Microsoft Word - Ch1_Introduction_EDA.docx

Size: px
Start display at page:

Download "Microsoft Word - Ch1_Introduction_EDA.docx"

Transcription

1 고전적데이터분석은연구목적이설정되면그에맞는 1) 통계적가설 (statistical hypothesis), 모형 (model) 을설정하고 2) 데이터수집하여 3) 가설혹은모형의유의성 (significance) 을검정하였다. 이를 Confirmatory ( 확증적 ) Data Analysis 라한다. 다음은 (confirmatory) 데이터분석의예로한남대학생들의용돈이대학평균과같은가를알아보는연구과정을요약한것이다. 연구목적설정 OO 대학생월용돈은한국대학평균 250,000 원과같은가? 추정하려는모수설 통계적가설설정 월평균용돈 귀무가설 :μ=250,000 데이터수집 전체학생중 25 명표본을층화추출하여월용돈조사 일변량분석 : 모평균에대한 적절한통계분석적용 결론 : 모수추정및가설검 통계량계산 x = 193,000, s = 37,000 검정통계량 : X u t = = = 2.43 ~ t( n 1 = 24) s / n 37000/5 표본의크기 25 가대표본에해당하므로검정통계량은정규분포에따른다. (CLT) 그러므로유의 수준이 0.05 인경우는 1.96 과비교하면된다. 1

2 1.1 EDA 정의 It is important to understand what you CAN DO before you learn to measure how WELL you seem to have DONE it. This book is about exploratory data analysis, about looking at data to see what it seems to say. It concentrates on simple arithmetic and easy-to-draw pictures. It regards whatever appearances we have recognized as partial descriptions, and tries to look beneath them for new insights. Its concern is with appearance, nor with confirmation. - Exploratory Data Analysis, John W. Tukey, CDA ( 확중적데이터분석 ) 와는달리 1977 년 John W. Tukey 가 (Princeton University Bell Lab) 제안한탐색적데이터분석 (EDA: Exploratory Data Analysis) 방법은이미수집된데이터로부터정보를얻어내는일련의방법이다. 1) 이미수집된데이터가가진정보를간편한계산식에의해구해진숫자요약 ( 중앙값, 사분위 ) 과그래프 ( 예 : stem-leaf plot, box plot, scatter plot) 를이용하여찾아내거나 2) 데이터를보다유용하게 ( 정규분포혹은대칭인분포 ) 만들기위하여데이터를재표현 (re-expression = data transformation 예 : log 변환 ) 하거나 3) 데이터가어떤분포에적합한지알아보는방법에관련된데이터분석방법이다. ( 적합성검정 ) 1) EDA is about looking at data to see what it seems to say 데이터가가진정보를데이터의탐색만으로얻는방법이다. 이전통계학이추론통계에의존했다면 EDA 는통계학이기술통계학 (descriptive statistics) 임을강조하고있고통계적가설설정과정이없다. 2) EDA is a detective work. 여러도구 (tools: 기술통계량, 관련그림 ) 와직감 (intuition: 데이터분석경험에서얻는분석 know-how) 이용하여정보 ( 결론 ) 를유추하는분석방법이다. CDA 는판사의 (judge) 작업이라면 EDA 는여러정황을고려하여사건을분석하는탐정과같은역할이다. 3) To learn about data analysis, it is right that each of us try many things that do not work. 데이터로부터정보를얻기위한다양한시도를해야한다. 데이터를다루는풍부한경험 ( 비록성공하지못하더라도 ) 으로부터올바른데이터분석이가능하기때문이다. 2

3 4) EDA can never be the whole story, but nothing else can be served as the first step. 탐색적데이터분석은분석의모든것은아니지만첫단계가된다. 탐색적데이터분석을통해얻은정보를이용하여통계적가설이나모형을설정하여연구하기도하고의사결정에이용하여정보의정확정도를측정하기도한다. 5) EDA is a paper-pencil method. 컴퓨터 ( 소프트웨어 ) 가보편화되지못하고데이터의수가적을때그래프나통계량들을직접그리거나계산하기에편리하게제안된방법이기때문에이런별명을가지고있다. 요즈음은통계소프트웨어의발달로쉽게그리거나구할수있으므로정보얻는방법, 해석방법을이해하는것이중요하다. 6) Data Mining is a modern EDA. 신용카드, 멤버쉽카드, 교통카드등카드사용에의해데이터가자동수집되고 OLTP(On-Line Transaction Process: 데이터자동수집 ) 수집된데이터를잘저장하는방법 Data Warehousing 기술의발달로 Data Mining ( 대용량의데이터에내재되어있는 patterns 이나 rules 을발견하는방법 ) 이가능해졌다. Data Mining 도일종의 EDA 이다. Data Mining 으로부터얻은정보를이용하여고객관리하는방법을 CRM 이라 (customer relationship management) 한다. 1.2 EDA 4 가지주제 1) Resistance to outliers, missing data, or miscoded data 이상치, 결측치, 입력오류에영향을받지않는 (resistant) 도구를사용한다. EDA 에서수집데이터의숫자요약통계량으로중앙값, 사분위수등을이용하는이유이다. ( 예 ) 평균 =5 그러나중앙값은 3이된다. 2) Residual is a off-value from the main stream 잔차는각값들이주경향으로부터얼마나벗어나있는지나타내는값이다. 앞의예에서중앙값을중앙 (main stream) 으로사용하는경우잔차는 이다. 그러므로마지막값에대해왜이런일이발생했는지탐색작업이필요하다. 다른예를살펴보면회귀분석에서직선의경향이벗어난관측치가이상치 (outlier) 인지영향치 (influential) 인지를산점도를이용해판단할수있다. 이상치나영향치나모두잔차 ( 추정회귀직선에서벗어난정도 ) 가크다는공통점은있으나영향치는이상치와는달리다른관측치에비해이상할정도로벗어나있다는근거를제시할수없는관측치를일컫는다. 3

4 3) Data Re-expression 원래데이터를 Log( 로그 ), Square root( 제곱근 ), Inverse( 역 ) 변환등으로데이터값을변화시키는것을데이터재표현이라한다. 이는데이터의분포의정규성 ( 아니엄밀히말하면대칭성 ), 균일성 (uniformity), 가법성 (additivity) 을얻기위하여시행한다. 통계데이터분석기법의대부분은변수의정규성 ( 적어도대칭성 ) 을가정하고있다. 예를들어페이지 1 에서표본을 25 명이아니라 15 명만뽑았다면검정통계량은더이상정규분포를따르지않는다. ( 즉 CLT: 중심극한정리 ) 이런경우모집단은정규분포를따른다는가정이있어야 t- 분포를이용할수있다. 만약모집단이정규분포를따르지않는다면데이터재표현 ( 변수변환 ) 을통해데이터가정규성을만족하게하여야한다. 다음은두변수간의관계를나타낸그래프, 즉산점도 (scatter plot) 이다. 왼쪽산점도에의하면 Y 와 X 의관계는직선관계가아니다. 대신 Y 를재표현 ( 변수변환 ) 하여 LogY 와 X 에대한산점도 ( 오른쪽 ) 를그리면직선관계가존재한다. ( 직선관계를분석하는것이결과해석이편리 ) Y log Y LOG 변환 X X 4) Graphic presentation EDA 에서는데이터에숨겨진정보를알아보기위하여다양한그래프가이용된다. 다음은키데이터에 ( 변수 ) 대한줄기-잎그림, 상자그림과키와몸무게의관계를나타내는산점도를그린예이다. (SAS Example Data) 4

5 그래픽표현 SAS CLASS 데이터중키의 ( 단위 : inch) 마지막데이터를 80 으로수정하였음. 몸무게 ( 단위 : pound) 데이터는동일. ( 상자수염그림 ) 키의경우이상치하나존재, 몸무게의흩어짐정도가큼, 좌우대칭분포형태를갖는다. 이상치제외하면모수적데이터분석에문제없음 ( 산점도 ) 키와몸무게간에는직선적관계가존재, 이상치하나있음 1.3 데이터분석의기본철학 탐색적데이터분석 허명회 & 문숭호, 자유아카데미, 2000 과학은이론적통찰 ( 예 : 상대성이론 ), 새로운현상의관찰 (Kepler 행성궤도관련법칙 ) 이나경험을 (Student T-분포 ) 통한새롭고혁신적인이론이만들어지는경우는극히드물고대부분관찰, 실험, 분석등의반복을통해이론이정립된다. 벼품종개량, 새의약품개발, 화학공정개선등이실험계획에의한연구결과가이에해당된다. 5

6 통계전문가는제시된이론을통계적가설이나통계모형으로설정하고관련데이터를수집하여가설 ( 모형 ) 의유의성을검정하거나 (confirmatory data analysis) 수집된데이터를탐색하여가능한모형이나이론을제시하는역할을 (exploratory data analysis) 담당하고있다. 이처럼 ( 탐색적 ) 데이터분석이타분야의새로운이론발견에기여할수있으려면 1) 그분야에대한지식 2) 모형과데이터 3) 그리고모형과데이터의사이클개념을올바로이해해야한다 모형과데이터사이클 Confirmatory 모형 (model) Exploratory 데이터 f ( x : θ ) 모수 ( x 1, x 2,..., x n) y = f ( x1, x2,..., xp) 함수 ( y i, x1i, x2i,..., xni), i = 1,2,..., p 과학에서이론이제안되고데이터분석이이루어지는경우보다는데이터로부터새로운이론이나모형을도출하는경우가많고탐색적자료분석에의해제안된이론이나모형은다시 confirmatory 방법에의해유의성이 (significance) 검증되므로모형과데이터는순환사이클을갖는다. 통계적모형은과학적진실이기보다는사실의대표적모형이다. 예를들어, 회귀모형에서는 ( y = a + bx + e ) 설명되어지지않는오차항이존재하고이오차항은 iid ~ N(0, σ 2 ) 을가정한다 탐색적데이터분석의성공사례 1973 년미국뉴저지주지사는오존수준을안전수준으로낮추기위하여자동차배기가스를현재수준의 2/3 으로줄이는법안입안을요청받았다. 이법안의타당성조사를벨연구소 (Bell Lab) 에의뢰하였다. 7 년간 60 개측정소에서 300 만개측정자료를수집하여 plot 한결과 1) 최고오존수준은요일별차이가없고 => 원인규명이어려움 2) 농촌지역인 Ancora 지역에서높은오존수준보인다는특이한사실을발견하였다. 2) 의원인으로이지역에서 37km 떨어진 Philadelphia 지역의공해물질이바람에날려와서오존수준을높였을가능성이주장되었다. 이주장은오존수준과풍향과의 plot 을통해사실임이밝혀졌다. 6

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞 줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.

More information

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사 회귀분석 올림픽 100m 우승기록 2004년 9월과학저널 Nature에발표된 Oxford 대학교의임상병리학자인 Andrew Tatem과그의연구진의논문 1900~2004년까지의남성과여성의육상 100m 우승기록을분석하고앞으로최고기록이어떻게변할것인지를예측 2008년베이징올림픽에서남자의우승기록은 9.73±0.144(9.586, 9.874), 여자는 10.57±0.232(10.338,

More information

Stage 2 First Phonics

Stage 2 First Phonics ORT Stage 2 First Phonics The Big Egg What could the big egg be? What are the characters doing? What do you think the story will be about? (큰 달걀은 무엇일까요? 등장인물들은 지금 무엇을 하고 있는 걸까요? 책은 어떤 내용일 것 같나요?) 대해 칭찬해

More information

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not, Page 1 of 5 Learn Korean Ep. 4: To be and To exist Of course to be and to exist are different verbs, but they re often confused by beginning students when learning Korean. In English we sometimes use the

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

Breathing problems Pa t i e n t: I have been having some breathing problems lately. I always seem to be out of breath no matter what I am d o i n g. ( Nurse : How long have you been experiencing this problem?

More information

통계학입문

통계학입문 통계학입문 ( 기초통계학 ) 1. 1 개요 통계학 (statistics) 관심의대상에대해관련된자료를수집하고그 자료를요약, 정리하여이로부터불확실한사실에 대한결론이나일반적인규칙성을추구하는학문 Statistic : 통계치, 통계량 CH 1-2 1. 1 개요 통계학 (statistics) 기술통계학 (descriptive stat) 수집된자료의정리및요약방법을다룸

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770> 본 작품들의 열람기록은 로그파일로 남게 됩니다. 단순 열람 목적 외에 작가와 마포구의 허락 없이 이용하거나 무단 전재, 복제, 배포 시 저작권법의 규정에 의하여 처벌받게 됩니다. 마포 문화관광 스토리텔링 공모전 구 분 내 용 제목 수상내역 작가 공모분야 장르 어린이들의 가장 즐거웠던 나들이 장소들 마포 문화관광 스토리텔링 공모전 장려상 변정애 창작이야기 기타

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

확률 및 분포

확률 및 분포 확률및분포 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 확률및분포 1 / 15 학습내용 조건부확률막대그래프히스토그램선그래프산점도참고 박창이 ( 서울시립대학교통계학과 ) 확률및분포 2 / 15 조건부확률 I 첫째가딸일때두아이모두딸일확률 (1/2) 과둘중의하나가딸일때둘다딸일확률 (1/3) 에대한모의실험 >>> from collections import

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI:   (LiD) - - * Way to Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.353-376 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.353 (LiD) -- * Way to Integrate Curriculum-Lesson-Evaluation using Learning-in-Depth

More information

untitled

untitled 5.8 PROC UNIVARIATE (hitogram, tem and leaf plot, box-whiker plot), (p- ). Univariate( ).. NORMAL (Shapiro- Wilk Kolmogorov-Smirno D- OUTPUT( SAS ). PROC MEANS PROC MEANS. (moment) E( X ). k Sehyug Kwon,

More information

하나님의 선한 손의 도우심 이세상에서 가장 큰 축복은 하나님이 나와 함께 하시는 것입니다. 그 이 유는 하나님이 모든 축복의 근원이시기 때문입니다. 에스라서에 보면 하나님의 선한 손의 도우심이 함께 했던 사람의 이야기 가 나와 있는데 에스라 7장은 거듭해서 그 비결을

하나님의 선한 손의 도우심 이세상에서 가장 큰 축복은 하나님이 나와 함께 하시는 것입니다. 그 이 유는 하나님이 모든 축복의 근원이시기 때문입니다. 에스라서에 보면 하나님의 선한 손의 도우심이 함께 했던 사람의 이야기 가 나와 있는데 에스라 7장은 거듭해서 그 비결을 새벽이슬 2 0 1 3 a u g u s t 내가 이스라엘에게 이슬과 같으리니 그가 백합화같이 피 겠고 레바논 백향목같이 뿌리가 박힐것이라. Vol 5 Number 3 호세아 14:5 하나님의 선한 손의 도우심 이세상에서 가장 큰 축복은 하나님이 나와 함께 하시는 것입니다. 그 이 유는 하나님이 모든 축복의 근원이시기 때문입니다. 에스라서에 보면 하나님의 선한

More information

Microsoft Word - skku_TS2.docx

Microsoft Word - skku_TS2.docx Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

본문01

본문01 Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과

More information

p. 10 Before You Read............... p. 26 Understanding the Story ( ).,.,..,,...,...

p. 10 Before You Read............... p. 26 Understanding the Story ( ).,.,..,,...,... Grade 3-1 p. 4 19.., 1851.,,. 55. 62.,,,. 82 90. p. 5.?. 1885..,,. p. 10 Before You Read............... p. 26 Understanding the Story ( ).,.,..,,...,... ... p. 44 Before You Read,.....!.,.,......!......!

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

2012 JANFEB Vol.91 0102 World Best Safety, Global INHA 2012. 01+02 C O N T E N T S Jan.Feb Vol.91 02 04 06 09 12 14 16 18 20 22 24 27 28 30 31 32 33 38 04 2012 Jan + Feb 05 06 2012 Jan + Feb 07 08 2012

More information

Microsoft Word - ch3_residual.doc

Microsoft Word - ch3_residual.doc REGRESSION / 3 장. 잔치분석 50 Chapter 3 잔차분석 이론이나경험에의해변수간의회귀모형을설정하고 y = α + βx ( 선형 : lnearty), 관측치가 ( x, y ), = 1,,..., n 얻어지면이를이용하여회귀분석을실시한다. 설정된회귀모형에 는오차항에대한 3가지가정 e ~ dnormal(0, σ ) 을한다. ( 정규성 normalty,

More information

*º¹ÁöÁöµµµµÅ¥-¸Ô2Ä)

*º¹ÁöÁöµµµµÅ¥-¸Ô2Ä) 01 103 109 112 117 119 123 142 146 183 103 Guide Book 104 105 Guide Book 106 107 Guide Book 108 02 109 Guide Book 110 111 Guide Book 112 03 113 Guide Book 114 115 Guide Book 116 04 117 Guide Book 118 05

More information

<B1E2C8B9BEC828BFCFBCBAC1F7C0FC29322E687770>

<B1E2C8B9BEC828BFCFBCBAC1F7C0FC29322E687770> 맛있는 한국으로의 초대 - 중화권 음식에서 한국 음식의 관광 상품화 모색하기 - 소속학교 : 한국외국어대학교 지도교수 : 오승렬 교수님 ( 중국어과) 팀 이 름 : 飮 食 男 女 ( 음식남녀) 팀 원 : 이승덕 ( 중국어과 4) 정진우 ( 중국어과 4) 조정훈 ( 중국어과 4) 이민정 ( 중국어과 3) 탐방목적 1. 한국 음식이 가지고 있는 장점과 경제적 가치에도

More information

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - 에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형

2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

통계학입문

통계학입문 확률및통계특강 세부사항 교수님 성함 : 김홍기 연락처 : 821-5433 E-mail : honggiekim@cnu.ac.kr 교재 : 통계학입문 ( 정익사 / 김주한외 ) 강의자료 ppt 파일은정보통계학과홈페이지 -> 대학원 -> 수업자료 또는사이버캠퍼스자료실 이사이트에서기출문제도얻을수있습니다. 중간고사 (closed book) : 45%, 기말고사 (open

More information

4. 수업의 흐름 차시 창의 인성 수업모형에 따른 단계 수업단계 활동내용 창의 요소 인성 요소 관찰 사전학습: 날짜와 힌트를 보고 기념일 맞춰보기 호기심 논리/ 분석적 사고 유추 5 차시 분석 핵심학습 그림속의 인물이나 사물의 감정을 생각해보고 써보기 타인의 입장 감정

4. 수업의 흐름 차시 창의 인성 수업모형에 따른 단계 수업단계 활동내용 창의 요소 인성 요소 관찰 사전학습: 날짜와 힌트를 보고 기념일 맞춰보기 호기심 논리/ 분석적 사고 유추 5 차시 분석 핵심학습 그림속의 인물이나 사물의 감정을 생각해보고 써보기 타인의 입장 감정 World Special Days 1. 수업 목표 과목 영어 학년 6 학년 내용 목표 인성 목표 언어 목표 여러 기념일에 대해 알아보고 새로운 기념일을 만들고 소개할 수 있다. 소외된 사람이나 사물에 대해 생각해보고 이들에 대한 배려와 관심의 필요성을 깨달음으로써 타인의 입장에 감정 이입, 배려 등의 요소를 기를 수 있다. 기념일이나 특별한 날짜를 묻고 대답할

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

<33C2F731323239292DC5D8BDBAC6AEBEF0BEEEC7D02D3339C1FD2E687770>

<33C2F731323239292DC5D8BDBAC6AEBEF0BEEEC7D02D3339C1FD2E687770> 텍스트언어학 39, 2015, pp. 283~311 한국 대중가요 가사의 문체 분석 장소원(서울대) Chang, Sowon, 2015. The stylistic Analysis of the lyrics of Korean popular song. Textlinguistics 39. The sociological approach, one of the methods

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft Word - ch8_influence.doc

Microsoft Word - ch8_influence.doc REGRESSION / 8 장. 영향치및잔차분석 172 Chapter 8 영향치와잔차분석 단순회귀모형에서관측점이이상치 (outlier) 인지영향치 (influential) 인지판단하는것은 매우쉽다. 산점도에서이상치혹은영향치의존재여부를미리감지한다. x- 축 ( 설명변수 ) 의 동일수준의다른관측치에비해종속변수의값이상이한빨간점은이상치이다. 반면판 단할다른관측치가동일설명변수수준에없는파란점은영향치이다.

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

Microsoft PowerPoint - 7-Work and Energy.ppt

Microsoft PowerPoint - 7-Work and Energy.ppt Chapter 7. Work and Energy 일과운동에너지 One of the most important concepts in physics Alternative approach to mechanics Many applications beyond mechanics Thermodynamics (movement of heat) Quantum mechanics...

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

untitled

untitled www.hyundaielevator.co.kr 2014 vol.239 07+08 BIFC(Busan International Finance Center) Korea[600mpm] www.hyundaielevator.co.kr 2014 vol.239 07 + 08 People Harmony Inside Space Ele-Cop (BIFC)[600mpm] 04-05

More information

Microsoft Word - SPSS_MDA_Ch6.doc

Microsoft Word - SPSS_MDA_Ch6.doc Chapter 6. 정준상관분석 6.1 정준상관분석 정준상관분석 (Canonical Correlation Analysis) 은변수들의군집간선형상관관계를파악하는분석방법이다. 예를들어신체적조건 ( 키, 몸무게, 가슴둘레 ) 과운동력 ( 달리기, 윗몸일으키기, 턱걸이 ) 사이의선형상관관계가있는지알아보고, 관계가있다면어떤관계가있는지분석하는것이다. 정준상관분석은 (

More information

시스템경영과 구조방정식모형분석

시스템경영과 구조방정식모형분석 2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법

More information

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드] 제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임

More information

는 우연히 안나를 알게 되고, 이후 두 사람은 서로 격렬한 사랑에 빠진다. 결국 안나가 브 론스키의 아이를 임신하게 되자, 브론스키는 안나가 카레닌과 이혼하고 자기와 함께 새로 운 생활을 하길 바라지만, 안나는 아들 때문에 망설인다. 한편, 카레닌은 브론스키를 사랑 한

는 우연히 안나를 알게 되고, 이후 두 사람은 서로 격렬한 사랑에 빠진다. 결국 안나가 브 론스키의 아이를 임신하게 되자, 브론스키는 안나가 카레닌과 이혼하고 자기와 함께 새로 운 생활을 하길 바라지만, 안나는 아들 때문에 망설인다. 한편, 카레닌은 브론스키를 사랑 한 한글 번역 Grade 5-9 안나 카레니나 p. 4 이 책의 저자 톨스토이 (1828~1910) 19세기 러시아 문학을 대표하는 세계적 작가인 동시에 사상가. 유서 깊은 백작 집안의 넷째 아들로 태어났다. 대학을 중퇴한 후 고향으로 돌아와 지주로서 영지 내 농민생활의 개선을 위해 노력하였으나, 그의 이상주의는 실패로 끝나 모스크바에서 방탕한 생활에 빠 져들었고

More information

nonpara6.PDF

nonpara6.PDF 6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,

More information

Microsoft PowerPoint - Info R(3) pptx

Microsoft PowerPoint - Info R(3) pptx Coelaton Analyss 개념 Bvaate analyss 측정형두변수간의관계분석 상관관계? 두측정형변수의산점도 : 상호직선적관련성을상관계수 (Coelaton Coeffcent 측정. 잠재설명 ( 원인 변수 (X s 상관관계, 잠재변인과결과변수 (Y 의상관관계 Peason 상관계수 측정형변수직선관계정도 cov( X, Y E( X E( X E( Y E( Y

More information

농심-내지

농심-내지 Magazine of NONGSHIM 2012_ 03 농심이 필요할 때 Magazine of NONGSHIM 농심그룹 사보 농심 통권 제347호 발행일 2012년 3월 7일 월간 발행인 박준 편집인 유종석 발행처 (주)농심 02-820-7114 서울특별시 동작구 신대방동 370-1 홈페이지 www.nongshim.com 블로그 blog.nongshim.com

More information

치밀한 시간 계산으로 한 치의 오차 없이 여행일정을 계획하지만, 상황이 항상 뜻대로 돌 아가지는 않는다. 인도에서는 철로가 끊겨 있기도 하고, 미국에서는 인디언의 공격을 받 기도 한다. 하지만 그는 항상 침착하고 냉정한 태도를 유지하며, 때로는 일정에 차질이 생 겨도

치밀한 시간 계산으로 한 치의 오차 없이 여행일정을 계획하지만, 상황이 항상 뜻대로 돌 아가지는 않는다. 인도에서는 철로가 끊겨 있기도 하고, 미국에서는 인디언의 공격을 받 기도 한다. 하지만 그는 항상 침착하고 냉정한 태도를 유지하며, 때로는 일정에 차질이 생 겨도 한글 번역 Grade 3-9 80일간의 세계일주 p. 4 이 책의 저자 쥘 베른 (1828~1905) 과학 모험 소설가로 유명한 쥘 베른은 1828년 프랑스의 항구도시 낭트에서 태어났 다. 그는 어렸을 때부터 바다와 모험을 동경하고 독서와 글쓰기를 좋아하였으나, 아버지 의 뜻에 따라 파리에서 법률을 공부하고 졸업 후에는 사업가, 주식 중개인 등으로 일하였 다.

More information

슬라이드 1

슬라이드 1 Principles of Economerics (3e) Ch. 4 예측, 적합도, 모형화 013 년 1 학기 윤성민 4.1 OLS 예측 (1) 점예측 x0 y0 - 설명변수일때, 종속변수의값을예측하고자함 y ˆ = b + 0 1 b x 0 Ch. 4 예측, 적합도, 모형화 /60 4.1 OLS 예측 예측오차 (forecas error), f 예측오차의기대값

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

기술통계

기술통계 기술통계 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 기술통계 1 / 17 친구수에대한히스토그램 I from matplotlib import pyplot as plt from collections import Counter num_friends = [100,49,41,40,25,21,21,19,19,18,18,16, 15,15,15,15,14,14,13,13,13,13,12,

More information

IKC43_06.hwp

IKC43_06.hwp 2), * 2004 BK21. ** 156,..,. 1) (1909) 57, (1915) 106, ( ) (1931) 213. 1983 2), 1996. 3). 4) 1),. (,,, 1983, 7 12 ). 2),. 3),, 33,, 1999, 185 224. 4), (,, 187 188 ). 157 5) ( ) 59 2 3., 1990. 6) 7),.,.

More information

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이

4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이 1 2 On-air 3 1. 이베이코리아 G마켓 용평리조트 슈퍼브랜드딜 편 2. 아모레퍼시픽 헤라 루즈 홀릭 리퀴드 편 인쇄 광고 올해도 겨울이 왔어요. 당신에게 꼭 해주고 싶은 말이 있어요. G마켓에선 용평리조트 스페셜 패키지가 2만 6900원! 역시 G마켓이죠? G마켓과 함께하는 용평리조트 스페셜 패키지. G마켓의 슈퍼브랜드딜은 계속된다. 모바일 쇼핑 히어로

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

Microsoft Word - ch2_smoothing.doc

Microsoft Word - ch2_smoothing.doc FORECASTING / 2 장. 지수평활법 14 Chaer 2. 지수평활법 시계열자료는시간에따라관측되며자료의수가많다는특징을갖는다. 시계열자료는시간에따른변화를 (rend, cycle, seasonaliy) 가지고있으므로과거관측치를이용하여미래값을예측할수있을것이다. 이를모형화하는방법이 ARMA 에서살펴보았다. ARMA 모형은시계열데이터의주기 (cycle) 을모형화하는것이다.

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> Par II. 다중회귀모형및기본가정의완화 I. 다중회귀모형 A. 다중회귀모형에대한가정 = β+β x + +β x +ε, =,..., ( x ) 관측치의수, 설명변수의수 K-, 추정모수의수 K 개별모수들의의미 : E( ) 예컨대, β = : 다른설명변수들이일정할때, x 의한 x 단위변화에대한종속변수의평균값의변화 즉다른변수들의영향력이통제 (conrol) 된상황에서첫번째설명변수의종속변수에대한영향력을나타내는값임

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

에듀데이터_자료집_완성본.hwp

에듀데이터_자료집_완성본.hwp 단위학교성과제고를위한 교육여건개선방안탐색 모시는글 2012 년도에듀데이터활용학술대회프로그램 목차 n n [ 주제 1] 교육지원청수준에서기초학력결정요인분석연구 천세영 이성은 3 [ 주제 2] 비용함수모형에의한국 공립중학교적정교육비및가중치산출연구 오범호 윤홍주 엄문영 37 n n [ 주제 1] 토론 김영애 67 [ 주제 2] 토론 김성식 73 n n [ 주제

More information

eda_ch7.doc

eda_ch7.doc ( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug

More information

MATLAB for C/C++ Programmers

MATLAB for C/C++ Programmers 오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..

More information

Microsoft PowerPoint - LM 2014s_Ch4.pptx

Microsoft PowerPoint - LM 2014s_Ch4.pptx 1. 회귀모형및가정 모형설명 선형 linearity 함수 (,,,, ) 회귀계수 : 모수, unknown but fixed 절편 : y-축을통과하는곳 기울기 : 편미분, 한단위증가 p개의설명변수 들은결정변수 ( 확률변수아님 ) 종속변수만확률변수 모형 설명변수개수 p 개 관측치개수 n, 1,2,, ~ 0, ( 행렬 ),, 가정 ~ 0, 정규성 normality

More information

step 1-1

step 1-1 Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Crt114( ).hwp

Crt114( ).hwp cdna Microarray Experiment: Design Issues in Early Stage and the Need of Normalization Byung Soo Kim, Ph.D. 1, Sunho Lee, Ph.D. 2, Sun Young Rha, M.D., Ph.D. 3,4 and Hyun Cheol Chung, M.D., Ph.D. 3,4 1

More information

about_by5

about_by5 WWW.BY5IVE.COM BYFIVE CO. DESIGN PARTNERS MAKE A DIFFERENCE BRAND EXPERIENCE CONSULTING & DESIGN PACKAGE / OFF-LINE EDITING CONSULTING & DESIGN USER EXPERIENCE (UI/GUI) / ON-LINE EDITING CONSULTING & DESIGN

More information

_KF_Bulletin webcopy

_KF_Bulletin webcopy 1/6 1/13 1/20 1/27 -, /,, /,, /, Pursuing Truth Responding in Worship Marked by Love Living the Gospel 20 20 Bible In A Year: Creation & God s Characters : Genesis 1:1-31 Pastor Ken Wytsma [ ] Discussion

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3

More information

영어-중2-천재김-07과-어순-B.hwp

영어-중2-천재김-07과-어순-B.hwp Think Twice, Think Green 1 도와드릴까요? Listen and Speak 1 (I / you / may / help) 130,131 15 이 빨간 것은 어때요? (this / how / red / about / one) 16 오, 저는 그것이 좋아요. (I / it / oh / like) 2 저는 야구 모자를 찾고 있는데요. (a / looking

More information

농심-내지

농심-내지 Magazine of NONGSHIM 2012_ 02 농심이 필요할 때 Magazine of NONGSHIM 농심그룹 사보 농심 통권 제346호 발행일 2012년 2월 2일 월간 발행인 박준 편집인 유종석 발행처 (주)농심 02-820-7114 서울특별시 동작구 신대방동 370-1 홈페이지 www.nongshim.com 블로그 blog.nongshim.com

More information

Microsoft Word - sbe13_reg.docx

Microsoft Word - sbe13_reg.docx Statstcs 4 Busness and Economcs (Regresson) 상관계수 상관계수정의 두변수간의선형관계정도를나타내는값 COV ( X, Y ) E( X E( X ))( Y E( Y )) 정의 : V ( X ) V ( Y ) V ( X ) V ( Y ) 표본상관계수 : r ˆ ( ( x ( x x) x) ( x x x)( y x)( y /( n 1)

More information

278 경찰학연구제 12 권제 3 호 ( 통권제 31 호 )

278 경찰학연구제 12 권제 3 호 ( 통권제 31 호 ) 여성경찰관의직업윤리의식결정요인분석 * An Analysis of Determinantal Factors Influencing Professional Ethical Standards of South Korean Police Women 신문희 ** 이영민 *** Ⅰ. 서론 Ⅱ. 이론적배경 Ⅲ. 연구방법 Ⅳ. 연구결과 Ⅴ. 결론 Ⅰ. 서론 278 경찰학연구제 12

More information

Microsoft Word - ch2_simple.doc

Microsoft Word - ch2_simple.doc REGRESSION / 장. 단순회귀 0 Chapter 단순회귀 회귀분석은종속변수 ( Y ) 와설명변수들 ( X 1, X,..., X p, 독립변수 ) 과관계를분석하는도 구이다. (1) 모형에설정된설명변수들의유의성검정?( 모형과회귀계수의유의성검정 ) () 유의한설명변수중종속변수에영향력이가장큰변수는무엇인가?( 표준화회귀계수 ) (3) 그리고설명변수값들이주어진경우종속변수의예측치는?

More information

6자료집최종(6.8))

6자료집최종(6.8)) Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

철학탐구 1. 들어가는말,. (pathos),,..,.,.,,. (ethos), (logos) (enthymema). 1).... 1,,... (pistis). 2) 1) G. A. Kennedy, Aristotle on Rhetoric, 1356a(New York :

철학탐구 1. 들어가는말,. (pathos),,..,.,.,,. (ethos), (logos) (enthymema). 1).... 1,,... (pistis). 2) 1) G. A. Kennedy, Aristotle on Rhetoric, 1356a(New York : 파토스가글쓰기와말하기에미치는영향 박삼열 *...,.......,..,... * 철학탐구 1. 들어가는말,. (pathos),,..,.,.,,. (ethos), (logos) (enthymema). 1).... 1,,... (pistis). 2) 1) G. A. Kennedy, Aristotle on Rhetoric, 1356a(New York : Oxford

More information

03.Agile.key

03.Agile.key CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development

More information

.... ...... ....

.... ...... .... 17 1516 2 3 3 027 3 1516 13881443 028 1 1444 26 10 1458 4 029 15 14587 1458 030 10 1474 5 16 5 1478 9 1 1478 3 1447 031 10 10 032 1 033 12 2 5 3 7 10 5 6 034 96 5 11 5 3 9 4 12 2 2 3 6 10 2 3 1 3 2 6 10

More information

22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를

22 장정규성검정과정규화변환 22.1 시각적방법 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 22 장정규성검정과정규화변환 22.1 시각적방법 22.1.1 Q-Q 플롯과정규확률그림 Q-Q 플롯( 분위수- 분위수플롯, Quantile-Quantile plot) 은하나의자료셋이특정분포( 정규분 포나와이블분포등) 를따르는지또는두개의자료셋이같은모집단분포로부터나왔는지를 판단하는시각적분석방법이다. Q-Q 플롯은자료의분위수와특정( 이론적) 분포의분위수를구하여산점도로나타내거나,

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI:   A study on Characte Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.381-404 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.381 A study on Characteristics of Action Learning by Analyzing Learners Experiences

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information