3.fm

Similar documents
12.077~081(A12_이종국).fm

48.fm

14.fm

10(3)-09.fm

10(3)-10.fm

14.531~539(08-037).fm

untitled

( )-83.fm

< DC1A4C3A5B5BFC7E22E666D>

62.fm

93.fm

82-01.fm

fm

87.fm

83.fm

16(5)-03(56).fm

( )-77.fm

85.fm

605.fm

16(5)-04(61).fm

10(3)-12.fm

50(1)-09.fm

( )-113.fm

143.fm

( )-123.fm

( )-84.fm

19(1) 02.fm

82.fm

( )-68.fm

304.fm

50(5)-07.fm

17.393~400(11-033).fm

07.051~058(345).fm

16(5)-06(58).fm

(163번 이희수).fm

10(3)-02.fm

16(1)-3(국문)(p.40-45).fm

64.fm

( )-40.fm

105.fm

57.fm

12(3) 10.fm

11(5)-12(09-10)p fm

69-1(p.1-27).fm

12(4) 10.fm

9(3)-4(p ).fm

50(4)-10.fm

( )-103.fm

( )-53.fm

49(6)-06.fm

16(2)-7(p ).fm

6.fm

26(3D)-17.fm

15.101~109(174-하천방재).fm

106.fm

( )34.fm

( )-101.fm

416.fm

89.fm

<30332DB9E8B0E6BCAE2E666D>

( )-47.fm

12(2)-04.fm

4.fm

75.fm

untitled

10.063~070(B04_윤성식).fm

(159번 어혜진).fm

10.fm

07.045~051(D04_신상욱).fm

41(6)-09(김창일).fm

( )-122.fm

( )-71.fm

13.fm

32(4B)-04(7455).fm

18(3)-10(33).fm

( )-129.fm

61.fm

16(5)-02(57).fm

23(2) 71.fm

( )-70.fm

( )-85.fm

( )-94.fm

fm

27(5A)-07(5806).fm

17(1)-05.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

202.fm

10(1)-08.fm

43(5)-1.fm

51(4)-13.fm

17.fm

139.fm

144.fm

fm

14(4) 09.fm

8(3)-15(p ).fm

38(6)-01.fm

8(2)-4(p ).fm

120.fm

11(1)-15.fm

Transcription:

Journal of the Korean Ceramic Society Vol. 44, No. 1, pp. 12~17, 2007. A Study on the Preparation of Bone Ash and Celadon Bone Body Using Pig Bone Jae-Jin Jeong, Sang-Hee Lee, Yong-Seok Lee,* and Byung-Ha Lee Department of Ceramic Engineering, Myongji University, Yongin 449-728, Korea *National Institute of Advances Industrial Science and Technology, Nagoya 46-8560, Japan (Received August 1, 2006; Accepted November 16, 2006) w Bone Ash Bone w Á Á *Á w w œw *» w l Sustainable (2006 8 1 ; 2006 11 16 ) ABSTRACT Recently, Korean food culture has westernized and the consumption of meat has been increased. As a result an enormous amount of disposal of bone is generated and most of them are buried without reutilization. By making bone ash using pig bone, the possibilities of application are examined. The purpose of this study is to establish a manufacturing process of bone ash for the celadon bone body using pig bone. The calcination of the pig bone was mostly to change to the calcium phosphate hydroxide (Ca 5 (PO 4 ) OH). The celadon body mixed with pig bone ash 8%, CaCO 9%, when fired at 1240 o C under reduction atmosphere, shows 0.1% of water absorption, 65.2 MPa of bending strength. Key words : Pig bone, Celadon bone body, Calcium phosphate hydroxide, Bone ash 1. x z ùú y š y š y wš x w š w ww s»» š. s» y z w š ƒ z š. y y w» s ƒ š, y z r w sƒ w. x w y mw, y mw y, ƒ z w mw w. w s» w z s» y, z. 1) wš s» x, ƒ š y j Corresponding author : Jae-Jin Jeong E-mail : towonjjj@daum.net Tel : +82-1-6-7122 Fax : +82-1-6-7122 š ù y ù ù d yƒ. w p w ƒ» š 2 ƒ. š bone china bone ash w, ƒ w w». 2-4) w w p» bone china ww ù, w m» w š w 5-7) w bone ash ƒ ƒ w q. s y y bone ash œ y bone. 2. x 2.1. w z(bone Ash) x w s» w w, x w ww» w 12

w Bone Ash Bone w 1 w z w (TG-DTA, DTG-60H, Shimadzu, Japan) ww. w bone ash z ý w» w, 700 o C w w» w 800, 850, 900, 950 C 1 ƒƒ w w o ball mill w z ƒ ww w w w. z w e e w» w 1 2~10 2 ò k z» 100 o C, 48 g. e XRF mw y w. w w y y w XRF(XRF-1800, Shimadzu, Japan) ww, y y w» w ƒ w XRD(XRD-7000, Shimadzu, Japan) ww. 2.2. Pig Bone Ash ƒw Pig bone ash ƒw w» w w pig bone ash fast mill 25 mesh mw ww. w» x q š» 100 o C, 48 Table 1. Batch Compositions of Celadon Bone Bodies Celadon body Pig bone ash CaCO Pu Yeo quartz (wt%) Gairome clay A-1 89 8 - - A-2 86 8 6 - - A- 8 8 9 - - A-4 80 8 12 - - B-1 89 8 - - B-2 86 8-6 - B- 8 8-9 - B-4 80 8-12 - C-1 89 8 - - C-2 86 8 - - 6 C- 8 8 - - 9 C-4 80 8 - - 12 k z, ball mill w w. bone w w x, pig bone ash ƒƒ 0, 2, 4, 6, 8% ƒw ww. z ƒ ww š q w» w bone» w w e š ƒ CaCO, ³, m ƒƒ ~12% ƒ g p w, w Table 1 ùkü. CaCO w, ³, m yw e Table 2 ùkü. w w y w» w ƒ x Φ2 5mm 40 7 5mm r xw z y» 1240 o C 1 w. z,, v,» w š, y XRD w.. š.1. z(pig Bone Ash) Fig. 1 w TG-DTA. DTA 250 o C w w vjƒ ùkû, w j û. 00~500 o C ùkù w vj» w q 600 o C z Ca 5 (PO 4 ) OH y w ù. w TGA, 100 o C¾ Fig. 1. TG-DTA curve of pig bone. Table 2. Chemical Compositions of Raw Materials and Body (wt%) SiO 2 Al 2 O Fe 2 O CaO MgO K 2 O Na 2 O P 2 O 5 Celadon body 52.26 27.74.77 0.81 1.01 2.08 0.6 - Pu Yeo quartz 99.61 0.09 0.0 0.09 0.02 0.01 0.04 - Gairome clay 62.78 24. 1.22 0.0 0.45 2.05 0.12 0.01 44«1y(2007)

14 Á Á Á w Table. Chemical Compositions of Pig Bone and Cow Bone Ash (wt%) SiO 2 Al 2 O Fe 2 O CaO MgO K 2 O Na 2 O P 2 O 5 Pig bone ash 2.7 0.41 0.14 50.9 1.2-0.71 9.8 Cow bone ash 2.1 0.08-52.9 1.1 0.02 0.52 9.8 w y š,» w 40% û 00 o C¾» wƒ w ƒ û. 00~500 o C¾» w w š. w w 40%ƒ» w ùküš š. calcium phosphate hydroxide (Ca 5 (PO 4 ) OH) xk y» w 500~750 o C¾ Ca (PO 4 ) 2 OH Ca 5 (PO 4 ) OHƒ œ w xk Ca 5 (PO 4 ) OH ƒw ƒ 1100 o C z w x w w Ca 5 (PO 4 ) OH y š w q. w,» w w q, x» w 700 o C w w w. w Table» cow bone ash pig bone ash CaO P 2 O 5 j ƒ ù bone ash y 0.14% w y. w x bone china š cow bone ash e w. bone ash ü w e ƒ z w» w z q w z x ww. Fig. 2 w z» w bone ash w. Pig bone ash w hydroxy apatite xk y w bone ash ƒ. z»» w bone ash ƒ w q. Fig. w y z ùkü. 850, 900, 950 o C w w z û 140 mesh 55%, z» w 270 mesh w ƒƒ 5.26,.0, 2.72% û y. w ƒ 700 o C 800 o C 140 mesh ƒƒ 40% Fig. 2. XRD patterns of cow bone ash and pig bone ash. Fig.. Effect of calcination temperature on the particle size distribution of calcined pig bone. 45% w 700 o C w w z ù, 270 mesh w ƒƒ 6.6% 9.98% 800 o C w w z ùkû. bone ash z w 800 o C q w bone ash w w. Pig bone ash 800 o C w ww z XRD w y wš Fig. 4 ùkü. bone ash ü w hydroxy apatite y w wš. w bone ash ü w e w» w wz

w Bone Ash Bone w 15 Fig. 4. XRD pattern of calcined pig bone. Fig. 6. Bulk specific gravity and water absorption of the celadon body with various amount of pig bone ash. Fig. 5. Effect of boiling time on alkali content of calcined pig bone. w 800 C w w ƒ o ƒ w. bone ash ü y e Fig. 5 ùkü. ƒ z 4 ¾ e w ù z j yƒ. e w boiling 4 w q..2. Bone bone ash ƒ w w sƒ w q w pig bone ash 0~8% ƒƒ ƒw ƒƒ w w wš 1240 o C, y» w w sƒ ww. xr,, w d w Figs. 6 7 ùkü š, w y w Figs. 8, 9 ùkü. Figs. 6 7 ùkü, pig bone ash w ƒw û, Fig. 7. Bulk specific gravity and bending strength of the celadon body with various amount of pig bone ash. flux w bone ash w ƒ w ü e yƒ w» ƒ, w ü ƒw e û ƒ. w bone ash ƒ ƒ w x f 8% ƒ ƒ j x ùkû. sƒ ƒ bone ash ƒ ƒw ü ƒ w x f ƒ. Figs. 8 9 ü bone ash ƒ 0%, 8% 1240 o C z y, bone ashƒ ƒ mullite quartz œ wš ù, bone ashƒ 8% ƒ quartz mullite peak j w. w bone ash w anorthite β-ca (PO 4 ) 2 y. Ca (PO 4 ) 2, Ca(OH) 2 bone ash ƒ Ca (PO 4 ) 2, CaO + H 2 O w CaOƒ ü kaolin w anorthiteƒ š q. w mullite š anorthite š. 44«1y(2007)

정재진 이상희 이용석 이병하 16 Fig. 8. Fig. 9. XRD pattern of sintered celadon body at 1240oC under reduction atmosphere. XRD pattern of sintered celadon body added 8 wt% pig bone ash at 1240oC under reduction atmosphere. Bone ash의 첨가량을 8%로 고정한 다음 Table 1에서와 같이 특성 향상을 위한 여러 원료를 첨가하여 조합을 행한 후, 1240 C로 소성한 시험편의 XRD 분석 결과를 Figs. 10~12에, 소결시험편의 물성값을 Figs. 1과 14에 각 각 나타내었다. Figs. 10~12의 결과에서와 같이 bone 소지 내에 CaCO, quartz, clay가 첨가됨에 따른 새로운 상의 생성은 보이지 않았으며, Fig. 10의 CaCO 의 경우는 첨가량이 증가할수 록 β-ca (PO ) 상이 발달되었고 반면에 quartz상은 감소하 는 경향이 확인되었는데 이는 용융물에 의해 quartz 입자 가 공융되면서 감소한 것으로 생각되며 이로 인해 기공 이 줄어들어 소결이 잘 진행된 것을 알 수 있었다. 다만 Fig. 11의 quartz 첨가 결과에서 보여지듯이 quartz의 첨가 량이 증가함에 의해 소지 내에 미반응 quartz가 많이 존 재하게 되어 quartz peak가 증가하였고, 이로 인하여 흡수 율, 비중, 강도값도 좋지 않게 나타났다. 또한 Fig. 12의 clay의 첨가량이 증가함에 따른 결정상 변화 관찰에서 첨 가량이 증가할수록 소지 내의 mullite 결정이 증가하였고, 이로 인하여 강도값도 증가하였다. 하지만 규석과 점토의 Fig. 10. Fig. 11. XRD patterns of fired celadon bone body with various amount of CaCO. XRD patterns of fired celadon bone body with various amount of quartz. o 4 2 한국세라믹학회지 Fig. 12. XRD patterns of fired celadon bone body with various amount of clay. 첨가량이 증가에 따라 quartz와 mullite상은 발달하였으나 β-ca (PO ) 와 anorthite상의 발달은 매우 적었다. Figs. 1, 14에 나타낸 첨가물에 따른 흡수율과 비중, 굽 4 2

Fig. 1. Bulk specific gravity and water absorption of the celadon bone bodies with various amount of CaCO, quartz, clay. w Bone Ash Bone w 17 ù CaCO 12% ƒw r ƒ û w ùkþ. ü ƒ ƒ e y û ù ùe w e ƒ. ³ ƒw ƒ ƒw ³ w e w w ƒ û ƒ. 4. s» y y w s» w w bone ash w w. w bone ash w bone w. 1. w w hydroxy apatite y. z ùký w 800 o C, e w boiling 4. 2. w bone ash w ww w, anorthite β-ca (PO 4 ) 2, 0.17%¾.. pig bone ash, CaCO, ³, m ƒw ƒ bone w, pig bone ash 8%, CaCO 9% ƒw y» 1240 o C w ƒ 0.10%, 65.2 MPa ƒ w p e ùkü. Fig. 14. Bulk specific gravity and bending strength of the celadon bone bodies with various amount of CaCO, quartz, clay. y, CaCO m ƒ û ù ³ ƒ 7%¾ ùkû. ³ ƒ ƒw û ù CaCO m ƒ 9%¾ ƒw š 12% ƒw w. ³ ƒ w»œ ƒ š û ƒ, CaCO ƒw CaCO ƒ flux w w e y ƒ û š ƒw ƒ. m mullite e w û š ƒw ƒ., CaCO m ƒ ƒw REFERENCES 1. Y. H. Kim, P. K. Chang, and Y. M. Lim, Synthesis of the Refined Calcium Phosphate for Bone China Porcelain from Oyster Shell, J. Kor. Solid Wastes Eng. Soc., 14 [7] 62-1 (1997). 2. Y. J. Kim and D. Y. Kim, Joint Translation Ceramic Engineering Hand-Book, Dae Kwang Publishing Company, 2 [] 1082-8 (1994).. J. J. Cooper, Bone for Bone China, British Ceramic Transactions, 94 [4] (1995). 4. P. Rato, Worcester/England, Ceramic Monographs Hand Book of Ceramics, Verlag Schmid Gmb. H. Freiburg I. Brg., 6 [] 81-4 (1981). 5. H. T. Kim, S. Y. Lee, C. S. Ham, and E. S. Choi, The Effect of Micro Constituent Element on the Sevelopment of Unique Color of Koryo Celadon(in Korean), J. Kor. Ceram. Soc., 8 [6] 522-0 (2001). 6. Y. M. Jung, Korea Ceramic Ware, Mun-Yae Publishing Company, 2 [1] 64 (1994). 7. E. G. Im, The Spirit of Korea-Celadon, Science and Technique of the Ceramic Material, 1 [1] 78-89 (1986). 44«1y(2007)