3.고봉현

Similar documents
#Ȳ¿ë¼®


에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

공휴일 전력 수요에 관한 산업별 분석

164

DBPIA-NURIMEDIA

<C7A5C1F620BEE7BDC4>

- 1 -

DBPIA-NURIMEDIA

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

歯표지_최종H_.PDF

11¹ÚÇý·É

DBPIA-NURIMEDIA

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

34, 40 34, Blume, Easley and O Hara(1994)..,. (random walk),. Easley and O Hara(1987). Karpoff(1987) (1987) (+). (private information) (public informa

<2D3828C8AE29B9DAC3B5B1D42E687770>

DBPIA-NURIMEDIA

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

공연영상


에너지경제연구 제13권 제1호


서론 34 2

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

슬라이드 1

untitled


<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

에너지경제연구 제12권 제2호

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

2

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

<30342E20B8F0BCF6BFF82E687770>

DBPIA-NURIMEDIA

歯1.PDF

한국성인에서초기황반변성질환과 연관된위험요인연구

Output file

Æ÷Àå½Ã¼³94š

20, 41..,..,.,.,....,.,, (relevant).,.,..??.,

04김호걸(39~50)ok

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: NCS : G * The Analy

Buy one get one with discount promotional strategy

歯엑셀모델링

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

ÀÌÁÖÈñ.hwp

퍼스널 토이의 조형적 특성에 관한 고찰

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H


06_À̼º»ó_0929

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

歯kjmh2004v13n1.PDF

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37

<303720C7CFC1A4BCF86F6B2E687770>

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

노동경제논집 38권 4호 (전체).hwp


歯3이화진

발간사 반구대 암각화는 고래잡이 배와 어부, 사냥하는 광경, 다양한 수륙동물 등 약 300여점의 그림이 바위면에 새겨져 있는 세계적 암각화입니다. 오랜 기간 새겨진 그림들 가운데 고래를 잡는 배와 어부모습은 전 세계적으로 유례를 찾기 힘들 정도로 그 중요성과 가치가 큽

untitled

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

DBPIA-NURIMEDIA

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp


232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

44-4대지.07이영희532~


54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

KD hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

歯목차.PDF

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

특수교육논총 * ,,,,..,..,, 76.7%.,,,.,,.. * 1. **

012임수진

에너지경제연구 제13권 제1호

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

제 1 부 연구 개요

본문01

04-다시_고속철도61~80p

<BABBB9AE2E687770>

Transcription:

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets.. 1. 2.. 1. 2. 3. ARCH-LM.. 1. 2. Abstract.,,,. 2000,,.. 2008 1,382 3,363 41.1%, 1995 2009 7 17 2009 8 21 2009 8 27 (2008). * (Corresponding author : 064-726-6216, kbh0225@jdi.re.kr) 49

29.8%., (, 2002).....,. (uncertainty) (risk). 1).., (price level) (asymmetry), (volatility spillover), (volatility clustering). (2004) (,, 7 ), GARCH t (nonlinear dynamics). (2008) (, ), ARCH., (2007) Binh. et. al(2008).,., 1) (2007),,. 50

.... 2000 1 1 2008 6 30 2) (kg ). 2,613,. (seasonal anomalies), (,, ).,,,, (,,, ).,. Bollerslev(1986) GARCH (Generalized Autoregressive Conditinal Heteroskedasticity). GARCH, 2).. 3),,. GARCH-M, GARCH-M.. 51

. Bollerslev(1986) ARCH, GARCH(p, q). y t X t θ ε t ε t σ t μ t, ε t Ψ t 1 N(0,σ 2 t) σ 2 t α 0 p Σ i 1 α i ε 2 t 1 q Σ j 1 β j σ 2 t 1 α i 0, β j 0 q 0 ARCH(p), p q 0 ε t (white noise). ARCH GARCH AR ARMA. α β, α β. p q 1 GARCH(1,1) ( ) (stationarity condition) α 1 β 1 1. α 1 β 1 (persistency parameter), α 1 β 1 1 Integrated GARCH(IGARCH) 4). GARCH(1,1) (fat tailed) (leptokurtic). ( ). GARCH(1,1). r t c m Σ i 1 b ir t i d 1D 1t d 2D 2t d 3D 3t d 4D 4t d 5D 5t 2πx 2πx 2πx 2πx e 1 sin ( ) e 2sin ( ) e 3cos ( ) e 4cos ( ) ε t Y 1 Y 2 Y 1 Y 2 ε t σ t μ t, ε t Ψ t 1 N(0,σ 2 t) σ 2 t θ αε 2 t 1 βσ 2 t 1 γ 1 D 1t γ 2 D 2t γ 3 D 3t γ 4 D 4t γ 5 D 5t 2πx 2πx 2πx 2πx δ 1sin ( Y ) δ2sin ( ) δ3cos ( ) δ4cos ( 1 Y 2 Y 1 Y 2 ) 4) α 1. λ( α 1 β 1) 1 ( ) (, 2004, pp. 221 222). 52

, r t (, ), (AR) (lag) AIC(Akaike Information Criterion). Ψ t 1 t 1, μt 0 1 i.i.d.. D 1t D 6t. t D 1t 1, 0. (D 6t ) (perfect multicollinearity) (dummy variable trap)., sin cos sine cosine, (spectral analysis) 5). sine cosine. π 3.1415, x 1 1, Y 1 1, Y 2. F. GARCH(1,1) n student t GARCH(1,1) t 6). t GARCH (log likelihood function). GARCH(1,1) n T 1 1 ε 2 t L ( ) ln (2π) ( ) Σ T lnσ 2 t 1 t ( ) Σ T ln 2 2 2 t 1 σ 2 t GARCH(1,1) t v 1 v 2 2 L Γ ( ) Γ ( ) 1 π 1/2 [(v 2)σ 2 t] 1/2 [1 ε 2 tσ 2 t(v 2) 1 ] (v 1) 2 t v (v 20),, v fat tailed. fat tailed 5),., sine cosine 2π cosine 0 cos t cos( t), sine sin t sin( t). sine cosine 1 1 ( 1998, p. 933). 6), 2004, pp. 214 223. 53

r t. BHHH, BFGS, Marquart DFP (numerical optimization) (algorithm) (θ, α, β) 7).. (price level) (change rate of price),. (non stationary) I(1)., (price level) (raw data). t P t, P t P t 1 Rt P t 1 [t 1, t] (change rate of price).. P t P t 1 P t P t 1 Rt log(1 ) P t 1 P t 1 P t log logpt logp t 1 Pt 1 1. 2003,. 7) EViews 5.0v. Marquart (option). 54

24000 24000 20000 20000 16000 16000 12000 12000 8000 8000 4000 4000 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 (a) (b) 300 150 200 100 100 50 0 0-100 -50-200 -100-300 -150 500 1000 1500 2000 2500 500 1000 1500 2000 2500 (c) (d) 1,. 2.,,., 2000 1 2002 1 1. 14,000 3 8)., 2000 9,500 2002 8) (2007, pp. 56 57),. 55

2 (5 ) 4,000 2004 12,000. 2005,. (KMI, ). 1,., (skewness) 0,, (kurtosis) 3 9)., (R t R) 3 (R t R) 4 σ 3 σ 4 (skewness), left-skewed, right-skewed. (kurtosis) 3 (leptokurtic), (playkurtic),, leptokurtic (, 2004, pp. 203 204). 9) E [ ], E [ ] 56

1 0.001540 0.013999 0.249084 0.593902 263.7247 133.5777 200.9124 119.1671 27.64541 22.85414 (skewness) 0.078849 0.229536 (kurtosis) 17.14436 5.697713 Jarque Bera (p value) 21776.22 (0.00000) 814.9881 (0.00000) 1,795,156 163,256 Q (10) 690.19 (0.000) 492.94 (0.000) Q (20) 718.75 (0.000) 512.93 (0.000) Q 2 (10) 1562.54 (0.000) 976.27 (0.000) Q 2 (20) 2033.85 (0.000) 1296.35 (0.000) Q(T) T Ljung Box Q, Q 2 (T) T Ljung Box Q, ( ) (significance level). (a) (b) 3 (leptokurtic) ( 3 ). 0, 1,.,. (H 0 ) Jarque Bera., 1%. 57

leptokurtic., T. (H 0 ) T Ljung Box Q 10), 1%.,. Ljung Box Q. Ljung Box Q ARCH. (stationarity), ARCH (ARCH Lagrange Multiplier : ARCH LM)., DF, ADF, PP.,, 1% (stationary)., ARCH LM (1, 5, 10 ) ARCH 1% 2 ARCH LM ARCH LM DF ADF PP ARCH(1) ARCH(5) ARCH(10) 25.56652* 30.80905* 110.2074* 243.2051* 75.76416* 39.98871* 32.14096* 33.39684* 112.8759* 120.8768* 44.87592* 23.04970* 1) * 1%. 2) 1% 3 3.43, (lagged differences) 5. 3) ARCH(T) T ARCH. ρ^2 j 10) Q T(T 2) Σ q ~χ2 j 1 (q) (T j) 58

. ARCH.,,., GARCH.. II GARCH 3., AIC, 2, 4. n (10% ) 3 GARCH 2πx 2πx 2πx 2πx r t c Σ m i 1 b i r t i d 1 D 1t d 2 D 2t d 3 D 3t d 4 D 4t d 5 D 5t e 1 sin( ) e 2 sin( ) e 3 cos( ) e 4 cos( ) ε t Y1 Y 2 Y 1 Y 2 c b1 b2 b3 b4 d1 d2 d3 d4 d5 e1 e2 e3 e4 n t n t 0.47( 1.86)*** 0.65( 27.71)* 0.38( 13.99)* 1.27(0.92) 8.22(1.41) 0.85( 0.01) 5.85(0.35) 0.002(0.66) 0.65(0.94) 0.84(0.40) 1.42(0.04) 0.43( 1.11) 0.101374 (0.9820) 0.158920 (0.9327) 0.007(0.04) 0.62( 28.75)* 0.38( 16.73)* 3.85(1.31) 5.22(3.40)* 1.21( 0.79) 2.57(1.07) 1.69( 1.84)** 1.23(2.36)** 1.03(0.85) 1.58(3.99)* 0.06( 0.72) 13.273256 (0.0006) 8.967258 (0.0023) 0.19(0.54) 0.66( 30.09)* 0.53( 21.66)* 0.43( 16.80)* 0.35( 13.38)* 12.36(0.55) 7.16(1.85)*** 3.54( 0.05) 1.99(0.45) 1.32(1.12) 1.76(0.25) 1.63(0.32) 2.51(0.02) 0.52(0.61) 0.976233 (0.6785) 0.281476 (0.7735) 0.32(0.98) 0.67( 32.50)* 0.52( 20.76)* 0.43( 17.15)* 0.35( 13.75)* 6.03( 1.12) 4.26( 10.02)* 0.006(0.33) 1.62(2.32)** 3.27(4.51)* 0.37(1.12) 0.14(1.24) 0.86(0.31) 0.68( 0.43) 31.02546 (0.0000) 0.163327 (0.8989) 1) *, **, *** 1%, 5%, 10%, ( ) z. 2) H 0 d 1 d 2 d 3 d 4 d 5 0, H 0 e 1 e 2 e 3 e 4 0 F, ( ) p value. 59

, (n t ) 1%.,, n. t, ( ), ( )., n, t,,. t ( ), ( ). t., t,., 11).,, t 1 sine cosine. (H 0 e 1 e 2 e 3 e 4 0) 0 t 1%. 4. sine cosine 1. 12)., 2000 2003 cosine sine 1... sine cosine 11). 12),. sine cosine. 60

1.2 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8-1.0-1.2 1 2 3 4 5 6 7 8 9 10 11 12 1.2 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8-1.0-1.2 1 2 3 4 5 6 7 8 9 10 11 12 sin12 cos12 sin12 sin6 cos6 cos12 sine cosine 1 sine cosine 10 7.5 5 25 0-25 -5-7.5 10 7.5 5 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-25 -5-7.5-10 -10 4. 4., α β 1%, (λ α β) 0.98 0.95 1..,. α β 1%, 61

4 GARCH 2πx 2πx 2πx 2πx σ 2 t θ αε 2 t 1 βσ 2 t 1 γ 1 D 1t γ 2 D 2t γ 3 D 3t γ 4 D 4t γ 5 D 5t δ 1 sin( ) δ 2 sin( ) δ 3 cos( ) δ 3 cos( ) Y 1 Y 2 Y 1 Y 2 θ α β υ γ 1 γ 2 γ 3 γ 4 γ 5 δ 1 δ 2 δ 3 δ 4 (λ α β) Log likelihood n t n t 32.92(2.38)** 0.01(5.70)* 0.97(84.78)* 56.47(2.05)** 20.52( 1.18) 9.38(0.20) 71.17( 1.19) 46.51( 2.75)* 0.29(0.40) 0.39( 0.54) 0.99(0.67) 1.24( 1.09) 9.951316(0.0012) 0.31455(0.432827) 0.980753 10967.57 31.69(4.24)* 0.03(11.88)* 0.93(49.50)* 2.27(36.33)* 33.98(3.24)* 17.18( 1.21) 17.59(0.66) 27.88( 2.45)** 25.50( 2.87)* 3.37(2.93)* 3.62(2.91)* 1.64( 1.81)*** 0.29( 0.34) 10.535281(0.0002) 18.068473(0.0000) 0.959384 10639.72 4.73( 0.13) 0.09(4.80)* 0.78(17.20)* 103.22(1.93)*** 88.12(1.57) 25.42(0.36) 38.59(0.54) 21.45(0.32) 0.30( 1.37) 0.07(0.02) 10.14(1.75)*** 0.90( 0.26) 6.981263(0.0035) 9.97255(0.0012) 0.882273 11230.27 4.09(0.19) 0.11(5.69)* 0.77(20.41)* 4.55(21.88)* 98.33(2.54)** 41.54(1.21) 44.80(1.33) 3.72( 0.12) 27.95(0.75) 1.67(2.18)** 0.63(0.22) 5.68(1.86)*** 1.51( 0.49) 9.74740(0.0017) 12.83707(0.0000) 0.879393 11004.47 1) *, **, *** 1%, 5%, 10%, ( ) z. 2) H 0 γ 1 γ 2 γ 3 γ 4 γ 5 0, H 0 δ 1 δ 2 δ 3 δ 4 0 F, ( ) p value. 0.8 13)., t v 20 2.27 4.55, 1%., (fat tailed)., 10967.57 t 10639.72 300, 225. t fat tail. ( ) GARCH t GARCH(1,1) t. 13) (λ) 1 (volatility clustering) ( (2004), (2007) ). 62

.,,.,,,,,.. (n t ).,, 1%., n. t sine cosine 1 sine., cosine 1.. Bollerslev(1986) GARCH.,.. 2000 1 1 2008 6 30.,. 63

, JB,.. ( ) (leptokurtic)..,., Ljung Box Q ARCH., 14)., (stationarity) (unit root test), (stationary). ARCH (ARCH Lagrang Multiplier ; ARCH LM) ARCH. GARCH.,,. ( ), ( ), ( ), ( ), ( )., ( ) ( )., 14) (2001),. 64

...,,., sine cosine 1 sine, cosine 1..., (λ) 1 0.8 (volatility clustering).,, GARCH(1,1) n student t GARCH(1,1) t., fat tailed t GARCH(1,1) t.,., 5%, 15)..,., 15) 2004 DB. 65

.,.,.,. 66

,,, 32 1, 2001, pp. 1 14.,,, 45 1, 2004, pp. 83 101.,,, 34 2, 2007, pp. 369 388., GARCH,, 22 2, 2007, pp. 29 54., ( 2 ),, 2004., : GARCH,, 7 4, pp. 161 195.,,, 38 2, 2007, pp. 41 62.,,,, 35 1, 2008, pp. 21 38.,,,, 45 2, 2004, pp. 187 210.,,, 37 2, 2006, pp. 61 83., ( ),, 1998.,,,,, 2002.,,. Bollerslev, T., Generalized Autoregressive Conditional Heteroskedasticity, Journal of Economaetrics, No.31, 1986, pp. 307 327. Bollerslev, T., A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return, Review of Economics and Statistics, No. 69, 1987, pp. 542 547. Bollerslev, T., Engle, R. and Nelson, D., ARCH Model, Handbook of Econometrics, V4, edited by Engle and Mcfadden, 1994. Enders. W., Applied Econometric Time Series(Second Edition), New York : John Wilely & Sons, Inc., 1995. Engle, R. F., Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U. K. Inflation, Econometrica, 1982, pp. 987 1008. Engle, R. F. and Bollerslev, T., Modeling the persistence of conditional variances : comments, Econometric Reviews, No.5, 1986. Engle, R. F., and Chowdhury Mustafa, Implied ARCH Models from Options Prices, Journal of Econometrics, 1992, pp. 289 311. Eview 5.0 User s Guide, Quantitative Micro Software, LLC., 2000. 67

Glosten, L. R., Jaganathan, R., Runkle, D., On the Relation between the Expected Value and the Volatility of the Normal Excess Return on Stocks, Journal of Finance, No.48, 1993. Jiang, J., Zhao, Q., and Hui, Y. V., Robust Modelling of ARCH Models, Journal of Forecasting, No.20, 2001. Lamoureux, C. G., Lastrapes, W. D., Heteroskedasticity in Stock Return Data : Volume versus GARCH Effects, Journal of Finance, No.45, 1990. Nelson, D. B., Conditional Heteroscedasticity in Asset Returns, Econometrica, No.59, 1991. 68

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets Abstract This study proviedes GARCH model(bollerslev, 1986) to analyze the structural characteristics of price volatility in domestic aquacultural fish market of Korea. As a case study, flatfish and rock fish are analyzed as major species with relatively high portion in an aspect of production volume among fish captured in Korea. For analyzing, this study uses daily market data (dating from Jan 1 2000 to June 30, 2008) published by the Noryangjin Fisheries Wholesale Market which is located in Seoul of Korea. This study performs normality test on trading volume and price volatility of flatfish and rock fish as an advanced empirical approach. The normality test adopted is Jarque Bera test statistic. As a result, first, a null hypothesis that an empirical distribution follows normal distribution was rejected in both fishes. The distribution of daily market data of them were not only biased toward positive( ) direction in terms of kurtosis and skewness, but also characterized by leptokurtic distribution with long right tail. Secondly, serial correlations were found in data on market trading volume and price volatility of two species during very long period. Thirdly, the results of unit root test and ARCH LM test showed that all data of time series were very stationary and demonstrated effects of ARCH. These statistical characteristics can be explained as a reasonable ground for supporting the fitness of GARCH model in order to estimate conditional variances that reveal price volatility in empirical analysis. From empirical data analysis above, this study drew the following conclusions. First of all, from an empirical analysis on potential effects of seasonality and the day of week on price volatility of aquacultural fish, Monday effects were found in both species and Thursday and Friday effects were also found in 69

flatfish. This indicates that Monday is effective in expanding price volatility of aquacultural fish market and also Monday has higher effects upon the price volatility of fish than other days of week have since it has more new information for weekend. Secondly, the empirical analysis led to a common conclusion that there was very high price volatility of flatfish and rock fish. This points out that the persistency parameter(λ), an index of possibility for current volatility to sustain similarly in the future, was higher than 0.8 equivalently nearly to 1 in both flatfish and rock fish, which presents volatility clustering. Also, this study estimated and compared and model that hypothesized normal distributions in order to determine fitness of respective models. As a result, the fitness of GARCH(1,1) t model was better than model where the distribution of error term was hypothesized through distribution due to characteristics of fat tailed distribution, was also better than model, as described in the results of basic statistic analysis. In conclusion, this study has an important mean in that it was introduced firstly in Korea to investigate in price volatility of Korean aquacultural fishery products, although there was partially a limited of official statistic data. Therefore, it is expected that the results of this study will be useful as a reference material for making and assessing governmental policies. Also, it is looked forward that the results will be helpful to build a fishery business plan as and aspect of producer, and also to take timely measures to potential price fluctuations of fishery products in market. Hence, it is advisable that further studies related to such price volatility in fishery market will extend and evolve into a wider variety of articles and issues in near future. 70