44(3)-16.fm

Similar documents
국706.fm

44(2)-11.fm

44(2)-08.fm

인문사회과학기술융합학회

10(3)-06(021).fm

43(5)-11.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

04김호걸(39~50)ok

한1009.recover.fm

44(2)-06.fm

04_이근원_21~27.hwp

untitled

°ø±â¾Ð±â±â

10(3)-02(013).fm

44(5)-10.fm

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Microsoft Word - KSR2012A038.doc

12.077~081(A12_이종국).fm

82-01.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

44(5)-03.fm

Microsoft Word - KSR2012A021.doc

10(3)-10.fm

국9209.fm

121_중등RPM-1상_01해(01~10)ok

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

44-4대지.07이영희532~

국705.fm

<31325FB1E8B0E6BCBA2E687770>

14.531~539(08-037).fm

43(6)-07.fm

DBPIA-NURIMEDIA

(지도6)_(7단원 202~221)

: 4 2. : (KSVD) 4 3. :

12(4) 10.fm

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

PDF

1. 연구 개요 q 2013년 연구목표 제2-1과제명 건축물의 건강친화형 관리 및 구법 기술 연구목표 건강건축 수명예측 Lifecycle Health Assessment (LHA) 모델 개발 건축물의 비용 기반 분석기술(Cost-based Lifecycle Health

304.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

44(4)-06.fm

( )Kjhps043.hwp

08.hwp

Microsoft Word - P02.doc

SG프랜-한남점 지노영수정.QXP

( )국11110.fm

19(1) 02.fm

,126,865 43% (, 2015).,.....,..,.,,,,,, (AMA) Lazer(1963)..,. 1977, (1992)

<BCFBC0BABFAD28C3D6C1BE292E687770>

06국306.fm

e01.PDF

DBPIA-NURIMEDIA

09구자용(489~500)


hwp

43(4)-08.fm

(최준우).fm

2009;21(1): (1777) 49 (1800 ),.,,.,, ( ) ( ) 1782., ( ). ( ) 1,... 2,3,4,5.,,, ( ), ( ),. 6,,, ( ), ( ),....,.. (, ) (, )

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

main.hwp

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Product A4

국9409.fm

Lumbar spine

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

00내지1번2번


10(3)-12.fm

10(3)-09.fm

09이훈열ok(163-

Microsoft Word _kor.doc


45(3)-07(박석주).fm

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

<B1E2C8B9BEC828BFCFBCBAC1F7C0FC29322E687770>

09권오설_ok.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Microsoft Word - KSR2013A320

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

16(3)-08.fm

< D3238C2F728C1A4B1E22920B9DFBEF0B3BBBFEB28B0F8B0B3292E687770>

歯1.PDF

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

목원 한국화- 북경전을 준비하며 지난해부터 시작 된 한국의 목원대학교 한국화 전공의 해외미술체험은 제자와 스승의 동행 속에서 미술가로 성장하는 학생들의 지식에 샘을 채워주는 장학사업으로 진행되고 있으며, 한국의 우수한 창작인력 양성을 위해, 배움을 서로 나누는 스승들의

<31372DB9DABAB4C8A32E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

국816.fm

Áß2±âÇØ(01~56)

년AQM보고서_Capss2Smoke-자체.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

Microsoft Word - KSR2013A291

untitled

<B1B3B9DFBFF83330B1C7C1A631C8A35FC6EDC1FDBABB5FC7D5BABB362E687770>

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 3, June, 2006, pp. 270-276 지능형헬스케어욕조시스템개발을위한온수온도변화 r ~r l o l l e l 561-756 r rte v v 1 664-14 (2006 3o 9p r, 2006 6o 20p }ˆ) Change of the Warm Water emperature for the Development of Smart Healthecare Bathing System Gi-Beum Kim Division of Bionics and Bioinformatics, he Research Center of Industrial echnology, he Research Center of Silver Engineering, Engineering Research Institute, College of Engineering, Chonbuk National University, 664-14, Duckjin-dong 1ga, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea (Received 9 March 2006; accepted 20 June 2006) k l l r l e v l p l ep ˆp nsp qo l pl m p l ep q. l nsp p p ep lr ep ep mp p ep n e rp r rpl. ns m p p v l p l ep v rpl., m p m m p m l m p v kp nep d l m p p p l. nsp m 41~45 C ov nep d 95Í ov p q rp Ž. h Abstract In this study, heat loss through free surface of water contained in bathtub due to conduction and evaporation has been analyzed. As a result of this study, a relational equation has been derived based on the basic theory of heat transfer to evaluate the performance of bath tubes. he derived equation was rational and quantitative. he major heat loss was found to be due to evaporation. Moreover, it has been found out that the speed of heat loss depends more on the humidity of the bathroom than the temperature of water contained in the bathtub. So, it is best to maintain the temperature of bathtub water to be between 41 to 45 C and the humidity of bathroom to be 95Í. Key words: Bathing System, Heat ransfer, Evaporation Heat Loss, Conductivity Heat Loss, Evaporation Latent Heat 1. nep n se l e, krp v rp p p m p l p., p nep p k l r v k l pv k p p v v }k p ~ p r p m [1]. t l lr p rp n p~l m p r rp p ˆp r lr s p o re o k ml v p l m., p -ml p o l t l p ml, p~p ml ƒ v sq l p lr p tep o whom correspondence should be addressed. E-mail: kgb70@chonbuk.ac.kr l v l m [2, 3]. ne p r p ne nsl e rp l v l rp ns l p~ rp k l p [4]. p rp nsp lr l ns m p v l el ~w m p qo p v l e, w ns p lr e w v kp ns l p l e lv. p l l p l e pp, m p m l k p e lv. p v l e t w ~ w m wl 2Í p l p rp e p. d kt v kp l ~wp v l ep q v rp [5]. l l r m v l p l ep ˆp nsp qo l pl m p l ep q m. 270

2. m n 2-1. n i i m m p ()p p mq emp r mp, qo l p v l e pm p kp l ep ns rp qo rp ˆ p [5]. m p v p M, lp C P, r rp A, e t kl m 0 l, l v (1)e p ˆ p. t MC p ( 0 ) Ak = -------------- d 0 l, Ë ne p m p. p ep e r (2)e p ns m p ep p. = + ( 0 )e (2)e p ns m ep m p m e l pp v p k p., (2)ep k p 0 m ( ) e p e pp (3)ep lp p. ---------------- = 1 e 0 0 Ak -----------------t MC p p ep m p ep. 2-2. { in, k ns p r l el p l ns p m n p hl p p, PVC Ž mq l p v rp, e m n p h'l p p em v, p r p e p l Ë p lr l p lv [6]. l, h p. t Ak -----------------t MC p 1 ------------- 1 2 ----------------------- 2 3 ----------------------- 3 ---------------- = = = = -------------- --------- ----------------------- ----------------------- ---------- ------ h k 1 1 k 2 2 h k k = 1 --------- 1 ----------- 2 1 + + ----------- +---------- k 1 k 2 h 1 v d l nsedš p o m m 271 (1) (2) (3) (4) p lr (k) 2-3. r i ns p m p p qo l p v l p vr p l ep tp v p. pm p po v ql p p pm p v l ep v rp npp [5]. 2-3-1. v v p p mr p ep lp p e p. Leem Suhp l p p m m m p p p n v l p E ev p (5)e p p ep l [5]. l, v p p, P s 5'p l p m l v kp P w p o l p erv kp. 2-3-2. v ql, L v qlp m p m r m e (6)e p ˆ p [5]. L = + 273.16 ( )S fg l, S fg v l p v l }p p [7]. 2-3-3. v l e v p qo p p tl kp qo r v p k pp, m v qlp v l e (Q ev )p l p r p lp pl (7)e p ˆ p. Q ev t = E ev ρldt = E ev ρl MC p ----------------------------d (7) 0 0 ( )ka l, dt = ---------------------------- MC p e pp E ev v l p ( 0 )ka d p l pp e k. 2-3-4. qo r kl m p v l ep q r p k, r r m m d p p l kv p r p p l. r qo r A' f k. o e p v l e p E ev ρl(cal)p, qo l p r r A'p f l o l p ka' f ( Ë )/p. l A 'p f p (8)e p ˆ p. ρe ev L = --------------------- k( ) 3. y 3-1. { in l km o lr p p rp n. l l p p e p lr p k r m. p Fig. 2m p l p 10 cm l nsqo l pl v p l ep. lp ns p r l e p p. e p p 0 (6) (8) E ev = ( 0.37 + 0.0041v) P s P w ( ) 0.88 (5) Fig. 1. he composition of heat resistances materials. Korean Chem. Eng. Res., Vol. 44, No. 3, June, 2006

272 Fig. 2. Diagram to measure heat conductivity. sp qo p ll m p m e l r p. p kqp v l p l el p p p. p e l sp m p p 200 Lp. nsp 11 cmpl. m p m 45 Cp nep m 21 C, d 80Ípl. e l p n mp 1e m p m 0.2 Cp m rmp, p n v kkp 1.3 Cp m ˆ l., 1e kl ns p l e 0.2 C p. (3)el lr r o l p p l 0.3 10 4 cal/cm oc secp lr lp p l. p p er ns p lr pp p. 3-2. r mi v qlp (6)ep pn l p. (6)el S fg v l p v l }p p. v l m l p m l ep o l Fig. 3 p ˆ pp S fg =3.486 0.174 m p ep lp pl. p ep (6)el p l r (9)e p ˆ p. Fig. 4. Evaporation latent heat in terms of temperature. L = ( + 273.16) 3.484 0.174 ( ) (9)ep pn l m l v qlp Fig. 4m p ˆ p. l k p p m v v q lp p p p. qlp vp m k p pv k p ov l p rp lp p. pm p m v v qlp po ns m l 5' op m n sp m m m p l p. ne m ns m mp p tltp f v l p l ep e ˆ pp Ž. (9) 3-3. r m m p v p o l (5)el m p l P s v pn l (10)e p ˆ pl. P s = 0.0041 e 22.009 0.004 (10) Fig. 3. Evaporation entropy variation with temperature. o44 o3 2006 6k l, m ( C)p., (10)ep (5)el p l r v p p. (5)el P s m P w pl

v d l nsedš p o m m 273 Fig. 5. Amount of evaporation vs. bathroom temperature at several bathroom humidity. Fig. 6. he variation of m according to the bathroom humidity. d P w =P s m p pp (P s P w ) 0.88 (P s P w ) 0.88 = P 0.88 s (1 ) ˆ 0.88 p. (10)ep ns m 35~50 Cp q o ep. p ep (5)el p l r (11)e p ˆ p. p ep nsp m p l v p ep. 0.88 ( ) ( ) 0.88 E ev = ( 0.37 + 0.0041v) 0.0041 e 22.009 0.004 1 (11) (11)el 1 p v ne p o p. nel p o p p n q l. l l p p o p e m. m l v p Fig. 5l ˆ l. l k p p ns d p n v m p kp kvp p pl., m p m p v m p kp v p p pl. 3-4. ml n ρe er qo r p ev L ---------------------- k qo r A' f ( ) p. p rp p p pp ρe ev L k( ) v k p p rp. qo rp o l m p able 1l e m. p p e l p l llv l k p p m p 41~45 C l m l v k prep p ep ˆ o l Fig. 6 p p. pm p l l rep pn l m = 982.24(1 ) p ˆ 0.877 pp 0.2Í p m o ˆ p., e l n nsp qo r A' f =m e r p r p ep p p ns p p. 3-5. j m ns m p m o l (2)ep pn. (2)el n p w l v l p r r(a) o l qo r er m rp lk. v ka/mc p B r mp B p m p k r rp ˆ p. k r rp ne d p ˆ pp B p m p k ne d p ˆ p. l l Bp p m p k ne d p l able 2l ˆ l., able 2 pn l ne p d l l B p m o l Fig. 7 p ˆ l. l Bp p nep d l ˆ po ka/mc p l A A' f +A 0 p, qo rp d p p l l Bp p d p ˆ l. l A 0 er m r, A' f qo rp er qo rp. Fig. 7l llv ep pn l m p m m nep m l ns m p m ˆ p Fig. 8p. p l k p p 3e ne p d p able 1. Change amount of m by change of warm water temperature in various bathroom humidity ρe ev L/k( ) m =45 C =43 C =41 C Average Value m 0.8 236.34 237.18 238.02 237.18 0.85 1202.4 184.38 1184.8 190.53 0.9 128.23 129.07 129.49 128.93 0.95 169.56 169.98 1170.4 169.98 able 2. Change amount of B by change of warm water amount in various bathroom humidity B 50 L 100 L 150 L 200 L 250 L 300 L 0.81 0.33254 0.18632 0.12326 0.09677 0.08074 0.06995 0.85 10.2588 0.14738 0.09599 0.07538 0.06291 0.05451 0.91 10.1819 0.10677 0.06755 0.05307 0.04431 0.03841 0.95 0.09987 0.06345 0.03721 0.02928 0.02448 0.02124 Korean Chem. Eng. Res., Vol. 44, No. 3, June, 2006

274 Fig. 7. Values of B vs. bathroom humidity according to the amount warm water. n d p m r ˆ., m p qp n n m r ˆ. m p m p m n m p m p ll. 3-6. r i m ns m p qo p o e v l e p E ev ρl(cal) e pp p l e p m p m l Fig. 9m p ˆ p. l k p p ns m p m p n v l p l ep., m p v v l p l e v p p p. po m p v rp v l p l ep pl qo rp v l v l ep v. v p ne d v v l p l ep kv p p ppp k pl. 3-7. n i m r l p l ep o qo l p r r 'p l o l p k ' ( Ë)/p pp Fig. 10 p ˆ p. r l p l ep v l p l e p p p p. l tn p r l p l e p v l p l e qp ep p p. ns m p m r l p l e m p q o p lv v l ep v rpp p pl. 4. l nsp p p ep lr ep ep mp p ep n e rp r rpm. ns m p p v l p l ep v rpl., m p m m p m l m p v kp nep d l m p p p l. nsp m 41~45 C ov nep d 95Í ov p q rp Ž. Fig. 8. Water temperature vs. time at various bathroom humidity. o44 o3 2006 6k

v d l nsedš p o m m 275 Fig. 9. Change of evaporation heat loss by change of warm water temperature in various bathroom humidity. Fig. 10. Change of conductivity heat loss by change of warm water temperature in various bathroom humidity. Korean Chem. Eng. Res., Vol. 44, No. 3, June, 2006

276 k M : mass of Hot Water [g] C p : specific heat [cal/g C] A : total conductivity area [cm 2 ] t : time [sec] 0 : intial temperature [ C] : temperature after t hours [ C] Ë : temperature in Bathroom [ C] : thickness of heat insulating material [cm] k : total thermal conductivity [cal/cm sec C] h v : film coefficient of heat transfer [cal/cm 2 sec C] : velocity of wind [cm/sec] P s : saturated vapor pressure of 5 point on surface of water [mmhg] P w : vapor pressure of 5 point on surface of water [mmhg] L : evaporation latent heat [cal] S fg : evaporation Entropy [cal/g] Q ev : evaporation Heat loss [kcal] A' f : equivalence free surface area [cm 2 ] : practical free surface area [cm 2 ] ρ : density [g/cm 3 ] : evaporation amount [g] E ev y 1. Kim, Y. C., Yu, M., Kim, H. J., Kwon,. K., Hong, C. U. and Kim, N. G., Analysis of hermal Environmental System in the Bathroom, 2005 Spring Joint Confcrence of ESK & KOSES, and he 8th Korea Japan Joint Symposium on Ergonomics, 375-378(2005). 2. Myong, H. K., Evaluation Index of Indoor hermal Environment, J. of the S.A.R.E.K., 21(4), 257-270(1992). 3. Kwon, O., Ko, J. W. and Lee, J. Y., Man-hermal Environment System, Kyung Choon Sa, Seoul, 13-15(2004). 4. Kim, Y. D., Hwang, K. M. and Kang, B. L., Exploratory Study on the Dimensions of Satisfaction with the Bathtub in the Apartment House, Journal of Marketing Research, 9(3), 109-131(2004). 5. Lee, B. H. and Suh, J. I., A Performance Equation of Bath ubes, J. of the S.A.R.E.K., 10(1), 1-11(1981). 6. Choi, I. G., Cho, S. H. and Ro, S.., Heat ransfer, Bosung, Seoul(1993). o44 o3 2006 6k