Adenosine 4 10-7, 4 10-6, 4 10 M ƒw z 10-5 y d w. 8- phenyltheophylline NBI e z adenosine ƒ
8 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 wš y d w. w adenosine 10% dimethylsufoxide w k CHA NECA 3 10-10, 9 10-10, 3 10-9, 9 10-9 M ƒw. m means±s.e. t w, Student's unpaired t-test w. x x ether w wš, x k z, { üš 37 o C, 95% 0 2-5% CO 2 sy k Krebs-Henseleit. { ¼ 5mm ring form wš v w organ bath ü x w. Gould transducer amplifier Grass FTO3C force transducer d w. 2 g basal tension 1 y k z, d w.» w norepinephrine 10-7 M k z ƒw w, norepinephrine w 100% w w % ùkü. üv s ù üv w, üv acetylcholine 10-6 M n 75% ù üv sƒ w š q w. üv s adenosine (10-6, 10-5, 10-4, 3 10-4 M) ATP (10-7, 10-6, 10-5, 10-4 M) ƒƒ ƒw z x d w. 8-phenyltheophylline NBI e z adenosine ATP ƒwš x d w. w adenosine 10% dimethylsufoxide w k CHA NECA ƒw x d w. š x y Urethane k adenosine n x y Fig. 1 ùkü. Adenosine n x ƒ ùkû, 1 ü., adenosine 0.01, 0.1, 0.3 mg/kg s ³ x ƒƒ 13±2, 27±3, 73±4mmHg, ƒƒ 20±1, 73±6, 240±15 beats/min x ƒ z ùkü (Table 1). wr, adenosine NBI 2 mg/kg e z adenosine n s³ x 20Û3, 42Û5, 94±12 mmhg, 50±6, 85±10, 275±34 beats/min w ƒ ùk ü. Adenosine s sü uptake adenosine deaminase z w w NBI dipyridamole ù diazepam uptake w s adenosine ƒ k ƒ k» š ew. 18), adenosine ¼w 8-phenyltheophylline 10 mg/kg e w z adenosine n s³ x ƒƒ 6±1, 13±2, 35±4 mmhg Fig. 1. Typical recording of blood pressure (B.P.) and heart rate (H.R.) changes induced by adenosine in the anesthetized rats.
Adenosine x w 9 Table 1. Effect of nitrobenzylthioinosine (NBI) or 8-phenyltheophylline pretreatment on the decrease in mean blood pressure (left) and the negative chronotropic action (right) of adenosine in the anesthetized rats. Pretreatment M.B.P (mmhg), 5±1, 15±2, 190±21 beats/min w. w adenosine x w ƒ adenosine w., adenosine A1 z x w, w š ùkû» š e w. 16) y Organ bath ü x w adenosine e w (Fig. 2)., adenosine 3 10-7, 3 10-6, 3 10 M e -5 ƒƒ 16±2, 28±3, 71±4%, Adenosine (mg/kg, i.v.) 0.01 0.1 0.3 H.R. (beats/min) M.B.P. (mmhg) H.R. (beats/min) M.B.P. (mmhg) H.R. (beats/min) Control -13±2-20±1-27±3-73±6-73±4-240±15 NBIG(2 mg/kg, i.v.) -20±3-50±6 ** -42±5 * -85±10-94±12-275±34 8-phenylGtheophyllineG(10 mg/kg i.v.) -6±1 * -5±1 * -13±2 * -15±2 *** -35±4 ** -190±21 represents the change of. Results are expressed as a mean±s.e., n=6. * P <0.05, ** p < 0.01, *** p < 0.001 vs control. ƒƒ 6±1, 18±6, 50±15% ùkü (Table 2). w organ bath ü adenosine ü x w ùkü, ü organ bath ü adenosine w j adenosine deaminase wz ƒ» š. M) e wr, adenosine NBI (10-6 z adenosine e 22±2, 42±5, 75±7% 8±2, 30±3, 60±7% w ƒ w ùkü ù., adenosine ¼w 8-phenyltheophylline 10-5 M e w z adenosine e 11±1, Fig. 2. Typical recording of contractile force (C.F.) and heart rate (H.R.) changes induced by adenosine in the isoleted spontaneously beating right atria.
10 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 Table 2. Effect of nitrobenzylthioinosine (NBI) or 8-phenyltheophylline pretreatment on the negative inotropic (C.F.) and chronotropic (H.R.) action of adenosine in the isolated spontaneously beating rat right atria. Pretreatment Adenosine (M) 3 10-7 3 10-6 3 10-5 C.F. (%) H.R. (%) C.F. (%) H.R. (%) C.F. (%) H.R. (%) Control -16±2-6±1-28±3-18±6-71±4-50±15 NBI(10-6 M) -22±2-8±2-42±5-30±3-75±7-60±7 8-phenyl theophylline(10-6 M) -11±1-3±0-17±3-4±1 * -44±5 ** -14±2 ** represents the change of. Results are expressed as a mean±s.e., n=6. * P<0.05, ** p<0.01 vs control. 17±3, 44±5% 3±0, 4±1, 14±2% ùkü. adenosine w z ƒ adenosine ¼w (8-phenyltheophylline) š, adenosine uptake w (NBI) ƒ x x w. Adenosine A1 z CHA 3 10-10, 1 10-9, 3 10-9, 1 10-8 M e 32, 38, 55, 75%, 5, 14, 38, 60%. w, adenosine ¼w 8-phenyltheophylline 10 M e -5 z CHA n 17, 30, 38, 47%, 2, 4, 9, 12% z ƒ. w adenoisne w A1 w z w w. Adenosine»., A1 w s + K ƒ k y jš w ƒ, w w adrenaline w., s z β-z y y adenylate cyclase w camp mw Ca channel ww ++. 8) x { adenosine w, üv s Fig. 3. Typical recording of vasorelaxation induced by adenosine (left) or ATP (right) in the isolated normotensive rat thoracic aorta with intact endothelium (upper) and disrupted endothelium (lower). All thoratic aortas were precontracted with norepinephrine 10-7 M. The presence of intact endothelium were confirmed by the acetylcholine-induced vasorelaxation. Similar experiments were obtained from an additional 6 thoracic aortas.
Adenosine x w 11 Table 3. Effect of L-NAME, which is a NO inhibitor, on the adenosine or ATP-induced vasorelaxation in the isolated normotensive rat thoracic aorta with intact endothelium. And, vasorelaxation induced by adenosine or ATP in the isolated spontaneously hypertensive rat (SHR), compared with norma rat, thoracic aorta with intact endothelium. Results are expressed as a mean±s.e., n=6. ** p<0.01, *** p<0.001 vs normal rat. Normal Rat SHR Thoracic Aorta intact endothelium disrupted endothelium L-NAME (10-6 M) pretreatment intact endothelium Adenosine (10-4 M) ATP (10-4 M) 42.3±8.7% 85.9±15.8% 35.2±1.9% 11.3±9.0% *** 35.1±1.8% 15.4±10.0% ** 35.1±5.3% 19.6±4.0% *** w ùkü (Fig. 3)., { üv sƒ w adenosine 10 M -4 42.3±8.7% ùkü, üvƒ 10 M 35.2±1.9% ù -4 kü ƒ (Table 3). adenosine üv s w w. y wš, üv s NO w NAME ew. L-NAME (10 M) e -6 adenosine 10 M -4 35.1±1.8% x ùk ü w ƒ. w, šx { adenosine 10-4 M 35.1±5.3% w w ƒ. šx x x š š. üv s acetycholine 10 M { 88% -6 w w, šx 52% w üv sƒ. w adenosine üv sƒ sy w üv s w w., ATP w adenosine w w ùkû, f (Fig. 3). w, üv s adenosine üv s ùkü. ATP { üv sƒ w 10 M -4 85.9%±15.8 ùkü ù, üvƒ 10 M -4 11.3%±9.0% ùkü (Table 3). w, L-NAME 10 M e ATP -6 10-4 M 15.4%±10.0 ùkü w, üvƒ šx { ATP 10 M -4 19.6%±4.0 w w. w ATP adenosine üv s üv s w P2(ATP) w z š ew. 19) w, Fig. 3 e adenosine { üv s w ATP üv s w NO» w., { adenosine Fig. 4. Effects of 8-phenyltheophy1line, which is an adenosine antagonist, or nitrobenzylthioinosine (NBI), which is an adenosine transport inhibitor, on the adenosine (left) and ATP (right)-induced vasorelaxation in the isolated normotensive rat thoracic aorta with intact endothelium. Results are expressed as a mean±s.e., n=6. * P<0.05 vs control.
12 Kor. J. Clin. Pharm., Vol. 21, No. 1, 2011 ATP sü y y ùkü š, ƒƒ, š x ùkü w. wr, { üv sƒ w adenosine adenosine ¼w 8-pheny1theophy1line 10-6 M e (Fig. 4)., adenosine sü w NBI 10-6 M e adenosine w 10 M -6 15.6±2.6%, 10 M -5 39.8±15.0%, 10 M -4 50.5±19.8% ƒƒ w ƒ. Adenosine s AMP w w ù, s ü adenosine deaminase w inosine ù adenosine kinase w AMP y. 17) adenosine sü w NBI e adenosine x ƒ š., ATP w x NBI 8- pheny1theophy1line e w w. { A1 adenosine z CHA 10-5 M ¾ n w ù, A1 A2 adenosine z NECA e 10 M 76.8±13.1% -4 w. w adenosine w x s y s w A2 w z w, x sy w A2 adenosine CHA NECA w p š š š e. 18), adenosine x sy w A2 w camp g j w, ATP x üv s w P2 w NO jš x sy cgmp g w. adenosine x w. w adenosine x w z adenosine sü uptake w NBI e w ƒ, adenosine theophylline e w. w, adenosine adenosine A1 z CHA e ùkü. w adenosine z NBI e w ƒ, theophylline e w. w adenosine w z s w adenosine A1 z» w. wr, organ bath ü x w { adenosine x w, üv s w x w. w adenosine x NO L-NAME e w üv s ùkü. w üv s ƒ šx (SHR) { adenosine w x ùk ü. w adenosine x NBI e ƒ ù, adenosine ¼w 8-pheny1theophy1line e. w, A1 z CHA w ù, A2 z NECA adenosine w w. w adenosine w x x sy s w adenosine A2 z» w. w adenosine x y z x s w xx y e w. 2009 w w w w. š x 1. Tasatargil A, Sadan G, Karasu E, Ozdem S. Changes in atrium and thoracic aorta reactivity to adenosinergic and adrenergic agonists in experimental hyperhomocysteinemia. J Cardiovasc Pharmacol 2006; 47(5): 673-9. 2. Urmallya VB, Pouton CW, Devine SM, Haynes JM, Warfe L, Scammells PJ, White PJ. A novel highly selective adenosine A1 receptor agonist VCP28 reduces ischemia injury in a cardiac cell line and ischemia-reperfusion injury in isolated rat hearts at concentrations that do not affect heart rate. J cardiovasc Pharmacol 2010; 56(3): 282-92. 3. Burnstock, G. A basis of distinguishing two types of purinergic receptors, In: Bolis L, Straub RW, eds. Cell Membrene Receptors for Drugs and Hormones. New York, Raven, 1978; 107-11. 4. Londos D, Cooper DMF, Schlegel W. Adenosine analog inhibit adipocyte adenylate cyclase by a GTP-dependent process:basis for action of adenosine and methylxanthines of cyclic AMP productions and lipolysis. Proc Natl Acad Sci USA 1978; 75, 5362-67. 5. Van Calker D, Muller M, Hamprecht B, Adenosine regulates, via two different types of receptor, the accumulation of cyclic AMP in cultured cells. J Neurochem 1979; 33, 999-1006.
Adenosine x w 13 6. Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 2009; 193: 161-88. 7. Tikh EI, Fenton RA, Dobson JG Jr. Contractile effects of adenosine A1 and A2A receptors in isolated hearts. Am J Physiol heart Circ Physiol 2006; 290(1): H348-56. 8. Belardinelli L, Linden J, Berne R, The cardiac effects of adenosine. Prog Cardiovasc Dis 1989; 32, 73-9. 9. Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 2005; 288(4): H1633-40. 10. Teng B, Ledent C, Mustafa SJ. Up-regulation of A 2B adenosine receptor in A 2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 2008; 44(5): 905-14. 11. Nakazawa T, Mori A, Saito M, Sakamoto K, Nakahara T, Ishii K. Vasodilator effects of adenosine on retinal arterioles in streptozotosin-induced diabetic rats. Naunyn Schmiedergs Arch Pharmacol 2008; 376(6): 423-30. 12. Gordon JL, Martin W, Endothelium-dependant relaxation of the pig aorta : relationship to stimulation of Rb efflux from isolated endothelial cells. Br pharmacol 1983; 79: 531-541. 13. Fruchgott RF. In: Vanhoutte PM, ed. Mechanism of vasodilators. New York: Raven Press, 1988; 401-414. 14. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G, Endothelium derived relaxing factor produced and releases from artrey and vein is nitric oxide. Proc Nat1 Acad Sci USA 1987; 84: 9265-9. 15. Jenner TL, Rose'Meyer RB. Adenosine A(3) receptor mediated coronary vasodiation in the rat heart: changes that occur with maturation. Mech Ageing Dev 2006; 127(3): 264-73. 16. Honey AC, Bland-Ward PA, Conner HE, Fenluk W, Humphrey PP. Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat. Cephalalgia 2002; 22(4): 260-4. 17. Hocher B. Adenosine A1 receptor antagonists in clinical research and development 2010; 78(5): 438-45. 18. Paterson ARP, Lau EY, Dahli E, Cass CE, A common basis for inhibition of nucleoside transport by dipyridmole and nitrobenzylthioinosine. Mol Pharmacol 1980; 18: 40-8. 19. Harrington LS, Evans RJ, Wray J, Norling L, Swales KE, Vial C, Ali F, Carrier MJ, Mitchell JA. Purinergic 2X1 receptors mediate endothelial dependent vasodilation to ATP. Mol Pharmacol 2007; 72(5): 1132-6.