국706.fm

Similar documents
44(3)-16.fm

국8410.fm

06국305.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

국705.fm

43(5)-11.fm

untitled

국816.fm

06국306.fm

국9209.fm

12.077~081(A12_이종국).fm

43(4)-08.fm

10(3)-02(013).fm

14.531~539(08-037).fm

44(5)-10.fm

43(6)-07.fm

44(5)-03.fm

국9409.fm

한1009.recover.fm

歯전용]

Microsoft Word _kor.doc

국707.fm

( )국11110.fm

PDF

14.fm

44(4)-06.fm

Microsoft Word - KSR2012A021.doc

Microsoft Word - KSR2013A320

10(3)-06(021).fm

44(2)-11.fm

untitled

국8411.fm

64.fm

67~81.HWP

45(3)-07(박석주).fm

19(1) 02.fm

82-01.fm

Microsoft Word - KSR2012A038.doc

45(3)-15(유승곤).fm

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

44(2)-08.fm

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

16(3)-08.fm

Microsoft Word - KSR2013A303

( )-103.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

44(2)-06.fm

국906.fm

국9308.fm

Microsoft Word - KSR2012A172.doc

16(5)-03(56).fm

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX)

(최준우).fm

587.eps

12(4) 10.fm

Áß2±âÇØ(01~56)

歯_ _ 2001년도 회원사명단.doc

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

<BAB0C3A5BABBB9AE2E687770>

Microsoft Word - KSR2012A103.doc

10(3)-10.fm

슬라이드 제목 없음

44(2)-02.fm

45(2)-02(최대근).fm

국8412.fm

歯49손욱.PDF

45(4)-12(송명호).fm

°ø±â¾Ð±â±â

< B9DAC2F9B9E82E666D>

16(5)-04(61).fm

9(3)-4(p ).fm

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

KAERIAR hwp

Microsoft Word - KSR2013A299

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

43(4)-11.fm

PJTROHMPCJPS.hwp

Microsoft Word - KSR2012A060.doc

10(3)-12.fm

歯김유성.PDF

歯Trap관련.PDF

PDF

32

Microsoft Word - KSR2013A311

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Elix 3 Elix 5 Elix 10 RiOs 3 RiOs 5 RiOs 8 RiOs 16!.. MILLIPORE

121_중등RPM-1상_01해(01~10)ok

17(2)-00(268).fm

untitled

(1)-01(정용식).fm

00....

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word - IO_2009_메모리반도체.doc

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

17.393~400(11-033).fm

본 발명은 중공코어 프리캐스트 슬래브 및 그 시공방법에 관한 것으로, 자세하게는 중공코어로 형성된 프리캐스트 슬래브 에 온돌을 일체로 구성한 슬래브 구조 및 그 시공방법에 관한 것이다. 이를 위한 온돌 일체형 중공코어 프리캐스트 슬래브는, 공장에서 제작되는 중공코어 프

한국콘베어-AP8p

본문.PDF

Microsoft Word - KSR2012A132.doc

Transcription:

Carbon Science Vol. 7, No. 4 December 2006 pp. 271-276 Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials Kwang Youn Cho, Kyong Ja Kim and Doh Hyung Riu Division of Nano Materials Application, KICET, Seoul 153-851, Korea e-mail: kycho@kicet.re.kr (Received September 18, 2006; Accepted December 11, 2006) Abstract Porous carbon materials were prepared with a thermal treatment of coal tar pitch at 550 in the Ar gas. Growth, merger, and distribution of pore were characterized with scanning electron microscopy as variation ascending temperature gradient and chamber pressure. After graphitizing at the 2600 (1 hr.), walls and connecting parts between pores were investigated with X-ray diffraction patterns. Wall thickness and pore size decreases as increasing ascending temperature gradient, and pore size becomes homogeneous. Graphite quality and thermal conductivity become higher due to the enhanced orientation of walls and connecting parts between pores. Keywords : Pore, Growth, Pressure, Heating Rate, Thermal Conductivity 1. ˆ q o r r s c p p q p d a, b p p o p v p p p v p. ˆ q p r s n lr m m l m s q r q p. ˆ o p p rp p p s v p p p l lr p. p lr l q n r l rn l pl ep kv p. c p p lr p 2D, 3D l p l p p [1]. rp c p p lr ~p l l ~ ƒv o l p p e lr. ˆ q o p o o l 1200 o C p ˆ m 2500 o C p p l l rp r s. p rl o p r r p të p ˆ q rs. r r p p 300 o C p l eq l 400~500 o Cl vtrp pl. 500 o C p l d r p l p ~ l p [2]. p rl dm m k srl p s ˆ q p s sr p, dm p ~ n v kp ˆ l p p ~l p k p l p dk p k p ~ l pe p s [3]. dm m k p m ˆ sr pp k l p p eˆ. p 3 orp l s p. p rs ˆ q k, 3 orp l p o~p p qo el rp. p svp ˆ o p p lr k l q ns p seˆ p rp qp [4]. ˆ q p Poco Graphite, Locheed Martin Energy Co., Allied-Signal Inc.m p l l q n e pp r n v p. r l ƒ sm o svp pl ˆ o e ~ p q f p p. ˆ om ˆ q rëlr p p ˆ l pn l p., r rp p rs ˆ o q l ˆ p interlaminar s l l r p p p l n p ˆ p r. ˆ q rs ˆ q o p r} s l k svp. l l rs ˆ n l k o l 550 o C l } l ˆ q rs m. l} e dm m k p l q p m. q p scanning electron microscopy q, ~, l m ˆ q 2600 o C 1e l XRD p ee l l, l p l ˆ m.

272 K. Y. Cho et al. / Carbon Science Vol. 7, No. 4 (2006) 271-276 2. œ k o kr~ (t)p ˆ e p ˆ n m. ˆ 100gp k p l l kn l qp v v d tpp 3 v d tp l 300~800 psi k m. p r k p ov 5 o C/min 500 o C v dm l 30 ov l m. rs ˆ q e p l l qp v Ar dtpp 3 Ar o l 2600 o C v 10 o C/min dmeˆ 1e k ov m [5, 6]. rs ˆ qp r w q rn (AT201, METTLER, Switzerland)m v lƒ d e p m ~rp l tp r m. Gas Pycnometer(Accupyc 1330) n l v tp r t m. e p k rn e p 10 10 20 mm( p)p p e p rq e (Model 4202, Instron JAPAN) 500 kg load cell, cross speed 0.5 mm/minp s p Ž tp, k p (1)el m. σ c = ----- P bd σ c : Compressive strength P : Fracture load b : length(h) d : length(v) dm m k p l rs ˆ qp,, s t rq (SEM, AKASHI, WB-6)p m. 2600 Cl o 1e k l e l Cu ˆ p X- r l l r ˆ t (002) l p q (C 0 /2)m c l rp r m. q Bragg's lawp (2) p ep pn mp rp Scherrer equation (3)p pn l r m [7]. (1) L c : Average stack height of crystalline k : Correction factor (about 1) B : Width of line at half intensity maximum ˆ qp k l p lr r NETZCH LFA427 pn l KS L 1604l p l ln l pp l (4)m p e p lr r m. λ=α*cp*ρ λ : Thermal conductivity α : Thermal diffusivity Cp : Specific heat capacity ρ : Density 3. y w Fig. 1, 2 dm srl p ˆ qp p, p p. dm v p, p v rp qkv r q kr. p dm v o p 500 o C v l l p p q, ~ p t p ˆl pl p ˆ v, qp p ˆ p. Fig. 3p dm srl p rs ˆ q p rq vp. dm ~ v v l r rp p q p kk. p p t pl p qld (4) ( ) = ------------- λ 2sinθ d 002 (2) d : Interlayer spacing θ : Bragg's angle λ : Wavelength of Cu Kα X-ray (1.5406 Å) L c = -------------- kλ Bcosθ (3) Fig. 1. Pore diameter of porous carbon materials as a function of heating rate.

Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials 273 Fig. 2. Ligaments width of porous carbon materials as a function of heating rate. v k rpp p. dm 2 o C/min rs e p p m p rp o p p t p ~ e p v pl p ov p ƒr. Fig. 4 p l} dm l p rs ˆ qp o l e p [1, 2]. rp 3000 o Cl p rl 60%p p. pl 400~500 o C l p. p l p eq l l o p l 350 o C p ~- qp pl p n eq. p t pp p ov eq. pp v lo l p t p ~ p p p t pp p r rp p p qkv eq. p p p t dkp t t l p p p qn l p qkr p l v eq. dm p p p pl l p l r svp. d m p q- ~ kp ˆl p lr qp p p svp. v, dm q kp s v 3 orp l (Foam) ˆp ˆ q. ƒ w Fig. 3. SEM of porous carbon materials as a function of heating rate. Fig. 5, 6p k l ˆ qp, p. k p v p qkr kkr. k p v m p qkr. p l p Fig. 4. Foaming mechanism as a function of heating rate.

274 K. Y. Cho et al. / Carbon Science Vol. 7, No. 4 (2006) 271-276 Fig. 5. Pore diameter of porous carbon materials as a function of pressure. Fig. 6. Ligaments depth of porous carbon materials as function of pressure. p n p k l p po ~ ql l np p r rp p qkr p p r. Fig. 7 k p l rs ˆ qp rq vp. r rp k p q p p pl qp k l qp p q l pl. p k p v p n p l n k l p l l p d kp d l p p q v m, p ~ l l p q p r p Ž. n k 500 psi rs ˆ qp vl qp p q ~p rp p. k l v svp q r p l ˆ om p p q p p. p n k dkp p p p Fig. 7. SEM of porous carbon materials as a function of pressure. l l vt q r s p Ž. p l s rp p p l n lr, r p ˆ. Fig. 8, 9p ˆ q ˆ m l p XRDq p. k l l l r r n m. ˆ XRDl p p l v kkp l XRDq l 002 p l ƒr t p p n qkr. p d (002) p l(3.354 nm)l ov rp (Lc) ƒr v p, r rp k l l l r l d m. Fig. 10, 11 l ˆ qp d(002), l, l r p ˆ l. k l l d(002)p 3.3608 nm qkr l 92%, lr 57.5 W/mK p ˆ l. p 300~500 o C l lo p, el l p dkp p

Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials 275 Fig. 8. XRD of porous carbon materials as a function of pressure after carbonization. Fig. 11. Bulk thermal conductivity and specific thermal conductivity of porous carbon materials as a function pressure. l p p p t l p dk n l v k p p l l vt l p v p. Fig. 9. XRD of porous carbon materials as a function of pressure after graphitization. Fig. 10. d(002), %Graphitization of porous carbon materials as function of pressure. eq p kl p p lo p l r p ~, qp l ov. p p n p p np k l q v ˆp p k p. p m d l t 4. dm l p, p v rp qkv r qkr. dm l p m p rp o. p dm v o p 500 o C v l l p p q, ~ p t p ˆl pl p ˆ v, qp p ˆ p dm p t p ~ e p v pl p ov p ƒr. k p q p p pl q p k l qp p q l pl. n p k p rp qp n qp p q ~p rp p. k p v svp q r p l p q p p. p n k dkp p p p l l vt q r s p Ž. p rs ˆ q d(002)p 3.3608 nm q l 92%, lr 57.5 W/ mk p ˆ n l q p p p. References [1] Druma, A. M.; Alam, M. K.; Druma, C. International Jour-

276 K. Y. Cho et al. / Carbon Science Vol. 7, No. 4 (2006) 271-276 nal of Thermal Sciences 2004, 43, 689. [2] Calvo, M.; García, R.; Arenillas, A.; Suárez, I.; Moinelo, S. R. Fuel 2005, 84, 2184. [3] Beechem, T.; Lafdi, K.; Elgafy, A. Carbon 2005, 43, 1055. [4] Rosebrock, G.; Elgafy, A.; Beechem, T.; Lafdi, K. Carbon 2005, 43, 3975. [5] Rios, R. V.; Escandell, M. M.; Sabio, M. M.; Reinoso, F. R. Carbon 2006, 44, 1448. [6] Ema, Y.; Ikeya, M.; Okamoto, M. Polymer 2006, 47, 5350. [7] Mesalhy, O.; Lafdi, K.; Elgafy, K. Carbon 2006, 44, 2080.