서론 1.1 연구배경및목적 Table 1. Cancer mortality Stomach cancer no. of deaths 11,701 11,190 10,935 10,716 10,563 10,312 m

Similar documents
1..

hwp

김범수

歯1.PDF

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Lumbar spine

44-4대지.07이영희532~

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

012임수진

<30382EC0C7C7D0B0ADC1C22E687770>

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -


서론 34 2

- 1 -

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

???? 1


???? 1

DBPIA-NURIMEDIA

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

대한한의학원전학회지24권6호-전체최종.hwp

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a


YI Ggodme : The Lives and Diseases of Females during the Latter Half of the Joseon Dynasty as Reconstructed with Cases in Yeoksi Manpil (Stray Notes w

한국성인에서초기황반변성질환과 연관된위험요인연구

03-ÀÌÁ¦Çö

IKC43_06.hwp

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

#Ȳ¿ë¼®

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

歯kjmh2004v13n1.PDF

<31372DB9DABAB4C8A32E687770>

04김호걸(39~50)ok

DBPIA-NURIMEDIA

12È«±â¼±¿Ü339~370

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

04-다시_고속철도61~80p

03-서연옥.hwp

서론

대한한의학원전학회지26권4호-교정본(1125).hwp


학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

°Ç°�°úÁúº´6-2È£

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

A 617

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

( )Jkstro011.hwp

DBPIA-NURIMEDIA

°í¼®ÁÖ Ãâ·Â

歯14.양돈규.hwp


<5B31362E30332E31315D20C5EBC7D5B0C7B0ADC1F5C1F8BBE7BEF720BEC8B3BB2DB1DDBFAC2E687770>

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<303720C7CFC1A4BCF86F6B2E687770>

( ) ) ( )3) ( ) ( ) ( ) 4) 1915 ( ) ( ) ) 3) 4) 285

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

278 경찰학연구제 12 권제 3 호 ( 통권제 31 호 )

06_À̼º»ó_0929


untitled

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

433대지05박창용

12이문규

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

02신현화

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Minimally invasive parathyroidectomy

(

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

< FB4EBB1B8BDC320BAB8B0C7BAB9C1F6C5EBB0E8BFACBAB820B9DFB0A320BFACB1B85FBEF6B1E2BAB92E687770>

ISO17025.PDF


Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

DBPIA-NURIMEDIA


DBPIA-NURIMEDIA

한국 출산력의 저하 요인에 관한 연구


Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong


<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

Rheu-suppl hwp


Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

139~144 ¿À°ø¾àħ

DBPIA-NURIMEDIA

Transcription:

342 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 139152 139 이혜선 1), 명성민 2), 김도영 3), 한광협 3), 송기준 1) 1) 2) 3) A study on the updating of prediction model for the development of hepatoma 1) Department of Biostatistics, Yonsei University College of Medicine 2) Department of Medical Informatics, Jungwon University 3) Department of Internal medicine, Yonsei University College of Medicine Abstract Objectives: The statistical prediction models are useful to establishing diagnostic and treatment rule in clinical area. So, there is an increasing interest in building a precise model to predict the probability of diseases for individual patient. In doing that, it is important to reflect the patient's changeable characteristics for improvement of predictive power. In this paper, we studied the methods for the updating of prediction model that add the information of new patients to the existing model. Methods: To update the prediction model, we used an established model including 7 risk factors such as diagnostic type, hepatitic virus type, age, sex, -FP, ALT, and drinking history and did the re-calibration and shrinkage of intercept and slope of existing one. Results: we considered 4 updating methods, that is, the first one is to use existing model as it is and the second one is to re-calibrate the overall intercept. Also the third one is to re-calibrate overall intercept and slope and the last one is to re-calibrate and shrink overall intercept, and individual slope. Conclusions: s contain old and new informations. And the model updating method by using many data can be improved predictive power. Especially, the last updating method was found to be the most accurate and useful one. Key Word: prediction model, update method, re-calibration, shrinkage, intercept, slope * (A050021). :, 134 E-mail : biostat@yuhs.ac 342

140 1. 서론 1.1 연구배경및목적 Table 1. Cancer mortality 2003 2004 2005 2006 2007 2008 Stomach cancer no. of deaths 11,701 11,190 10,935 10,716 10,563 10,312 mortality rates 24.2 23.1 22.5 21.9 21.5 20.9 Lung cancer no. of deaths 12,673 13,246 13,733 14,027 14,278 14,791 mortality rates 26.2 27.3 28.2 28.7 29.1 29.9 Liver cancer no. of deaths 10,916 10,861 10,877 10,884 11,144 11,292 mortality rates 22.6 22.4 22.3 22.3 22.7 22.9 Colon cancer no. of deaths 5,484 5,859 6,043 6,244 6,650 6,855 mortality rates 11.4 12.1 12.4 12.8 13.5 13.9 Breast cancer no. of deaths 1,404 1,484 1,573 1,598 1,670 1,731 mortality rates 2.9 3.1 3.3 3.3 3.4 3.5 Uterine cancer no. of deaths 1,397 1,325 1,345 1,240 1,241 1,261 motarlity rates 2.9 2.7 2.8 2.5 2.5 2.5 All others no. of deaths 19,757 20,334 20,595 20,793 22,007 22,670 mortality rates 40.9 41.9 42.3 42.5 44.8 45.9 1.2 연구내용및방법 342

141 2. 이론적배경 2.1 로지스틱회귀분석 ln exp exp ln ln ln exp 342

142 ln ln 2.2 로지스틱회귀모형의재보정 (re-calibration) 342

143 2.3 로지스틱회귀모형의축소 (shrinkage) m od 2.4 로지스틱회귀모형의절충모형 3. 연구방법 3.1 예측모형개선방안 342

144 Table 2. s No. Predictors considered Parameters estimated 1 No adjustment 10 0 2 Intercept 10 1 3 + calibration slope 10 2 4 + + 10 212 (1) 1 (2) 2 (3) 3 (4) 4 3.2 모형비교 342

145 4. 결과 4.1 자료에대한개요 Table 3. Summary of data Old data New data Entering period 1990. 1~1998. 12 1999. 1~2000. 12 No. of total patients 994 883 No. of lung cancer patients 90(9.05%) 44(5.28%) 342

146 (1) Table 4. Description of risk factor Variable Description Positive LC Liver cirrhosis - CH Chronic hepatitis - HCV Hepatitis C virus - HBV Hepatitis B virus - AGE - 40 SEX - Male -FP Alpha-fetoprotein 20(IU/) ALT Alanine aminotransferase 40(IU/) Heavy alcohol - 5 80g Unknown alcohol - - Table 5. Frequency table of risk factor Ultrasonography Hepatitis AGE SEX -FP ALT Drinking Old data(n=994) New data(n=833) LC 335(33.7%) 282(33.85%) CH 540(54.33%) 460(55.22%) Carrier, Other 119(11.97%) 91(10.92%) HCV 121(12.17%) 133(15.97%) HBV 781(78.57%) 613(73.59%) NonBNonC 92(9.26%) 87(10.44%) 40 798(80.28%) 635(76.23%) <40 196(19.72%) 198(23.77%) Male 683(68.71%) 568(68.19%) Female 311(31.29%) 265(31.81%) 20(IU/) 191(19.22%) 120(14.41%) <20(IU/) 803(80.78%) 713(85.59%) 40(IU/) 552(55.53%) 521(62.55%) <40(IU/) 442(44.47%) 312(37.45%) Heavy alcohol 149(14.99%) 110(13.21%) Non/Social alcohol 543(54.63%) 628(75.39%) Unknown alcohol 302(30.38%) 95(11.4%) 342

147 4.2 개선방안에따른예측모형 (1) 4 Table 6. Logistic regression coefficient(standard deviance) of old data and new data Variable Old data(n=994) New data(n=833) Intercept -6.254(1.053) -7.697(1.383) LC 1.722(0.409) 2.324(1.038) CH 0.734(0.265) 0.454(1.082) HCV 1.263(0.499) 1.005(0.799) HBV 0.775(0.396) 1.433(0.621) AGE(40) 1.315(0.003) 0.816(0.564) SEX(male) 0.300(0.328) 1.617(0.574) -FP(20IU/) 0.826(0.464) 0.928(0.396) ALT(40IU/) 0.283(0.150) -0.800(0.359) Heavy alcohol 0.584(0.393) 0.175(0.432) Unknown alcohol 0.222(0.400) 1.327(0.448) 342

148 Table 7. Apparent parameter of updated versions Parameters estimated Regression coefficient 2 : intercept -1.477±0.159 3 : intercept -1.549±0.241 : calibration slope 0.931±0.173 4 : intercept -1.962±0.277 : calibration slope 1.434±0.352 : LC 1.613±0.417 : CH -1.438±0.414 : HCV -0.134±0.588 : HBV 0.719±0.566 : AGE(40) -0.230±0.465 : SEX(male) 0.069±0.562 : -FP(20IU/) -1.818±0.385 : ALT(40IU/) 0.656±0.360 : Heavy alcohol 0.896±0.346 : Unknown alcohol 1.434±0.352 Table 8. Regression coefficient of updated versions 1 Regression coefficient 2 3 4 Intercept -6.254-7.731-7.803-8.216 LC 1.722 1.722 1.603 1.351 CH 0.734 0.734 0.683 0.576 HCV 1.263 1.263 1.176 0.991 HBV 0.775 0.775 0.722 0.609 AGE(40) 1.315 1.315 1.224 1.032 SEX(male) 0.300 0.300 0.279 0.235 -FP(20IU/) 0.826 0.826 0.769 0.648 ALT(40IU/) 0.283 0.283 0.263 0.221 Heavy alcohol 0.584 0.584 0.544 0.459 Unknown alcohol 0.222 0.222 0.207 0.175 342

149 (2) Figure 1. Calibration plot of updated versions 342

150 Figure 2. ROC curve of updated versions 342

151 Table 9. Apparent performance of updated versions 1 2 3 4 Parameters estimated 0 1 2 12 U statistic 0.150 0.000 0.000 0.000 c statistic 0.741 0.741 0.741 0.760 Brier score 0.071 0.048 0.048 0.045 0.930 0.930 0.999 1.000 5. 고찰 342

152 참고문헌 [1] Okuda K, Ohtsuki T, Obata H, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment Study of 850 patients. Cancer 1985; 56: 918-928. [2] Steyberg EW, Borsboom GJJM, Houwelingen HCV, Eijkemans MJC, Habbema JDF. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Statistics in Medicine 2004; 23: 2567-86. [3] Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Annal of Internal Medicine 1999; 130: 515-24. [4]., ; 2001. [5],.. ; 2003. [6] Harrell Jr FE. Regression modeling strategies, Springer 2001. [7] Ennis M, Hinton G, Naylor D, Revow M, Tibshirani R. A comparison of statistical learning methods on the GUSTO database, Statistics in Medicine 1998; 17: 2501-2508. [8] Tibshirani R. Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B. 1996; 58: 267-288. [9] Steyerberg EW, Eijkemans MJC, Habbema JDF. Application of shrinkage techniques in logistic regression analysis: a case study. Statistica Neerlandica 2001; 55: 76-88. [10] Steyerberg EW, Eijkemans MJC, Harrell Jr FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statistics in Medicine 2000; 19: 1059-1079. [11] Steyerberg EW, Eijkemans MJC, Houwelingen JCV, Lee KL, Habbema JDF. Prognostic models based on literature and individual patient data in logistic regression analysis. Statistics in Medicine 2000; 19: 141-160. [12] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning, Springer 2001. [13] Cheong JY, Han KH, Kim DK, et al. Establishment of Individual Prediction Model According to Risk Factors for Development of Hepatocellular Carcinoma in Korea: Establishment of Individual Prediction Model for Hepatocellular Carcinoma. The Korean Journal of Hepatology 2001; 4: 449-458(Korean). [14] Choi JW, Ahn SH, Moon CM, et al. Efficacy of Individual Prediction Model for the Early Diagnosis of Hepatocellular Carcinoma. Korean Journal of Medicine 2004; 67: 7-14(Korean). [15] Harrell Jr FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Statistics in Medicine 1996; 15: 361-387. [16] Houwelingen HCV. Validation, calibration, revision and combination of prognostic survival models. Statistics in Medicine 2000; 19: 3401-3415. [17] Steyerberg EW, Vergouwe Y, Keizer HJ, Habbema JDF. Residual mass histology in testicular cancer: development and validation of a clinical prediction rule. Statistics in Medicine 2001; 20: 3847-3859. 342