J Korean Soc Food Sci Nutr 한국식품영양과학회지 44(5), 752~76(215) http://dx.doi.org/1.3746/jkfn.215.44.5.752 Maltogenic Amylase 가식빵반죽의물성과식빵의품질특성에미치는영향 윤성준 1 조남지 1 이수정 2 문성원 3 정윤화 4,5 1 혜전대학교제과제빵과, 2 부천대학교식품영양과 3 영동대학교호텔외식조리학과, 4 단국대학교식품영양학과 5 단국대학교글로벌식품산업연구소 Effects of Maltogenic Amylase on Textural Properties of Dough and Quality Characteristics of White Pan Bread Seongjun Yoon 1, Namji Cho 1, Soo-Jeong Lee 2, Sung-Won Moon 3, and Yoonhwa Jeong 4,5 1 Department of Baking Science and Techonology, Hyejeon College 2 Department of Food and Nutrition, Bucheon University 3 Department of Hotel & Foodservice Culinary Arts, Youngdong University 4 Department of Food Science and Nutrition and 5 Institute of Global Food Industry, Dankook University ABSTRACT Effects of maltogenic amylase on textural properties of dough and quality characteristics of white pan bread were investigated. White pan bread was prepared with four different levels of maltogenic amylase contents (M-1:.48 U/g, M-2:.6 U/g, M-3:.72 U/g, M-4:.84 U/g). The setback by amylograph for the control was 48.±12.25 Brabender Unit (B.U.) while M-4 showed the a setback of 21± B.U. The absorption, mixing tolerance index, and stability by farinogram were not significantly different (P>.5) for across all treatments. The area under the curve (135 min) by extensogram was higher than all samples. The texture profile analysis results showed that there was significant decreasing in hardness for the maltogenic amylase infused bread (P<.5). M-3 and M-4 showed higher springiness and cohesiveness but lower hardness than control over 1 to 3 days, indicating possibly extended shelf-life. Imaging scan showed that air cell size less than.4 mm 2 for the control and M-4 were at rates of 94.9% and 95.7%, respectively. For sensory evaluation, M-3 and M-4 showed higher intensities than the control for taste, flavor, texture, mouthfeel, and moistness quality. These results imply that the quality of white pan bread could be improved by adding maltogenic amylase without the use of chemical additives. Key words: enzymes, maltogenic amylase, dough, white pan bread, quality 서 최근자연식품에관한소비자들의관심이증가하면서식품첨가물을사용하지않은식품들의소비가증가하고있다. 더불어제과제빵업계에서도소비자들의욕구를충족시키기위해경쟁이심화되고있으며다양한제품들을개발하기위해노력하고있다. 빵은구워진직후전분내수분의재배치로이화학적성질변화에의해전분들끼리핵을형성하고굳어지며노화 (retrogradation) 된다 (1-4). 빵은풍미의손실, 이취발생, 가용성전분의증가, 전분에대한효소의반응과전분의결정및불투명도등의증가로인하여노화가진행된다고보고되었다 (5-7). 빵의상업적저장수명은약 2일정도 (8) 로짧아 Received 12 January 215; Accepted 11 February 215 Corresponding author: Yoonhwa Jeong, Department of Food Science and Nutrition, Dankook University, Yongin, Gyeonggi 448-71, Korea E-mail: yjeong@dankook.ac.kr, Phone: +82-31-85-3176 론 미국의경우전체빵생산량의약 3% 정도가빵의노화로인해폐기 (9) 되고있으며, 영국에서도매년 32만 8천톤의빵이노화로폐기되어경제적부담이큰것으로보고되고있다 (1). 빵의저장기간연장과품질을개선하기위해일반적으로식품첨가물인산화제, 반죽강화제, 환원제, 식품보존료및유화제 (emulsifiers) 가주로사용된다. 제빵에사용되는유화제는전분과결합하여수분보유력을향상시키고최종제품의부피와빵내부구조의향상및밀가루구성성분들과상호작용을통해전분의노화를지연시키는효과가있으며 (11,12), 일반적으로제빵에사용되는유화제는 mono-, diglyceride, sodium stearoyl-2-lactylate, calcium stearoyl-2-lactylate, diacetyl tartaric acid ester mono- and diglycerides, sugar ester, polysorbate 6 등의식품첨가물이사용되고있다 (13). 그러나다량의식품첨가물의섭취에대한우려로인하여소비자들이선호하는건강지향적인첨가물과천연물질을이용한품질개선방법에관한연구가
Maltogenic Amylase 첨가식빵 753 활발히진행되어오고있다. Cho 등 (14,15) 은 Bifidobacterium bifidum을이용한빵의제조방법연구와 Bifidobacterium bifidum을첨가한빵의특성, Yoon과 Cho(16) 는 maltogenic amylase, protease, lipase 등의효소를이용한식빵의품질특성, Yoon 등 (17) 은효소를이용한제빵용지방대체제개발, Chamberlain 등 (18) 은 α-maltogenic amylase를이용한빵의품질개선을보고하였다. 효소는기질특이성 (specificity) 을가지고있으며생물체중생체촉매로서작용기질에따라같은효소라도적정 ph가달라지므로제과제빵에서매우한정적으로사용되어왔다 (19). Lagrain 등 (2) 은제빵시 maltogenic amylase의열안정성이빵의조직감과내부구조에미치는영향, Kim 등 (21) 은 fungal α-maltogenic amylase 가반죽의특성과빵의품질에미치는영향을보고하였으나, 효소를첨가한반죽의리올로지특성에대한연구는미진한실정이다. 본연구에서는 maltogenic amylase가식빵반죽의물성과식빵내부의품질특성에미치는영향을연구하여제빵에효소의적용가능성을탐색하고빵의상업적사용가능성을높이고자하였다. Table 1. Characteristics of maltogenic amylase Enzymes Origin EC number Maltogenic amylase Bacillus subtilis 재료및방법 Maltogenic amylase Maltogenic amylase(table 1) 는 Novozyme사 (Bagsværd, Denmark) 에서구입하여사용하였으며효소의첨가량은예비실험을통해.48 U/g(M-1),.6 U/g(M- 2),.72 U/g(M-3),.84 U/g(M-4) 을사용하였다. 식빵반죽의아밀로그라프 (amylograph) 특성측정 식빵반죽의아밀로그라프특성은 AACC method 22-1 (22) 에따라 Visco/amylo graph(8136, Brabender Co., Duisburg, Germany) 를이용하여분석하였다. 강력분 ( 수분함량 14%) 65 g에 maltogenic amylase를농도별로첨가하여증류수와잘혼합한다음 3 C에서 95 C까지 1.5 C/min 으로승온시키고 95 C에서 15분간유지시킨다음 63 C까지 1.5 C/min으로냉각시키면서점도변화를측정하였다. 아밀로그라프로부터호화개시온도 ( C), 최고점도, 95 C에서의점도및 95 C에서 15분후의점도, 점도붕괴도 (breakdown) 와 setback을구하였다. 호화개시온도는초기점도가 1 Brabender Unit(B.U.) 에도달하는온도로나타내었다. 점도붕괴도는최고점도와 15분후의점도차이를측정하였으며, setback은냉각점도 (63 C에서의점도 ) 와 95 C에서 ph Stability Temp. ( C) 3.2.1.133 4. 1 65 15 분후의점도차이로부터구하였다. 식빵반죽의파리노그라프 (farinograph) 특성측정 식빵반죽의파리노그라프특성은 AACC method 54-21 (23) 에따라 Farinograph(82754, Brabender Co.) 를이용하여분석하였다. Farinograph mixing bowl을 3±2 C 로유지하면서강력분 ( 수분함량 14%) 3 g에 maltogenic amylase를농도별로첨가하여사용하였다. 밀가루를 1단에서 2분간혼합하면서 25초동안증류수를첨가하여파리노그라프곡선의중앙이 5 B.U. 에도달할때까지흡수량을조절하면서흡수율 (absorption), 반죽도달시간 (arrival time), 반죽형성시간 (peak time), 안정도 (stability) 및약화도 (time to breakdown) 를측정하였다. 식빵반죽의익스텐소그라프 (extensograph) 특성측정익스텐소그라프특성은 AACC method 54-1(24) 에따라 Extensograph(8613, Brabender Co.) 를이용하여분석하였다. 강력분 ( 수분함량 14%) 3 g에 6 g의식염과 maltogenic amylase를농도별로첨가하였다. 물의양은파리노그라프보다 2~4% 적게사용하였다. 파리노그라프에서밀가루반죽을 1분간혼합한다음 5분간방치하고다시 2분간혼합하여곡선의중앙이 5 B.U. 에도달하도록흡수율을조절하였다. 반죽을 15±.1 g으로분할한후라운더에서 2회둥글리기하고원통형으로성형하여 3±2 C의발효조에서 45분, 9분, 135분간격으로발효시킨후익스텐소그램을측정하였다. 반죽의신장도 (extension), 저항도 (resistance) 및전체면적 (total area) 을측정하였고, 신장도는커브의전체길이 (cm) 로표시하였으며, 신장도에대한저항도 (resistant to extension) 는익스텐소그라프시작점부터 5 cm의높이 (B.U.) 를측정하였다. 식빵의제조방법식빵은 Finney 등 (25) 의방법을변형한직접반죽법을사용하여제조하였으며, 반죽의배합비율은 Table 2와같다. 식빵의반죽은혼합기 (A2, Hobart, Troy, OH, USA) 를사용하여쇼트닝을제외한나머지원료를볼 (bowl) 에넣고 1단 (61/17 rpm) 과 2단 (113/196 rpm) 에서각각 3분간혼합하여반죽의표면이매끄러운상태 (clean-up stage) 가된후쇼트닝을첨가하였다. 2단 (113/196 rpm) 에서반죽이형성될때까지 9분간혼합하였으며, 최종반죽의온도는 27 C가되도록하였다. 1차발효는온도 27 C, 습도 75% 인발효기 (Daehung Machinery Co., Namyangju-si, Korea) 에서 9분간실시하였으며, 1차발효후반죽을 18 g으로 Reaction Unit Description of unit Starch+n H 2O=n α-maltose 12 PROMU/g Professional Maltogenic Units
754 윤성준 조남지 이수정 문성원 정윤화 Table 2. Formula for white pan bread preparation with four different levels of maltogenic amylases (Baker s %) Ingredients Flour Tap water Yeast Salt Sugar Shortening Maltogenic amylase (unit/g) Difference levels of maltogenic amylase (%) M-1 1) M-2 2) M-3 3) M-4 4).48.6.72.84 분할하여둥글리기한후 15분간중간발효를실시하였다. 밀대를이용하여가스빼기를하고반죽을원통형으로성형하여식빵틀 (195 95 95 mm) 에 3개씩넣고온도 38 C, 습도 85% 의발효기에서식빵틀상단 1 cm 높이로반죽이팽창될때까지 2차발효를실시하였다. 2차발효가끝난반죽은윗불 17 C, 아랫불 19 C의오븐 (3D-43, Daiah Commercial Co., Ltd., Seoul, Korea) 에서 3분간구운후상온 ( 온도 25±2 C, 습도 7±1%) 에서빵의내부온도가 32 C로될때까지 1시간동안냉각하고폴리에틸렌수지로포장한후 25 C에서저장하면서실험재료로사용하였다. 이를설치하여실시하였다. 식빵의껍질을제거하고 2 2 2 cm 크기로잘라 1회용접시에 5개씩담아물과함께무작위로패널에게제시하였다. 내부색상 (crumb color), 맛 (taste), 풍미 (flavor), 조직감 (texture), 식감 (mouthfeel), 촉촉한정도 (moistness quality) 의강도를 9점척도 (1= 매우약하다, 9= 매우강하다 ) 를이용하여평가하였다. 각시료별관능검사후물로입을헹군다음다른시료를검사하였으며, 외형적검사는동일한장소에서식빵을무작위로제공하여부피 (volume), 외부색상 (crust color) 에대하여평가하였다. Texture profile analysis 특성측정 Texture profile analysis는시료를오븐에서꺼내고상온에서 1시간방치후, 폴리에틸렌백에넣고상온 (25 C) 에서 5일간보관하면서측정하였다. 식빵의속살중심부를 2 2 2 cm로자른다음 texture analyzer(ta-xt2, stable micro systems, Surrey, UK) 를이용하여측정하였다. 이때사용한 cylinder probe는 75 mm, pre-test speeds는 1. mm/s, test speed 및 post test speed는 mm/s로하였으며, 시료의경도 (hardness), 탄력성 (springiness), 응집성 (cohesiveness), 검성 (gumminess), 씹힘성 (chewiness) 을 9회반복측정하였다. 통계분석모든실험의데이터는 Minitab R 16.2.1 Package(Minitab Inc., College Station, PA, USA) 를이용하여분산분석 (analysis of variance, ANOVA) 을하였다. 시간에따른차이가없는항목은일원분산 (one-way ANOVA) 으로진행후시료간의차이유무를파악하기위해 Fisher s least significant difference(lsd) test로유의적차이를검정하였다. TPA 측정은시료간의차이와시간에따른차이를이원분산 (two-way ANOVA) 으로진행후시료간의차이유무를파악하기위해 Fisher s LSD test를진행하였다. 모든통계적유의수준은 5% 로하였다. 이미징스캔 (Imaging scan) Imaging scan은시료를오븐에서꺼내고상온에서 1시간방치후, 폴리에틸렌백에넣고상온 (25 C) 에서 1일저장후 2 mm 두께로잘라서이미징스캐너 (ASE, American Institute of Baking, Manhattan, KS, USA) 에넣고최종제품표면에대한기공의크기 (air cell size) 와기공의크기에따른기공의수를관찰하기위하여식빵을 9개의영역으로나누어표면특성과내부조직의기공상태를측정하였다. 관능검사관능검사는시료들간의차이식별을위하여 15명의패널을선발하여최종제품의관능적품질항목을 9일간반복훈련한후관능검사를실시하였다. 관능검사는제조후상온보관 1일이후에실시하였으며, 실험실에서테이블에칸막 결과및고찰식빵반죽의아밀로그램식빵반죽의아밀로그램은 Table 3과같다. 최고점도 (maximum viscosity) 는대조군이 69.±21.21 B.U. 이었으며, setback은 48.±12.25 B.U., breakdown은 11. ±7.7 B.U. 로나타났다. Maltogenic amylase 첨가군의최고점도는 M-1이 59.±12.25 B.U., M-2는 58.±12.25 B.U., M-3은 56±7.7 B.U., M-4는 53.±7.7 B.U. 로 maltogenic amylase의첨가량이증가할수록최고점도는유의적으로감소하는경향을나타내었다 (P<.5). Setback 또한 M-1이 28.±12.25 B.U., M-2가 25.±18.71 B.U., M-3이 24.±28.28 B.U., M-4가 21± B.U. 로 maltogenic amylase의첨가량이증가할수록유의
Maltogenic Amylase 첨가식빵 755 Table 3. Amylogram of flour with four different levels of maltogenic amylases Characteristics M-1 1) M-2 2) M-3 3) M-4 4) LSD values 77.8±2.52 abc5) 74.5±1.24 c 76.±1.13 c 77.5±1.26 bc 8.5±2.33 ab 3.96 92.3±1.53 a 9±2.56 a 92.5±3.96 a 91.±9.6 a 91.±7.89 a 6.65 69.±21.21 a 59.±12.25 ab 58.±12.25 b 5±7.7 c 53.±7.7 d 19.89 68.±21.2 a 57.±7.1 b 5±1. b 53.±7.1 c 49.±12.3 d 17.37 58.±25.5 a 5.±12.25 b 49.±1. bc 48.±15.81 c 4±1. d 18.96 Gelatinization temperature ( C) Temp. at peak height ( C) Maximum viscosity (B.U.) [P] Viscosity at 95 C (B.U.) Viscosity at 95 C after 15 min (B.U.) [H] Viscosity at 63 C (B.U.) [C] Breakdown (B.U.) [P-H] Setback (B.U.) [C-H] 1,±15.81 a 78.±1. b 74.±12.25 c 72.±25.5 c 67±11.18 d 19.43 11.±7.7 a 9.±1. bc 9.±18.71 bc 8.±1. cd 7.±15.81 d 19.89 48.±12.25 a 28±12.25 b 25.±18.71 c 24.±28.28 c 21± d 24.11 5) Means within a row with different letters are significantly different at P<.5 by Fisher s least significant difference (LSD) test. 적으로감소하였다. Breakdown 역시 M-1과 M-2가각각 9.±1. B.U., 9.±18.71 B.U., M-3과 M-4가각각 8.±1. B.U., 7.±15.81 B.U. 로 maltogenic amylase 농도가증가할수록유의적으로감소하였다 (P<.5). 이러한결과는 maltogenic amylase의첨가량이증가할수록최고점도와 breakdown이감소한다는 Leman 등 (26) 의연구결과와유사하였으며, 또한 maltogenic amylase의첨가량이증가하면전분의 dextrin 함량이증가되고전분의점성을저하시켜호화점도와최고점도가낮아져부드러운조직이형성된다는 Shin(27) 과 Goesaert 등 (28) 의연구결과와유사하였다. 식빵반죽의파리노그램 Maltogenic amylase의첨가량에따른식빵반죽의파리노그램은 Table 4와같다. 대조군의흡수율은 65.1±.61%, 첨가군인 M-1은 64.9±2.81%, M-2는 64.7±1.43%, M-3 은 64.5±1.41%, M-4는 64.1±2.64% 로 maltogenic amylase의첨가량이증가함에따라감소하는경향을나타내었으나유의적차이는없었다 (P<.5). 이러한현상은 α-maltogenic amylase를첨가한반죽의점탄성은감소하며반죽의흡수율에영향을미친다는 Harinder와 Bains(29) 의연구결과와유사하였다. Mixing tolerance index(mti) 는모든첨가군이 3. B.U. 로대조군의 29. B.U. 보다약간높았으나유의적차이는없었다. Arrival time은대조군과모든첨가군이 1.2분정도로유의적인차이가없었으며, departure time은약 23분정도고 stability는 departure time에서 1.2분을뺀 22분정도로유의적차이가없었다. 반면 peak time은대조군이 5.8분으로가장높았으며, 모든첨가군이 5.5~5.7분으로유의적인차이가있었다 (P<.5). Valorimeter value는대조군이 9. unit으로가장낮았으며, 모든첨가군이 11~12 unit 으로유의적으로증가하였다 (P<.5). Valorimeter value 는혼합시간과혼합에대한저항성의지표로서일반적으로강력분은 1 이상, 박력분은 7 이하를설정하고있다 (3). 식빵반죽의익스텐소그램대조군과첨가군의익스텐소그램은 Table 5와같다. 45 분후의 resistance to extensibility(rte), extensibility (EXT), area under curve(auc) 와 RTE/EXT는대조군과첨가군모두유의적차이가없었으나 9분후 RTE와 EXT 는대조군이각각 285±11.18, 211±8.69, maltogenic amylase 첨가군이각각 29±12.25~295±11.18, 212± 4.69~216±8.86으로유의적으로증가하였다 (P<.5). 반면 RTE/EXT는대조군과 maltogenic amylase 첨가군간의유의적차이는없었다 (P<.5). 135분후의 RTE와 EXT는유의적차이가없었으나부피를의미하는 AUC는 maltogenic amylase의첨가량이증가할수록대조군보다유의적으로증가하였으며 (P<.5) 반죽에 maltogenic amylase Table 4. Farinogram of flour with four different levels of maltogenic amylase Characteristics M-1 1) M-2 2) M-3 3) M-4 4) LSD values Absorption (%) Mixing tolerance index (B.U.) Arrival time (min) Peak time (min) Departure time (min) Stability (min) Time to breakdown (min) Valorimeter value (unit) 65.1±.61 a5) 29.8±7.9 a 1.2±.5 a 5.8±.19 a 23.6±1.38 a 22.4±.75 a 1.5±.81 a 64.9±2.81 a 3.±2.12 a 1.2±.7 a 5.5±.16 c 23.6±.46 a 22.4±.85 a 1.6±.98 a 3.1 5.64.9.2 1.46 2.34.78 1.95 64.7±1.43 a 3.±2.24 a 1.2±.5 a 5.7±.7 bc 23.7±1.35 a 22.5±.76 a 1.5±.57 a 11.±7.7 a 64.5±1.41 a 3.±1.58 a 1.2±.5 a 5.6±.16 bc 23.6±.93 a 22.4±3.89 a 1.5±.14 a 11.±7.7 a 64.1±2.64 a 3.±4 a 1.2±.5 a 5.7±.19 bc 23.6±.49 a 22.4±1.9 a 1.5±.38 a 12.±7.7 a 9.±7.7 b 12.±7.7 a 5) Means within a row with different letters are significantly different at P<.5 by Fisher s least significant difference (LSD) test.
756 윤성준 조남지 이수정 문성원 정윤화 의첨가량이증가할수록이미징스캔의기공크기와기공의수에영향을주어부피를향상시키는것으로나타났다. 식빵의 texture profile analysis(tpa) 식빵을 25 C에서 5일간보관하면서대조군과 maltogenic amylase 첨가군의 TPA를측정하였다 (Table 6). 대조군의 일차경도는 626.71±72.32였으며 1일차 926.1 ±6, 2일차 1,15.79±12.61, 3일차 1,219.22±126.99, 4일차 1,36.92±199.37이었다. Maltogenic amylase 첨가군의경도는대조군과비교하여첨가량이증가할수록유의적으로낮아졌으며 (P<.5), M-3, M-4의 4일차경도는각각 933.26±67.19, 882.7±74.28 로대조군의 1일차 (926.1 ±6) 와비교하여유의적으로증가하지않아 (P<.5) 1 ~3일정도노화가지연된것으로생각된다. 식빵의탄력성과응집성에서대조군과첨가군간에유의적차이는없었으나 (P<.5), 점착성과씹힘성은경도와마찬가지로대조군과비교하여 maltogenic amylase의첨가량이증가할수록유의적으로감소하여 (P<.5) maltogenic amylase 첨가에의하여노화가지연되는것으로여겨진다 (28). 제빵에효소를사용하는목적은밀가루에부족한효소를보충하여효모 (yeast) 의활성에필요한발효성당을생산하고발효를촉진하여반죽내에존재하는무기질에의해반죽이산성화 (acidification) 되어빵의저장성을향상시킨다는연구결과와유사하였다 (31). 이상의실험결과로 maltogenic amylase 첨가군의경도는유의적으로낮았는데 (P<.5), 이는부피가빵내부조직의경도와관련이깊다고보고한 Faubion 과 Faridi(32) 의연구결과와같이빵의노화를지연시키는효소들의함량이증가되어빵의수분함량이증가하고전분을액화시켜덱스트린과같은고흡수성물질이형성되었기때문인것으로생각된다. 이러한경향은아밀로그램에서 maltogenic amylase 첨가군의 setback이낮아져저장성에영향을미쳐 TPA에영향을미친것으로생각되며, 빵의경도는빵내부의수분함량이많을수록, 비용적이증가할수록감소한다는보고와유사하였다 (33,34). 따라서대조군과비교하여 maltogenic amylase 첨가군 M-3과 M-4의경도가가장낮았으며, 탄력성과응집성은증가하고점착성과씹힘성이낮아져식감개선에긍정적이라생각된다. 식빵의 imaging scan 식빵의내부조직특성을알아보기위해식빵의단면을 9 구역으로나누어기공크기, 기공의수를측정하였다 (Tables 7, 8). 식빵의평균기공의크기가가장작은구역은오븐의전도열이가장빠른식빵바닥 3, 6, 9구역으로나타났다. 오븐스프링과밀접한관계를가진구역은 1, 2, 4, 5, 7, 8구역으로나타났으며 4구역 ( 식빵의가장높은부위 ) 과 5구역 ( 식빵의중심부 ) 의평균기공의크기가가장큰것으로나타났다. 4구역과 5구역은대조군이각각 1.28±.6, 1.26±.5였으며, M-1이각각 1.26±.8, 1.28±.7, M-2가
Maltogenic Amylase 첨가식빵 757 Table 6. TPA of white pan bread with four different levels of maltogenic amylases Hardness day 1 day 2 days 3 days 4 days LSD 5) M-1 1) M-2 2) M-3 3) M-4 4) 626.71±72.32 ad6) 585.5±64.61 abd 574.98±69.1 abcd 548.49±43.12 bcd 516.4±56.35 ce 926.1±6 ac 732.31±84.3 bcc 719.77±16.99 bcc 669.41±58.91 cdc 623.46±54.28 dd 1,15.79±12.61 ab 856.63±52.64 bb 825.57±66. bcb 767.71±1.91 cb 79.47±56.5 dc 1,219.22±126.99 aab 925.66±9.69 bab 95.13±84.3 bcab 834.22±72.66 cb 794.31±98.73 db 1,36.92±199.37 aa 1,41.6±237.17 ba 992.85±127.72 bca 933.26±67.19 bca 882.7±74.28 da 117.2 119.36 89.33 67.78 66.8 LSD 66 71.49 73.1 88.91 139.62 Springiness day 1 day 2 days 3 days 4 days LSD M-1 M-2 M-3 M-4.96±.5 aa.98±.7 aa.97±.1 aa.99±.16 aa 1.±.18 aa.97±.8 aa.97±.1 aa.97±.9 aa.96±.16 aa.97±.15 aa.94±.8 aa.94±.8 aa.95±.5 aa.96±.11 aa.97±.28 aa.94±.11 aa.94±.7 aa.95±.7 aa.94±.9 aa.94±.12 aa.92±.4 aa.94±.2 aa.98±.16 aa.91±.1 aa.96±.9 aa.7.11.1.12.17 LSD.11.11.13.9.12 Cohesiveness day 1 day 2 days 3 days 4 days LSD M-1 M-2 M-3 M-4.73±.1 aa.72±.5 aa.71±.7 aa.66±.4 aa.66±.14 aa.64±.6 ab.65±.11 aab.65±.12 aab.65±.11 aa.64±.9 aa.62±.5 ab.62±.6 ab.62±.8 abc.62±.5 aa.6±.9 aa.6±.5 ab.6±.3 ab.6±.6 abc.6±.5 aa.61±.11 aa.59±.8 ab.58±.14 ab.57±.8 ac.6±.11 aa.6±.4 aa.5.8.8.8.9 LSD.6.9.7.6.8 Gumminess day 1 day 2 days 3 days 4 days LSD M-1 M-2 M-3 M-4 459.15±5.52 ac 418.4±5.77 abd 45±18.29 bcc 365.21±39.71 cdd 333.76±44.46 dd 59.4±51.56 ab 469.52±34.88 bc 458.98±4.58 bcb 429.16±53.39 cdc 397.43±25.57 dc 713.84±51.6 aa 53.32±32.99 bb 51.51±37.4 bca 467.62±44.23 cbc 424.83±34.21 dc 727.25±6.43 aa 551.44±44.43 bab 541.36±58.13 bca 497.36±48.47 cb 476.3±39.74 cb 756.3±53.6 aa 572.74±5.78 ba 554.88±7.68 ba 558.53±11.55 ba 527.83±32.72 bca LSD 44.49 4.33 39.15 49.52 59.75 Chewiness day 1 day 2 days 3 days 4 days LSD M-1 M-2 M-3 M-4 441.29±51.28 ac 47.65±25.96 abc 389.52±37 bd 356.62±44.43 bcd 329.24±35.71 cc 569.26±39 ab 454.19±43.33 bbc 445.77±43.4 bcc 47.91±4.79 cdcd 386.8±63.4 dbc 668.15±35.31 aa 495.3±22.25 bcab 482.1±31.13 bcbc 445.65±52.82 cdbc 41.92±15.33 db 678.11±71.82 aa 517.97±41.77 ba 511.29±45.79 bcab 466.24±48.85 cdab 447.32±45.7 dab 691.34±33.79 aa 535.72±94.33 bca 534.17±4.34 bca 56.96±9.1 ca 53.9±45.16 ca LSD 38.7 4.91 51.57 48.53 57.95 3) Maltogenic amylase.72 unit. 4) Maltogenic amylase.84 unit. 5) LSD values. 6) Means within a column (a-d) and a row (A-E) with different letters are significantly different at P<.5 by Fisher s least significant difference (LSD) test. 51.2 41.39 46.14 58.8 34.22 45.94 49.85 37.4 55.42 61.3 각각 1.34±.12, 1.32±.4, M-3이각각 1.34±.6, 1.34±.5, M-4는각각 1.37±.8, 1.36±.5로 maltogenic amylase의첨가량이증가할수록평균기공의크기는유의적으로증가하였다 (P<.5). 기공의크기가.4~3.2 mm 2 는대조군이 3,373.±23.34, M-1이 3,594.2± 175.43, M-2가 3,559.±194.59, M-3이 3,63.4± 24.48, M-4가 3,752.6±187.84로 maltogenic amylse 의첨가량이증가할수록미세기공의수는증가하였다. 기공의크기가 3.2 mm 2 이상은 maltogenic amylase의첨가량이증가할수록대조군과비교하여조밀하고일정한기공구조를가진것으로나타나빵의부피는빵내부의기공수의변화와기공의신장성증가와밀접한관계가있다는연구결과 (35) 와유사하였다. 식빵의관능검사식빵의관능검사결과는 Table 9와같다. 맛은대조군이 5.6±1.84, M-1이 5.87±1.51, M-2가 5.8±1.21, M-3 은 6.7±1.75, M-4가 6.±1.77로나타나대조군과비교하여유의적으로높았다 (P<.5). 풍미는대조군과비교하여 maltogenic amylase 첨가량이증가할수록높은점수를얻었는데이러한현상은 α-1,4 글리코사이드결합의분열을촉진하여맥아당의생성량이증가하여풍미에영향을주는것으로알려져있다 (36). 식감, 촉촉한정도역시 maltogenic amylase 첨가량이증가할수록높은점수를얻었으나유의적차이는없었다. Maltogenic amylase의첨가량이증가할수록 dextrin 함량이증가되어 (37) 조직감, 식감및촉촉한감촉에서높은점수를얻은것으로생각된다.
758 윤성준 조남지 이수정 문성원 정윤화 Table 7. Numbers of air cells of white pan bread with four different levels of maltogenic amylases Air cell size (mm 2 ) <.4 <.8 <1.2 <1.6 < <2.4 <2.8 <3.2 <3.6 <4. <4.4 <4.8 <5.2 <5.6 <6. <6.4 <6.8 >7.2 Air cell count M-1 1) M-2 2) M-3 3) M-4 4) 1,33.7±32.2 c5) 877.±25.6 c 443.3±1 c 285.4±13.3 ab 181.1±11.7 bc 125.3±4.1 bc 84.2± c 73.±1.2 a 57.8±.7 a 34.1±1.1 c 32.3±1.9 a 24.9±1.2 b 17.2±1.4 a 19.±1.1 ab 12.9±1.2 b 1.9±1.2 b 6.4±.8 c 1,435.9±28.9 bc 96.7±24.1 ab 481.1±1. ab 285.7±15.2 ab 188.6±9.2 ab 131.6±6.8 ab 92.9±5.1 ab 71.7±1. ab 51.5±2.2 b 4±1.9 a 27.3±1.6 b 22.3±.6 c 17.6±1.1 a 2.±1.2 a 1.±1.3 c 13.±2.2 a 11.6±1.3 a 1,453.4±33.4 bc 925.4±22.5 bc 455.6±13.4 bc 289.7±17.9 ab 172.6±9.1 c 118.7±6.2 c 86.4±3. bc 57.2±1.9 bc 46.1±.6 c 38.7±2.3 b 3.4±.6 ab 24.6± bc 17.±1.8 a 17.9±1.6 b 14.7±.7 a 1.±1.1 b 9.4±1.1 ab 1,49.9±3. ab 912.2±25.9 ab 463.±11.5 ab 287.3±17.9 ab 184.3±13.7 ab 124.8±2.3 ab ±3.7 a 67.9±1.2 b 48.9±1.1 bc 41.4±1.3 ab 3.±1.2 ab 29.±1.4 a 14.1±.9 b 13.3±.7 d 1.1±1.1 c 7.7±1.1 c 8.4±1.7 b 1,526.±34.7 a 932.6±2 a 51.6±11.4 a 32.1±1.2 a 196.7±7.4 a 131.7±7.1 a 88.7±1.8 b 73.2±.8 a 51.6±1.9 b 37.±1. b 31.±1.9 a 23.8±1.6 bc 16.±1.5 ab 15.8±1.3 c 1.2±1.9 c 12.3±.3 ab 8.6±1. b 5) Means within a row with different letters are significantly different at P<.5 by Fisher s least significant difference test. Table 8. Average cell size of white pan bread with four different levels of maltogenic amylases Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 M-1 1) M-2 2) M-3 3) M-4 4) LSD values 1.12±.9 cb5) 1.16±.1 bca.89±.5 db 1.28±.6 ab 1.26±.5 ab 1.5±.3 cdb 1.22±.3 bb 1.15±.18 bca.91±.4 da 1.21±.17 abab 1.16±.12 ba.91±.7 dab 1.26±.8 ab 1.28±.7 ab.99±.4 cdc 1.24±.7 abab 1.19±.12 aba.92±.19 da 1.23±.9 aba 1.16±.9 ba.94±.3 da 1.34±.12 aa 1.32±.4 aa 1.7±.7 cab 1.24±.17 abab 1.18±.11 ba.93±.4 da 1.24±.5 ba 1.16±.8 ca.93±.6 da 1.34±.6 aa 1.34±.5 aa 1.8±.6 cdab 1.26±.12 bab 1.19±.1 bca.96±.1 da 1.24±.8 ba 1.16±.5 ca.94±.3 da 1.37±.8 aa 1.36±.5 aa 1.15±.9 ca 1.29±.27 aba 1.19±.4 bca.94±.5 da LSD values.15.17.16.12.2 5) Means within a column (a-d) and a row (A-C) with different letters are significantly different at P<.5 by Fisher s least significant difference (LSD) test..2.15.9.13.11.1.26.19.13 Table 9. Sensory evaluation of white pan bread with four different levels of maltogenic amylases Classification M-1 1) M-2 2) M-3 3) M-4 4) Volume Crust color Crumb color Taste Flavor Texture Mouthfeel Moistness 5.4±1.35 c5) 7.±1.85 a 5.8±1.74 b 5.6±1.84 b ±1.9 b 6.13±1.51 a 5.87±1.6 a 6.±1.65 a 5.67±1.5 ab 6.±1.6 a 5.8±1.42 b 5.87±1.51 ab 6.±1.93 a 6.4±1.6 a 6.13±1.51 a 6.2±1.21 a 5.8±1.15 ab 6.±1.6 a 5.93±1.3 ab 5.8±1.21 ab 6.7±1.39 a 6.4±1.18 a 6.33±1.35 a 6.2±1.21 a 6.7±1.33 ab 5.87±.92 a 6.2±1.42 a 6.7±1.75 a 6.2±1.52 a 6.6±6 a 6.33±1.45 a 6.27±1.39 a 6.4±.51 a 5.6±1.84 a 6.53±1.36 a 6.±1.77 a 6.2±1.9 a 6.67±1.59 a 6.53±1.55 a 6.53±1.85 a 5) Means with the different letters for each attribute are significantly different (P<.5) using the Fisher s least significance difference test. Maltogenic amylase 첨가군은대조군보다맛, 풍미, 조직감, 식감그리고촉촉한정도에서더높은점수를나타내 어제빵시 maltogenic amylase 첨가군 M-3, M-4를사용하는것이식빵에서맛, 풍미, 조직감, 식감과촉촉한정도
Maltogenic Amylase 첨가식빵 759 등을개선할수있을것으로생각된다. 이러한이유는 α- maltogenic amylase의작용과 β-maltogenic amylase의당화작용기능이상호보완되면서맥아당을생성하게되고맥아당과포도당들은이스트에의하여이산화탄소발생에이용될뿐만아니라굽기단계까지존재하며캐러멜화반응과멜라노이딘반응을촉진시키고빵의방향성분인카아보닐화합물을생성케하여겉껍질색상과풍미를향상시킨다는연구결과 (19) 와유사하였다. 요 식빵반죽의아밀로그램의 setback 은대조군이 48.±12.25 B.U., M-4가 21± B.U. 로 maltogenic amylase의첨가량이증가할수록유의적으로감소하였다. 파리노그램특성은흡수율, mixing tolerance index, stability 등대조군과 maltogenic amylase의첨가군과유의적인차이는없었다. 익스텐소그램의 RTE(resistance to extensibility)/ EXT(extensibility) 는대조군과첨가군간에유의적차이는없었으나 RTE 9분과 AUC(area under curve) 135분에서대조군과비교하여유의적으로증가하여 (P<.5) 식빵반죽에 maltogenic amylase를사용하면빵의부피에영향이있을것으로판단되었다. 식빵의 texture profile analysis는대조군과비교하여 maltogenic amylase 첨가군의경도가유의적으로낮게나타났으며 (P<.5) M-3, M-4가대조군과비교하여약 1~3일정도노화가지연된것으로생각된다. 빵의탄력성과응집성은대조구와유의적차이는없었으나점착성과씹힘성은유의적으로감소하여 (P<.5) 식감개선에영향을주는것으로나타났다. Imaging scan 결과대조군과비교하여 4, 5구역의평균기공크기는 maltogenic amylase 첨가량이증가할수록유의적으로증가하였으며 (P<.5).4 mm 2 이하의미세기공은 maltogenic amylase의첨가량이증가할수록 94.9~95.7% 로대조군과비교하여조밀하고일정한기공구조를가진것으로나타나, 빵의부피는빵내부의기공수, 기공의신장성증가와밀접한관계가있었다. 관능검사는맛, 풍미, 조직감, 식감과촉촉한정도가대조구와비교하여높게나타났다. 이상의결과로 maltogenic amylase를식빵반죽에첨가시반죽의물성이개선되었으며식빵내부구조가조밀하고일정한기공구조를형성하여식감과관능검사에서우수한결과를나타내어화학적첨가물을사용하지않고도식빵의품질을향상시킬수있음을확인하였다. 약 REFERENCES 1. Kim SK. 1987. Gelatinization and retrogradation have a close relation of food industry. Monthly Food Industry 54: 58-63. 2. Gedders WF, Bice CW. 1946. The role of starch in bread staling. Quartermaster Corps Report QMC 17-1. Office of the Quartermaster General, Washington, DC, USA. 3. Hertz KO. 1965. Staling of bread, a review. Food Technol 19: 1828. 4. D Appolonia BL, Morad MM. 1981. Bread staling. Cereal Chem 58: 186-19. 5. Pyler EJ. 1988. Baking science & technology. 3rd ed. Sosland Publishing Co., Marriam, KS, USA. p 42-411. 6. Bechtel WG, Meisner DF, Bradley WB. 1953. The effect of the crust on the staling of bread. Cereal Chem 3: 16-168. 7. Bice CW, Geddes WF. 1949. Studies on bread staling. Ⅳ. Evaluation of methods for the measurement of changes which occur during bread staling. Cereal Chem 26: 44-465. 8. Maga JA, Ponte JG. 1975. Bread staling. CRC Crit Rev Food Technol 5: 443-486. 9. Zobel HF, Kulp K. 1996. The staling mechanism. In Baked Goods Freshness; Technology, Evaluation, and Inhibition of Staling. Hebeda RE, Zobel HF, eds. Marcel Dekker, Inc., New York, NY, USA. p 1-64. 1. Michael J, Geoffrey C, David D, James G, Hall P, Jones L, Lepper D, Anne M, Rogerson D, Soulsby P, Strang G, Tipping P, Roger W. 21. Waste Strategy for England 27. The House of Commons, London, UK. p 3-55. 11. Tamstorf S, Jonsson T, Krog N. 1986. Ice crystallization and its control in frozen-food systems. In Food Structure and Behaviour. Blanshard JMV, Lillford P, eds. Academic Press, London, UK. p 51-65. 12. Blanshard JMV, Frazier PJ, Galliard T. 1987. Chemistry and physics of baking. Blanshard JMV, Frazier PJ, Galliard T, eds. The Royal Society of Chemistry, London, UK. p 75-88. 13. Kim SK, Cho NJ, Kim YH, Yoon SJ, Lee JJ, Jung SK, Chea DJ. 29. Baking science. BNC World, Seoul, Korea. p 198. 14. Cho NJ, Kim HY, Kim SK. 1999. Effect of flour brew with Bifidobacterium bifidum as a natural bread improver. J Korean Soc Food Sci Nutr 28: 1275-1282. 15. Cho NJ, Lee SK, Kim SK, Joo HK. 1998. Effect of wheat flour brew with Bifidobacterium bifidum on rheological properties of wheat flour dough. Korean J Food Sci Technol 3: 832-841. 16. Yoon SJ, Cho NJ. 21. Quality characteristics of white pan bread by using fat-substitutes. Korean J of Baking 2: 6-11. 17. Yoon SJ, Cho NJ, Jeong YH. 28. Development of a carbohydrate-based fat replacement for use in bread making. J East Asian Soc Dietary Life 18: 132-138. 18. Chamberlain N, Collins TH, Mcdermott EE. 1981. Alphaamylase and bread properties. Int J Food Sci Technol 16: 127-152. 19. Cho NJ, Kim YH, Ahn HK, Shin SN, Hwang YK. 2. Science of baking materials. BNC World, Seoul, Korea. p 48-52. 2. Lagrain B, Leman P, Goesaert H, Delcour JA. 28. Impact thermostable amylases during bread making on wheat bread crumb structure and texture. Food Res Int 41: 819-827. 21. Kim JH, Maeda T, Morita N. 26. Effect of fungal α-amylase on the dough properties and bread quality of wheat flour substituted with polished flours. Food Res Int 39: 117-126. 22. AACC. 2. Approved Method of the AACC. 1th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 22-1. 23. AACC. 2. Approved Method of the AACC. 1th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 54-21. 24. AACC. 2. Approved Method of the AACC. 1th ed. American Association of Cereal Chemists, St. Paul, MN,
76 윤성준 조남지 이수정 문성원 정윤화 USA. Methods 54-1. 25. Finney KF. 1984. An optimized, straight dough, bread making method after 44 years. Cereal Chem 61: 2-27. 26. Leman P, Goesaert H, Vandeputte GE, Lagrain B, Delcour JA. 25. Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydr Polym 62: 25-213. 27. Shin GM. 28. Quality characteristics of white pan bread added with Poria cocos powder. J East Asian Soc Dietary Life 18: 554-562. 28. Goesaert H, Slade L, Levin H, Delcour JA. 29. Amylases and bread firming: an integrated view. J Cereal Sci 5: 345-352. 29. Harinder K, Bains GS. 1987. High α-amylase flours: Effect of ph, acid, and salt on paste characteristics. Cereal Chem 64: 359-363. 3. Kim SK, Cho NJ, Kim YH, Yoon SJ, Lee JJ, Jung SK, Chea DJ. 29. Farinograph. In Baking Science. BNC World, Seoul, Korea. p 164-173. 31. Reed G. 1975. Health and legal aspects of the use of enzymes. In Enzymes in Food Processing. 2nd ed. Academic Press, New York, NY, USA. p 549-554. 32. Faubion JM, Faridi H. 1985. Dough rheololgy. In Rheology of Wheat Products. Faridi H, ed. American Association of Cereal Chemistry Inc., St. Paul, MN, USA. p 1-9. 33. Bechtel WG, Meisner DF. 1954. Staling studies of bread made with flour fractions. Cereal Chem 31: 182-187. 34. Martine ML, Hoseney RC. 1991. A mechanism of bread firming. Ⅱ. Role of starch hydrolyzing enzymes. Cereal Chem 68: 53-57. 35. Sroana BS, Beanb SR, MacRitchie F. 29. Mechanism of gas cell stabilization in bread making. Ⅰ. The primary gluten-starch matrix. J Cereal Sci 49: 32-4. 36. Pomeranz Y, Finney KF. 1975. Sugars in breadmaking. Baker s Digest 49: 2-27. 37. Synowiecki J. 27. The use of starch processing enzymes in the food industry. In Industrial Enzymes: Structure, Function and Applications. Polaina J, MacCabe AP, eds. Springer, Dordrecht, The Netherlands. p 19-34.