선형대수

Similar documents
2005 7


ÀÎÅͳÝ-°ø°£µµÇüÇØ

Vector Space Vector space : 모든 n 차원컬럼벡터의집합 : {, :, } (, 2), (2, 5), (-2.4, 3), (2.7, -3.77), (,), 이차원공간을모두채움 : {,, :,, } (2,3,4), (3,2,-5), Vector spa

-주의- 본 교재는 최 상위권을 위한 고난이도 모의고사로 임산부 및 노약자의 건강에 해로울 수 있습니다.

OR MS와 응용-03장


2

Chapter4.hwp

INDUS-8.HWP


CONTENTS.HWP

<C0CEC5CDB3DDC1DFB5B6BDC7C5C2C1B6BBE75FC0CEBCE2C5EBC7D5BABB5F E687770>

1 1,.,

작용소의 행렬표현과 그 응용

public key private key Encryption Algorithm Decryption Algorithm 1

산선생의 집입니다. 환영해요

PowerPoint Presentation

436 8., {(x, y) R 2 : y = x, < x 1} (, 1] φ(t) = (t, t), (, 2] ψ(t) = (t/2, t/2), [1, ) σ(t) = (1/t, 1/t).. ψ φ, σ φ. (φ, I) φ(i) φ : I φ(i). 8.2 I =

00-1표지


歯02-BooleanFunction.PDF

0 cm (++x)=0 x= R QR Q =R =Q = cm =Q =-=(cm) =R =x cm (x+) = +(x+) x= x= (cm) =+=0 (cm) =+=8 (cm) + =0+_8= (cm) cm + = + = _= (cm) 7+x= x= +y= y=8,, Q

<C1A4C3A5BFACB1B D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

표지연습문제 PRNG(Pseudorandom Number Generator) : 진정한의미의 random number 는 물론정의하기나름이겠지만 존재할수없다. 따라서인위적으로만든 random number를 pseudorandom number라고부른다. 표지연습문제 :

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

°ø¾÷-01V36pš

ºÎ·ÏB

<C5F0B0E82D313132C8A328C0DBBEF7BFEB292E687770>

#수Ⅱ지도서-4단( )

세계 비지니스 정보


Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

fx-570EX_fx991EX

Precipitation prediction of numerical analysis for Mg-Al alloys

경제통상 내지.PS

°æÁ¦Åë»ó³»Áö.PDF

Check 0-9, 9,, - 6, 6, 6, =0.04, (-0.) = , =64 8 8, -8 (-6) =6 (-6) 6, -6 7, , -0. 8, -8 6, '7 ' '

PowerPoint 프레젠테이션

Microsoft PowerPoint - 기계공학실험1-1MATLAB_개요2D.pptx


<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770>

슬라이드 1

체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x

untitled

Chapter 5

untitled


<312D303128C1B6BAB4BFC1292E666D>

프로덕트 아이덴티티의 유형별 특성에 관한 연구

<근대이전> ⑴ 문명의 형성과 고조선의 성립 역사 학습의 목적, 선사 문화의 발전에서 국가 형성까지를 다룬다. 역사가 현재 우리의 삶과 긴밀하게 연결되었음을 인식하고, 역사적 상상력을 바탕으 로 선사 시대의 삶을 유추해 본다. 세계 여러 지역에서 국가가 형성되고 문 명

ÃÖ»óÀ§5³ª-Á¤´ä(01~23)


제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연

01....b

(291)본문7

¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾

2007백서-001-특집

00목차

KR S Rev.4, 5. December 2012 연동장치일반사항 한국철도시설공단

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

제1절 조선시대 이전의 교육



7장.indd

°æÁ¦Àü¸Á-µ¼º¸.PDF

[96_RE11]LMOs(......).HWP

27(5A)-15(5868).fm

abstract.dvi

??

세계 비지니스 정보

2005년 6월 고1 전국연합학력평가

<C7A5C1F620BEE7BDC4>

<C7D0B1B3C7F5BDC520BBE7B7CAB9DFB1BCB0FA20C8AEBBEAC0BB20C0A7C7D120B3D7C6AEBFF720B1B8C3E0B9E6BEC8BFACB1B D30362C20C0CEBCE2BABB292E687770>

<BAF9C7D8BFEEC7D7BCB1B9DA20C1F6C4A728B1B9B9AE292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -


InRow RP TDM KO.book

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

untitled

MLU-P0863.eps

CONTENTS INTRODUCTION CHARE COUPLED DEVICE(CCD) CMOS IMAE SENSOR(CIS) PIXEL STRUCTURE CONSIDERIN ISSUES SINAL PROCESSIN

1 1 x + # 0 x - 6 x 0 # x # 2r sin2x- sin x = 4cos x r 3 r 2r 5 r 3r

전기설비의 검사˚점검 및 시험등

07.051~058(345).fm

untitled

untitled

산림병해충 방제규정 4. 신문 방송의 보도내용 등 제6 조( 조사지역) 제5 조에 따른 발생조사는 다음 각 호의 지역으로 구분하여 조사한다. 1. 특정지역 : 명승지 유적지 관광지 공원 유원지 및 고속국도 일반국도 철로변 등 경관보호구역 2. 주요지역 : 병해충별 선단

IP8000-B-C1.eps

*통신1604_01-도비라및목차1~12

중등수학2팀-지도서7

2018 년수학임용고시기출풀이 ( 대수학, 해석학, 복소해석, 위상수학, 정수론, 선형대수, 미적분학 ) - 하이어에듀 - 구준모강사 1

sna-node-ties

미분기하학 II-16 복소평면의선형분수변환과쌍곡평면의등장사상 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 Ø 'x! xxñ 2007 년 김영욱 (ÑñÁ) 강의양성덕 (zû ) 의강의록 (Ø 'x!) 미분기하 II 2007 년 1 / 26

4.18.국가직 9급_전산직_컴퓨터일반_손경희_ver.1.hwp

0

歯전용]

파이널생명과학1해설OK

(001~042)개념RPM3-2(정답)

Press Arbitration Commission 62

Transcription:

fundamentals: ; ; 1, 1, basis; ; complement, sum, direct sum; ; isomorphism ; quotient space ; quotient space ; duality: linear function, coordinate function linear function characterization; dual space, ; natural isomorphism between X and X ; annihilator (1); annihilator quotient space ; linear mapping: ; range null space, ; ; linear mapping algebra; adjoint mapping (1); annihilator+adjoint+range+null space; matrices: determinant: spectra: iteration problem eigenvalue; eigenvalue, eigenvector ; characteristic polynomial, Cayley-Hamilton; iteration problem generalized eigenvector ; spectral theorem Jordan form; minimal polynomial; innerproduct spaces:,, ;, Cauchy- Schwarz,, polarization identity; ; orthonormal basis, Gram-Schmidt; identification of X and X ; annihilator (2) orthogonal complement; adjoint mapping (2); characterization of euclidean motion; complex inner product; orthogonal matrix, orthogonal transform; linear groups; bilinear form, quadratic form; multilinear algebra; spectral theory: self-adjoint mappings and quadratic form; existence of eigenvector basis for self-adj. mappings; orthogonal diagonalization; minimax characterization of eigenvalues; calculus:, tarce, determinant ; exponential map; linear group lie algebra; examples; inequalities: positive definiteness; examples of positive definite quadratic form; Laplacian; i

ii...... motivation...,.. 1 2. 1 2.,... self-contained.....

iii. 1........,.. (algorithm)....... 1. 1 2. 1(linear transformation) 3. 4., 5. 2(quadratic form) typical., 1 (,,, ). 1 ax = b 1,2 y = ax + b, y = ax 2 + bx + c (, ). 1 2..

iv? 1 2.,, 1 R n (vector space) X.?. 1. R 2. 2., 1.. 1. upgrade, upgrade epsilon-delta, upgrade.?... shortcut.., (prerequisite).. 10.,... 1 2., 1, 1,, 2, 2.(.)

Contents i ii Chapter 1. 1 1.1. 1 1.2., 5 1.3. 10 15 Chapter 2. 17 2.1. 17 2.2. 22 2.3. Annihilator 25 28 Chapter 3. 29 3.1. 29 3.2. 33 3.3. 37 3.4. (Adjoint) 41 Chapter 4. 47 Chapter 5. 49 Chapter 6. : 51 Chapter 7. : 2 53 Chapter 8. Jordan : 55 Chapter 9. 57 vii

CHAPTER 1 1.1. 1.1.1. (scalar field)... (number).,..,,,, (scalar). (;field). 1 1.1. K (field) (+) ( ), K, K. : (1) k + h = h + k (2) k + (h + l) = (k + h) + l (3) 0 : k k+0 = k. (4) k h : k+h = 0 ( h k.) ( k h = kh ): (1) kh = hk (2) k(hl) = (kh)l 1. (;ring). (module). 1

2 1. (3) 1 : 1 0, k k1 = k. (4) 0 k h : kh = 1 ( h k 1 1.) k : (1) k(h + l) = kh + kl 1.1.? (1) R,. (2) C,. (3) Q,. (4) Q( 2) = {a + b 2 a, b },. (5) Z,. (6) Z( 2) = {m + n 2 m, n },. (7) {0, 1} : 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 0 = 0 1 = 1 0 = 0, 1 1 = 1. Z 2. 1.1.2.. n R n. n-tuple (x 1,..., x n ) (α 1,..., α n ) + (β 1,..., β n ) = (α 1 + β 1,..., α n + β n ), k(α 1,..., α n ) = (kα 1,..., kα n ).(k ) R n.. 1.2. K V (, ) + : V V V, : K V V, x, y, z V, α, β K, (V, +, ) V K (vector space), V (vector). (1) V +. +(x, y) x + y, x, y (sum). (2) commutativity: x + y = y + x ( )

1.1. 3 (3) associativity: x + (y + z) = (x + y) + z ( ) (4) zero: x, x + 0 = x 0 V. 0 (zero vector). (5) inverse: x, x + y = 0 y V. y x x (inverse). (6) V. (α, x) αx, x α(multiplication by α). (7) associativity: α(βx) = (αβ)x ( ) (8) 1 : 1x = x (9) distributivity(1): α(x + y) = αx + αy ( 1) (10) distributivity(2): (α + β)x = αx + βx ( 2) 1.2. (1) 0, 0 0 + 0. (2) x y, y y + x + y. K R (real vector space), K C (complex vector space).. 1.1.3.. R n 1.1. [0, 1] f : [0, 1] R X = C[0, 1]. α R f, g X f + g α f ( f + g)(t) := f (t) + g(t), (α f )(t) := α f (t) X. X. 2,,.. t [0, 1] 0(t) := 0 0 f X f + 0 = f. t [0, 1] ( f + 0)(t) = f (t) + 0(t) = f (t) + 0 = f (t) 2.

4 1.. t [0, 1] g(t) := f (t) g f + g = 0. ( f )(t) = f (t). 1.3.. 1.4.,. (1) [0, 1] 1 (C 1 ) C 1 [0, 1]. (2) t P. (3) t a 0 + a 1 t + a 2 t 2 + + a n t n + W. 1.5.? (1) R + : : x + y = xy, : kx = x k (2) (x, y) R 2 : : (x, y) + (x, y ) = (xx, yy ), : k(x, y) = (kx, ky) (3) (x, y) R 2 : : (x, y) + (x, y ) = (x + x + 1, y + y + 1), : k(x, y) = (kx + k 1, ky + k 1) (4) (1, y) : (1, y) + (1, y ) = (1, y + y ), : k(1, y) = (1, ky) 1.1.4... V X V, X V. (V, +, ) X V () 10. V X.. 1.1. (V, +, ) X V X. 1.6. V X V, X.

1.2., 5 1.7. (1) [0, 1] C [0, 1] C 1 [0, 1]. (2) t n P n P P. 1.8. (1) V U, W U W V. (2) V U, W U + W = {x + y x U, y W} V. (, U + W U, W (sum).) 1.2., x, y 0 y = αx.?,?,,,.??.... 1.2.1.,. 1.3. V x 1,..., x n 1 (α 1,..., α n ) (0,..., 0) α 1 x 1 + + α n x n = 0

6 1.. x 1,..., x n 1 (α 1,..., α n ) (0,..., 0). 3 1.9. x 1,..., x n V 1 : α 1 x 1 + + α n x n = 0, α 1 = = α n = 0. 1.10. R 2 (ξ 1, ξ 2 ) (η 1, η 2 ) ξ 1 η 2 = ξ 2 η 1. 1.11. x, y, z, x + y, y + z, z + x. 4 1.12. {x 1,..., x k } 1., {x 1,..., x k } 1 1. 1.2.2.. V x 1,..., x n α 1,..., α n α 1 x 1 + + α n x n x 1,..., x n 1(linear combination). 1.4. V x 1,..., x n 1 V x 1,..., x n V (span). 1.13. V x 1,..., x k, 1 S V. ( x 1,..., x k (subspace spanned by).) (1 ). 1.,,. 1.2. R 3 (1, 0, 0), (0, 1, 0), (0, 0, 1). R 3. 1 R 3. R 3 1. 1 R 3. (.) (1 ). 3, 1 1. 4, Z2.?

1.2., 7 1. 1.2. V x 1,..., x n V, V y 1,..., y k 1. k n. x 1,..., x n V V x 1,..., x n. y 1 = α 1 x 1 + + α n x n. y 1 0.(.) α 0. α i 0. x i x y 1 1. x i x y 1 V. k n, n 1 y 1,..., y n V. 5 k > n y 1,..., y k 1. k > n. k n. 1.5. V 1 (basis). 6 1.3. V x 1,..., x n.. x 1,..., x n 1 not-trivial 1 0. x i x 1. x i x V. x 1 x. 1.6. V, V (finite dimensional). 1.4. V V. 5. xi y 1 x x 1 y 1. y 1, x 2,..., x n. y 2 ( 0).,. β 2,..., β n y 2 = β 1 y 1 + β 2 x 2 + + β n x n 0. 0 y 2 = β 1 y 1 y 1. β j 0 j β 2, x 2 y 2. n. 6 (linear coordinate system).

8 1.. x 1,..., x n y 1,..., y k. 1.2 k n, n k. n = k.. 1.7. V (dimension) (minimal).. 1.2.3..? 1.5. V y 1,..., y j, V.. y 1,..., y j V y 1,..., y j j = n = dim V. y 1,..., y j V. (, j < n.) V y 1,..., y j. y j+1. y 1,..., y j+1. ( : α 1 y 1 + + α j+1 y j+1 = 0, α j+1 = 0., α j+1 0 y j+1 y 1,..., y j. α 1 y 1 + + α j y j = 0 α 1 = = α j = 0.) y 1,..., y j+1 V. y 1,..., y j+1,. V n y 1,..., y n. 1.6. (1) V U. (2). (3) V U V W V U W,., x V y U z W x = y + z. (, dim V = dim U + dim W.). (1) y 1 ( 0) U. 1.5 U.

1.2., 9 (2) (1) U = V. (3) U y 1,..., y j 1.5 V y 1,..., y j, y j+1,..., y n. y j+1,..., y n V W. x V x = α 1 y 1 + + α n y n (1.1). y = α 1 y 1 + + α j y j, z = α j+1 y j+1 + + α n y n. y U, z W, x = y + z.. x = y + z, y U, z W, x = y + z = (β 1 y 1 + + β j y j ) + (β j+1 y j+1 + + β n y n ). (1.1) α 1 y 1 + + α n y n = β 1 y 1 + + β n y n, y 1,..., y n α 1 = β 1,..., α n = β n y = y, z = z. n = j + (n j) dim V = dim U + dim W. 1.8. 1.6 W U (complement)., V U, W (direct sum). V = U W V W 1,..., W m x V x = y 1 + + y m, y j Y j V W 1,..., W m V = W 1 W m. 1.14. V V = W 1 W m dim V = dim W 1 + + dim W m. 1.15. V. U, W V. dim(u + W) = dim U + dim W dim(u W)

10 1. 1.3..,.. 1.3.1..,..,. (a, b). R 2.. (a, b) α = a + ib,. C. R 2 C.., R 2 (a, b) C a + ib, C c + id R 2 (c, d). ( ).... (a, b) + (c, d) = (a + c, b + d), k(a, b) = (ka, kb) (a + ib) + (c + id) = (a + c) + i(b + d), k(a + ib) = (ka) + i(kb) R 2 C... R 2, C.. U, V..?

1.3. 11 U, V.,., U, V U x V x. ( V U.) U x, y x, y,., x, y x + y, x, y x + y., U x + y V x + y., U kx V kx. U, V.. 1.9. f : X Y (one-to-one, injective) x, y X f (x) = f (y) x = y. f : X Y (onto, surjective) y Y x X y = f (x). f : X Y 11(one-to-one correspondence) f. 1.16. (1) 11 f. (2) f f 11. 1.10. (U, +, ) (V, +, ) 11 ϕ : U V ϕ (isomorphism) : x, y X, α, β K ϕ(αx + βy) = αϕ(x) + βϕ(y).,, U V (isomorphic). 1.17. : x, y X, α K ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(αx) = αϕ(x). 1.18. (1) V (identity map) id V : V V, (id V (x) := x). (2). 1.7. K n V K n.. {x 1,..., x n } V. V x α 1 x 1 + + α n x n., x (α 1,..., α n ). V K n 11 x (α 1,..., α n )

12 1.., y = β 1 x 1 + + β n x n kx + hy = (kα 1 + hβ 1 )x 1 + + (kα n + hβ n )x n. 1.19.. (1) U = P 2, V = R 3 (2) U = R + (: x + y = xy, : kx = x k ), V = R 1 1.20.. 1.3.2. (Quotient Space). V U U W V = U W. U W. V U U. V U... R 2 U = {(α, 0) α }. U x. U y x U. 7 1.21. V = R 2 {(1, 0), (0, 1)}, {(1, 0), (1, 1)} (1) x V. (2) x. x. x. x.. V U. V x U (U x ). 7 y. y x., y x.

1.3. 13 U u x. x + U., x + U := {x + u u U}. U (coset). x U x + U {x}. 1.22. x + U y + U x y U. U.., (x + U) + (y + U) := (x + y) + U, α(x + U) := (αx) + U. 1.23. x, y. V U. (well-defined)., C 1, C 2, C 1 = x + U = x + U, C 2 = y + U = y + U C 1 + C 2. x x U y y U. (x + y) (x + y ) = (x x ) + (y y ) U. (x + y) + U = (x + y ) + U C 1 + C 2 (x + y) + U (x + y ) + U C 1 + C 2.. 1.8. V U... 8. 0 + U = U. 1.11. V U V/U U V (quotient space).

14 1. 1.3.3.. V/U U 0.. 1.3. V = R 5 U = {(0, 0, α 3 ) α 3 }. U C = (a 1, a 2, a 3 ) + U = (b 1, b 2, b 3 ) + U (a 1, a 2, a 3 ), (b 1, b 2, b 3 ) U a 1 = b 1, a 2 = b 2 a 3 b 3. U (a 1, a 2 )., U., U U.. 1.9. V U V. dim U + dim(v/u) = dim V. x 1,..., x j U. x j+1,..., x n V x 1,..., x n. x j+1 + U,..., x n + U V/U. x j+1 + U,..., x n + U 1. λ j+1 (x j+1 + U) + + λ n (x n + U) = (λ j+1 x j+1 + + λ n x n ) + U = 0 + U. (λ j+1 x j+1 + + λ n x n ) 0 U. λ 1,..., λ j λ j+1 x j+1 + + λ n x n = λ 1 x 1 + + λ j x j. λ 1 x 1 + + λ j x j λ j+1 x j+1 λ n x n = 0 x 1,..., x n V λ 1 = = λ n = 0., x j+1 + U,..., x n + U 1. x j+1 + U,..., x n + U V/U. V/U x + U. x 1 x = α 1 x 1 + + α n x n. x = α 1 x 1 + + α j+1 x j+1, x x U., x + U = x + U = α 1 (x 1 + U) + + α j+1 (x j+1 + U), x j+1 + U,..., x n + U V/U..

15 1.10. V U V U = V. 1.11. V U V V U V/U. (1). (2) 1, 1. (3). (4),. (5). (6).

CHAPTER 2....,,,.... 1 2. 1. 2.1. 1. 1 1. R 2 x, y ax + by..,.. 2.1.1... 2.1. V K. l : V K (linear function) x, y V α, β K l (αx + βy) = α l(x) + β l(y). 1 1 1 (linear functional). 20, () () 17

18 2. (linearity).. l (α 1 x 1 + + α n x n ) = α 1 l(x 1 ) + + α n l(x n )..,... V l, m : 2 (l + m)(x) := l(x) + m(x), (αl)(x) := α l(x). V K. V (dual space) V. 2.1. V K. 2.1. (1) V = R 2. f, g : V R f (x, y) := 3x + 2y, g(x, y) := 3x + 2y + 1. f. g. (2) C[0, 1] = { f : [0, 1] R f }.. l( f ) = 1 0 f (x) dx (3) C [0, 1] = { f : [0, 1] R, f C }. 0 < a < 1 d j f l( f ) := α j dx j (a) l. 2.2....... 2.

2.1. 19 2.1. V n, v 1,..., v n. x V.. x = α 1 x 1 + + α n x n (2.1) (1) x V α i = ϕ i (x) x ϕ i x. (2) a 1,..., a n x. l (x) = a 1 ϕ 1 (x) + + a n ϕ n (x) (2.2) (3) V 0 y l (y) 0 l. (4) V (2.2),. 3. (1). x, y V (2.1) x = α 1 x 1 + + α n x n, y = β 1 x 1 + + β n x n. ϕ i (x) = α i, ϕ i (y) = β i. αx + βy = (αα 1 + ββ 1 )x 1 + + (αα n + ββ n )x n ϕ i (αx + βy) = αα i + ββ i. ϕ i (αx + βy) = αϕ i (x) + βϕ i (y) ϕ i. (2).. (3). y 0 {x 1 := y} 1. n 1 x 2,..., x n V. ϕ i ϕ 1 (y) = ϕ(x 1 ) = 1 0, ϕ 1.. (4). l V, (2.1). l (x) = α 1 l(x 1 ) + + α n l(x n ) = l(x 1 )ϕ 1 (x) + + l(x n )ϕ n (x) (2.2). 3 (4)..

20 2. l = l(x 1 )ϕ 1 + + l(x n )ϕ n. l ϕ 1,..., ϕ n.,. 2.3. (1) V 0 y α, y(x) = α x V? (2) y z, z(x) = 0 x y(x) = 0. α y = αz. (: z(x 0 ) 0 α = y(x 0 )/z(x 0 ).) 2.1.2.. V. V ϕ 1,..., ϕ n. V.. 1.. α 1 ϕ 1 + + α n ϕ n = 0., x V 0. x i ( 0 ) 0 = α 1 ϕ 1 (x i ) + + α n ϕ n (x i ) = α i ϕ i (x i ) = α i α i 0.,. 2.2. V x 1,..., x n ϕ 1,..., ϕ n V. x 1,..., x n (dual basis). 2.3. V, V V. dim V = dim V. 2 x, y 1 ax + by. 1 a, b (a, b) 1., 1 R 2..

2.1. 21 2.1.3.. V V. (.)?.?.,.. V V V V. V V V V. V V. V V (double dual space). V V (V V ) V V??. V V.. 4 V. V x V ξ : ξ(l) := l(x) (2.3) ξ V. l, m V ξ., ξ(αl + βm) = (αl + βm)(x) = αl(x) + βm(x) = αξ(l) + βξ(m) x V ξ V Φ. Φ : V V, Φ(x)(l) = ξ(l) = l(x) Φ 11. x, y ξ. l V. l ξ(l) = l(x) = l(y) 0 = l(x) l(y) = l(x y) 4 V V. V V,.

22 2.. x y 0 l(x y) 0 l. l(x y) l 0 x y = 0., x = y. Φ : V Φ(V) = Ξ. 11..? x, y V Φ(αx + βy). l V., Φ(αx + βy)(l) = l(αx + βy) = αl(x) + βl(y) = αφ(x)(l) + βφ(x)(l).., Φ. Φ(αx + βy) = αφ(x) + βφ(y) Φ V Ξ. V Ξ. dim V = dim V = dim V. dim Ξ = dim V. 1.10 Ξ = V.,. 2.4. V, Φ V V.. Φ V V (natural, canonical)..,,. 5 2.2.... 5 Homology Category.

2.2. 23 2.2.1.. 3. 2.. n. 3 n. V = R 3. (1, 0, 0), (0, 1, 0), (0, 0, 1) x, y, z. V l, a, b, c v = (x, y, z) l(x, y, z) = ax + by + cz. x, y, z V, l (a, b, c). Φ(v). Φ(v) l = (a, b, c) Φ(v)(l) = l(v) = ax + by + cz = xa + yb + zc, (a, b, c) V Φ(v) (x, y, z).. (x, y, z) 1 l l (a, b, c) l(v) = ax + by + cz, l (a, b, c) () l(v) = Φ(v)(l) = xa + yb + zc = v(l)., (x, y, z) 1 (a, b, c).,,, v = (x, y, z) l = (a, b, c). v l Φ(v). V V., V = V. V V V V. V = V V V V = V V. (duality). 6 6... 19 20.

24 2. 2.2.2.. V. V V.... V x V l (l, x) = l(x) = Φ(x)(l). (l, x) l x., (, ) : V V R.. l x.. (αl + βm, x) = α(l, x) + β(m, x) (l, αx + βy) = α(l, x) + β(l, y) (2.4). ( ) (2.4) (bilinear function) (bilinear form). 2.2... V = R 2. v = (a, b) w = (c, d) (v, w) = ac + bd (, ) v, w (1).. ω 1 (v, w) = ac + 2bd, ω 2 (v, w) = 2ac bd, det(v, w) = ad bc. V V (, ). V l V x (l, x). V = V x = ξ V l (l, x) = (ξ, l).. V V V V.. V V Φ.

2.3. ANNIHILATOR 25 2.3. Annihilator 2.3.1. Annihilator. 0.... y = ax + b, y = x 2 1 ax y + b 2 x 2 y 0., 0.. 2.2. U V, U 0 l U annihilator U 0., U 0 = { l V l(x) = 0 for all x U}. 2.4. (1) U 0 V. (2) {0} 0 = V V 0 = {0} V. 2.5. V U U (V/U).. dim U + dim U 0 = dim V dim U 0 U (codimension) codim U.. U 0 (V/U) : l U 0 L (V/U). L{x} = L(x + U) := l(x) L (welldefinedness)., x, y L{x}. {x} = x + U = y + U = {y}. L{x} = l(x) L{y} = l(y)., x y U l U 0 l(x y) = 0. L{x} = l(x) = l(y) = L{y} L. l L (one-to-one). l, m U 0 l L m L. x V l(x) = L{x} = m(x) l m. l L.

26 2. l L (onto). L (V/U). L l U 0 : l(x) := L{x} l V. l U 0 x U, {x} = x + U = U = {0} l(x) = L{x} = L{0} = 0. l L. l L 11.. l, m U 0 l L, m M, (αl + βm){x} = αl{x} + βm{x} = αl(x) + βm(x) = (αl + βm)(x) αl + βm αl + βm.,. dim U 0 = dim(v/u) = dim V/U = dim V dim U. U annihilator. annihilator. U V U 0 V. U 0 annihilator U 00 V. V = V U 00 V.,. 2.6. V V Φ. U 00 = U. U U 00. x U l U 0 l(x) = 0., x U 0 0 V = V. x U 00.. dim U + dim U 0 = dim V = dim V = dim U 0 + dim U 00 dim U = dim U 00. U = U 00.

2.3. ANNIHILATOR 27 2.3.2....?.. 2.7. t 0,..., t n, n p m 0,..., m n : 7 1 p(t) dt = m 0 p(t 0 ) + + m n p(t n ) 0. n V = P n. a 0 + a 1 t + + a n t n (a 0,..., a n ) R n+1 dim P n = n + 1. l j l j (p) := p(t j ). ( p(t j ) p.) l j V. {l j } 1. λ 0 l 0 + + λ n l n = 0 V p. n 1 0 = λ 0 l 0 (p) + + λ n l n (p) = λ 0 p(t 0 ) + + λ n p(t n ) q k (t) = (t t 0 ) (t tk ) (t t n ) 8, t = t k t j 0, p = q k, 0 = 0 + + 0 + λ k q k (t k ) + 0 + + 0. q k (t k ) 0 λ k = 0. {l j } 1., dim V = n + 1 {l j } V. V l j 1. l(p) = 1 0 p(t) dt l p V. m 0,..., m n l = m 0 l 0 + m n l n 7 (quadrature formula). 8 (t tk ).

28 2... 2.5. : t 0,..., t n, n p m 0,..., m n. p (0) = m 0 p(t 0 ) + + m n p(t n ) 2.6. n = 2,. (1). (2). (3). (4).. (5). (6) Annihilator. (7) ().

CHAPTER 3 3.1. R n. (1).. 1?.. v = (x 1,..., x n ) T, A = (a ij ) m n A v., a 11 a 1n x 1 a 11 x 1 + + a 1n x n Av =...... =. a m1 a mn x n a m1 x 1 + + a mn x n R m. v 1 m...? (). V, W f : V W (mapping). 3.1.1.. 3.1. K V, W T : V W (linear mapping) T x, y V α K. (1) T(x + y) = T(x) + T(y). (Additivity) (2) T(αx) = α T(x). (Homogeniety) V = W T (linear transformation). 1 1. T(x + y) = Tx + Ty : V x y x + y T, x y T. 29

30 3. x T T(x) Tx. 3.1. (1) m n A T : R n R m, Tx := Ax. (2). (3) d/dt : P n P n. (4) V V K. (5) X V, (inclusion map) i : X V, i(x) := x. (6) X V, (quotient map) q. q : V V/X, q(x) := {x} = x + V 3.1.. 3.2. T : V W. (1) V U, T U T(U) = {Tx x U} W. (2) W U, T U T 1 (U) = {x V Tx U} V... 3.2. T : V W T V T(V) T (range space) R T. T.,...( (homomorphism).). V T T W. T(x + V y) = Tx + W Ty. x, y T.( T (+ V ) = (+ W ) T.).,., ( f + g) = f + g lim(a n + b n ) = lim a n + lim b n, a(b + c) = ab + ac., (?)..

3.1. 31, 0 T 1 (0) T ()(null space) N T. 3.3. T : V W. (1) T (onto) R T = W.. (2) T (one-to-one) N T = {0}. 3.1.2..... 2 R 2 l(x, y) = x + y. l 2 1., x + y = k l k., l x + y = 0. R 2 1 l {x + y = 0} l,. 2 1, 1.?,?.. 3.1. V T : V W. dim N T + dim R T = dim V. 3.2. V T : V W V/N T R T.. T T. T : V/N T R T W, T{x} = Tx. T. x, y V, k., T({x} + {y}) = T{x + y} = T(x + y) = T(x) + T(y) = T{x} + T{y} T(k{x}) = T{kx} = T(kx) = k T(x) = k T{x}.

32 3. T one-to-one. T{x} = T{y}, T Tx = Ty 0 = Tx Ty = T(x y) x y N T. {x} = {y} one-to-one. 2 Tx T{x} T T R T., T R T (onto map). T V/N T R T. 3.1.3... 3.3. T : V W. () dim W < dim V x( 0) V Tx = 0. () dim V = dim W Tx = 0 x = 0 R T = W. T. () dim V = dim W R T = W N T = {0}. T.. () dim R T dim W < dim V, dim N T = dim V dim R T > 0., N T 0. () N T = {0}. dim N T = 0. dim R T = dim V dim N T = dim V = dim W. 1.10 R T = W. () ()., 1. 3.4. V = R n, W = R m, A = (a ij ) m n. T(x) := Ax T : R n R m. () m < n ()1 a ij x j = 0 j x = (x 1,..., x n ) T 0. 2. 0 = T{x} = Tx, x N T. {x} = 0 T one-to-one.

3.2. 33 () m = n x = 0 ()1 a ij x j = y i j () y = (y 1,..., y n ) T x = (x 1,..., x n ) T. 3.4.... 3.2. V n(> 0). n S 1 = [a 1, b 1 ],..., S n = [a n, b n ], T : V R n. Tp = (p 1,..., p n ), p i = 1 b i a i bi a i p(t) dt N T = {0}. ( T.) : [a i, b i ] 0 p p i 0, p. p. p n. p n p 0. () T. n n. 3.5.. (1) T. (2) Tp n p. 3.2. R n.,?..

34 3. 3.2.1....... K V, W S, T : V W α K (S + T)(x) = S(x) + T(x), (αt)(x) = α T(x)., S + T αt. 3.5. S, T, α, S + T αt.. 3.6. V W L(V, W). T ( T)(x) := (Tx), 0(x) := 0. 3.6. 3.6. 3.2.2..... T : U V S : V W S T : 3 S T(x) = S(T(x)).. 3.7. : (1) R (S T) = (R S) T (:associativity) (2) (S 1 + S 2 ) T = S 1 T + S 2 T (:distributivity) (3) S (T 1 + T 2 ) = S T 1 + S T 2 (:distributivity). S T ST. 3..

3.2. 35. id V : V V id V (x) := x. T : V W S : U V T id V = T, id V S = S. 0(x) = 0. 0 S = T 0 = 0 T : V W, S : W V S T = id V, T S = id W, S T (inverse mapping).. : S 1, S 2 S 1 = S 1 id W = S 1 (T S 2 ) = (S 1 T) S 2 = id V S 2 = S 2. T T 1. 3.8. S : U V, T : V W. (1) N S N T S (2) R T S R T 3.7... 3.9. T : V W. 4 (1) T. (2) T.. T T 1 1 onto. T S : W V. S. y 1, y 2 W Sy i = x i, Tx i = y i, T(α i x i ) = α i y i, S(α i y i ) = α i x i. S(α 1 y 1 + α 2 y 2 ) = α 1 x 1 + α 2 x 2 = α 1 (Sy 1 ) + α 2 (Sy 2 ) S. 4. T : V W S1, S 2 : W V S 1 T = id V, TS 2 = id W T S 1 = S 2 = T 1..

36 3. T T 1 1 onto. {0} N T N S T = N idv = {0}. N T = {0} T 1 1. W R T R T S = R idw = W R T = W T onto. T. (;invertible). 3.8. (S 1 ) 1 = S., S, T ST, ST (ST) 1 = T 1 S 1. 3.2.3.. T T : V V V (linear transformation) (linear operator). V L(V). 5 L(V) A A n A 0 = id V, A n+1 = A A n. A n p(a) = α 0 id V +α 1 A + α 2 A 2 + + α m A m. V = C (R) f (t), D = d/dt D : V V. T = id +D 2 V. f (t) (T f )(t) = f (t) + f (t). f (t) = f (t) α sin t + β cos t. N T = {α sin t + β cos t} = Span{sin t, cos t}. 5 idv.

3.3. 37 3.3. 3.3.1.. R n 1. T(x) = Ax. (A m n.). ( ).. 1,. (R n ),. R n R m T. 6,,.. 3.10. T : R n R m m n A : x R n T(x) = Ax.. T(x) i t i (x), t i R n. 7 t i : t i = a i1 p 1 + + a in p n. p i R n., A = (a ij ) T(x) = (..., t i (x),... ) T = (..., a ij p j (x),... ) T = Ax.? T : V W T(x) = Ax. 8. V, W T : V W, V, W {x 1,..., x n }, {y 1,..., y m } V x x = ξ 1 x 1 + + ξ n x n, Tx Tx = η 1 y 1 + + η m y m.,. 6 loose.,. 7 qi : R m R i R m, q i. t i = q i T. 8 T(x) W Ax R m.

38 3. : 3.11. m n A = (a ij ) η i = a ij ξ j, T R n R m,... Tx j W a ij : m Tx j = a ij y i. Tx = T( ξ j x j ) = ξ j Tx j = ξ j a ij y i = ( a ij ξ j )y i i=1 j j j i i j. Tx = i η i y i. A x y T [T] y x.... Tx j y i 1 (η i ) (ξ j ) 1 transpose. 9..(.).... x, Tx. (.) x : x = ξ j x j = (x 1,..., x n ). = xξ. j ξ 1 ξ n 9 aij summation( ) i j.

3.3. 39, x = (x 1,..., x n ), ξ = [ξ 1,..., ξ n ] T. Tx = yη, A. Tx = (Tx j ) = (y i )(a ij ) = ya : Tx = T(xξ) = T(x)ξ = yaξ, Tx = yη η = Aξ. 3.9. t n P n d/dt : P n P n {1, t, t 2,..., t n }.. T : U V, S : V W, U, V, W x, y, z. T S S T. x U x = xξ Tx y [T] xξ y. S(Tx) z [S] z y[t] xξ y. (S T)x z [S T] z xξ ξ [S T] z xξ = [S] z y[t] xξ y. [S T] z x = [S] z y[t] y x.. 3.10. (1) V, id : V V. (2) T : V W T 1 : W V, V, W T T 1. 3.3.2... m n A R n T A (x) = Ax : R n R m, N A, R A., N A ={x x R n, Ax = 0} R A ={Ax x R n }

40 3. N A A, R A A (column space). A T., A T N A T A left null space, A T R A T A (row space). A (fundamental spaces). 3.3.3..,,.... T : V W V x, x W y, y Tx = y[t] y x, Tx = y [T] y x. x x A xa = x. B yb = y. TxA = yb[t] y x.,. y[t] y xa = yb[t] y x [T] y xa = B[T] y x 3.12. A B.. x x xa = x. x x x C = x. x = x C = xac. AC = I A. B. B 1 [T] y xa = [T] y x

. 3.4. (ADJOINT) 41 V = W T : V V.. 3.13. V x x xa = x T : V V : A 1 [T] x xa = [T] x x. A P, Q A 1 PA = Q P Q (similar). 3.4. (Adjoint) () ()..... 10 3.4.1.. T : V W, l W T (l) := l T : V T V l K. T l. V V., T W V. T (l). x V T. 11 T (l)(x) = (l T)(x) = l(t(x)) T : W V. : l 1, l 2 W α 1, α 2 K T (α 1 l 1 + α 2 l 2 )(x) = (α 1 l 1 + α 2 l 2 )(Tx) = α 1 l 1 (Tx) + α 2 l 2 (Tx) = (α 1 T (l 1 ) + α 2 T (l 2 ))(x) T. T T (;Adjoint). 10 (). 11. : (T (l), x) = (l, T(x)), (T l, x) = (l, Tx).

42 3. 3.11.. (1) 0 = 0 (2) (id) = id (3) (T + S) = T + S (4) (αt) = αt (5) (S T) = T S (6) (T 1 ) = (T ) 1 V V.. 3.14. T : V W. T = T. T : V W T : V W x V T x. T x W = W l W (T x)(l) = x(t l) = (T l)(x) = l(tx) = (Tx)(l). l W T x = Tx. 3.4.2..? V, W T V V, W W T T., V V. V x = {x 1,..., x n } V x φ = {φ 1,..., φ n }, W y = {y 1,..., y m } V y ψ = {ψ 1,..., ψ m }. T : V W T : W V. T A, T B., Tx = ya, T ψ = φb.. Tx j = a ip y p, T ψ i = b qi φ q p q. (T ψ i )x j. (T ψ i )x j = ψ i (Tx j ) = ψ i ( a pj y p ) = a pj ψ i (y p ) = a pj δ ip = a ij p p p., (T ψ i )x j = b qi φ q (x j ) = b qi δ qj = b ji q q a ij = b ji., A T = B. T T.

3.4. (ADJOINT) 43. R n l = (α 1,..., α n ) T, l(x) = l T x = α 1 ξ 1 + + α n ξ n = (α 1,..., α n ).. T(x) = Ax (T l)(x) (T l)(x) = l T (T(x)) = l T (Ax) = (l T A)x = (A T l) T x T A T. ξ 1 ξ n 3.4.3.. T T T.. m n A R A Ax. N A T A T l = 0 l, l T A = 0 l. l T (Ax) = l T Ax = (A T l) T x = 0x = 0. N A T l R A 0 (, R A )., R A N A T.. 3.15. T : V W. (R T ) 0 = N T, (R T ) 0 = N T. T = T,.. ( ) l (R T ) 0. y = Tx R T ( x V) l(y) = 0. x V, 0 = l(tx) = (T l)x. T l = 0., l N T. ( ) l N T., T l = 0. x V, 0 = (T l)x = l(tx)., y = Tx y l(y) = 0, l R T 0., l (R T ) 0. 3.16. dim R T = dim R T.

44 3.. dim N T + dim R T = dim W. annihilator dim(r T ) 0 + dim R T = dim W.,. 3.17. T : V W dim V = dim W : dim N T = dim N T.. 3.12. m < n l 1,..., l m n V 1. x V y j (x) = α j (j = 1,..., m) α 1,..., α m?, 1?? l i V R 1. (l 1,..., l m ) V R m. S. i = 1,..., m l i (x) = α i S(x) = (α 1,..., α m ). x v = (α 1,..., α m ) R m S range R S. v = (α 1,..., α m ) (N S ) 0.. v (N S ) 0 l N S l(v) = 0 [ S l = 0 l(v) = 0 ] [ [ z S l(z) = l(sz) = 0 ] l(v) = 0 ] [ S l = l S 1 0 l(v) = 0. ] (R m ) R m 1 l λ 1 k 1 + + λ m k m S l = l S = λ 1 l 1 + + λ m l m..

[ λ 1 l 1 + + λ m l m = 0 λ 1 α 1 + + λ m α m = 0 ] 3.4. (ADJOINT) 45. l i (x) = α i 1. m n 1 α i α i.., l i 1, l i 1 0 1 α i 1 0 α i x.

CHAPTER 4 47

CHAPTER 5 49

CHAPTER 6 : 51

CHAPTER 7 : 2 53

CHAPTER 8 Jordan : 55

CHAPTER 9 57