w y wz 9«( 3y) 151~163, 2006 J. of the Korean Society for Environmental Analysis s w w» (HAPs) 1,3 Á½ 1,2 Á 1 Á š 1,2, 1) w w y œw, 2) w l, 3) Formation and Safety Supervision of Hazardous Air Pollutants (HAPs) by Combustion of Firecracker Jeong Yong Ahn 1,3, Chul Su Kim 1,2, Bo-Ra Jung 1, and Gon Ok 1,2, 1 Department of Earth Environmental Engineering, Pukyong National University 2 Dioxin Research Center, Pukyong National University, Nam-gu Daeyeon-3dong 599-1, Busan 608-737, Korea 3 Busan Metropolitan policy Agency, 1000 Yeonsan 5 Dong Yeonjaegu, Busan. Korea This study was investigated on formation and ambient concentration characteristic of hazardous air pollutants (HAPs) by combustion of firecracker, and about effect of air pollution of HAPs and safety supervision at summer time in beach by firecracker play. In the results, the HAPs concentration is ranged from 2.45 ppb to 41.1 ppb in general urban ambient (Pukyong national Univ., Busan). Seasonal trend was sequence spring > winter > summer > autumn. Some compounds, such as BTEX (benzene, Toluene, ethyl benzene, m,p-xylene, styrene), were detected a benzene (1.70 ppb), ethlybenzene (0.39 ppb), m,p-xylene (0.73 ppb) and styrene(0.11 ppb), others were few detected by GC/MS. BTEX compounds were investigated about 99.9% in total concentration of aromatic compounds. The ambient concentration of Haeundae beach was influenced by firecracker play and higher than urban ambient from 10 times(in the case of m,p-xylene) to 400 times(in the case of benzene). Additionally, emission gas of firecracker is detected a very higher concentration. Therefore, the firecracker is major source of ambient pollution at beach of summer season. The law of limitation about firecracker was required to necessarily the health and the safety of the people. Key words : hazardous air pollutants(haps), firecracker 1. w» (HAPs; Hazardous Air Pollutants) {»yw (Volatile Organic Compounds : w VOCs w) w w yw w š. HAPs w,,, ƒ,», ƒ w š š. 1-4)» 2 9w w», HAPs Õ z k ƒ» Ö,., y y z HAPs w w ƒ yw w 234 š. w» e 9w Õ w» w vw w» w w w w Ö ( s³» e; 0.003 mg/m 3 w), p j p ( s³» e; 0.2 mg/m 3 w), lp j p ( s³» e; 0.2 mg/m 3 w), ( s³» e; 0.6 pg-teq/m w) 4 Õp Ö 3 y» w š. j k( s³» e; 0.15 mg/m ) 3 To whom correspondence should be addressed. E-mail: gonok@pknu.ac.kr
152 Á½ Á Á š., 4 p e w» l g š. w, j p ( s³ ee; 2 µg/m 3 w), y ( s³ ee; 10 µg/m 3 w), yw ( s³ ee; 0.04 µg/m 3 w), fyw ( s³ ee; 0.025 µg/m w) 4 3 w 2003 7 31 y z w eeƒ,» ee ƒ yw sww 234 w j š q 22 w š. 5) EPA» y (Clean Air Act's) w» ³ 188 ³. w» (HAPs) y ww w e ù, w w ƒ mew wš. p, 188 w polycyclic organic matter(pom; 7- PAH)ƒ sw 33 subset National -Scale Air Toxics Assessment, y» w û w w, w» w y» w. 6,17). ü w» w ³, w VOCs ƒ š. VOCs yw» k w» mew wš, ³ p 37 wš (y š 2001-36) 7). w, VOCs k ky w yky,, yw ky» k w» mew. ü»y w 39 1w yw t»» k y w» x w š w wš. 8)» w w» (HAPs) ƒ š w e. 9-13) p,» w w» j ù k ƒ. 14-20) w y (U.S. Envirommental Protection Agency, U.S. EPA w) ƒ š. U.S. EPA (Group A), ƒ (Group B), ƒ (Group C), y w (Group D), (Group E) wš. 21) HAPs yw,», yw w,, t» s w ùkù, yw ƒ» ww w ö x k yw., Benzene, Toluene yw üs w, 17,18,22) p, y» mw ƒ v w. ü y», mw» w û w. e 50-500 mg/kg š ƒ 2% (20000 ppm) œ» 5-10 y w w. w w p š, m, x», ùkù, ü y mw epoxide, benzoquinon, mucoaldehyde DNA w p ùkü. w p,. w ƒ w x x, q, x w š. 23,24) w, yw k šy m w k ƒ w w k w š. 25) wr y p j p w HAPs» l» NOx wì Ÿyw mw ww 2 Ÿyw p x w, d«w d q 14,15,26,27)» w. 1,3,28)
s w w» (HAPs) 153 ü 1989 y» w» 24 l ƒ š 29) z, y» d 30-32) ü l kƒ, y, l ü œ» w w w ƒ š š, š w, yw ü ü œ» w y w. 33,34) y»y w w»y z w l xy q z, x ü l 35) y d š. w, œœ œ { œ w w» w mƒ v w. p w qƒ œ œ s w w» ƒ s w p s w ù s w ƒ ƒ w w e š ƒ. s y ù y y x, ù w šƒ ƒ. ü w y w x š mw ù w 2001 l 2004 7 22 ¾ 60. 36) 2003 9,300 w š 6. 37) 9.11l z l w w wš, ü s y ( ù ) x. ü yw w w w d yw q, w ³ƒ 6948y38)( 2003.7.29) ù s y ³ w s y w m 18237y( 2004.1.20) 4 û w y w,, s xk w w š. w s w xw w e w w w ƒ. 39) 54 x w w w w ³ w ( 1983. 12. 30, 3680y) š, s y sá Áy Á»Á»Á ª Á Á Á w w ³ w sá Áy Á»Á»Á ª w x w w œœ w w w ( 1989.12. 30, 1995.12.6) ù y w» w v w e w w w. w w w w ù, s wš. 2002 s 18,726,205, 2003 s 57,287,560 l w ƒw. w 1 w w w ³ w vw» w t w s s vwš. y w w v w w» s mw w w» w m w s ƒ» l ƒ, s z œœ s» ƒ e w ƒ š w w w y ƒ v w., œ œœ s w y» w w» p q w. w, mw s w w» q wš, s y w y w w» y wš, y w s q w w w w w
154 Á½ Á Á š» y w w, s x» ü s x w s w» œw. 2. x 2.1.» s w» (HAPs)» e w w» w w w w» w. w w ew w Ÿ ewš w 643 m, û w 12 km w, ûw w» ew. w w» 7 1-8 31 ¾ 2 š, 12 v» 100 qƒ. w w v qƒ ƒ š, s w vwƒ w» 8 s ƒ w w œ» w» w» (HAPs) d w. w» w tw û ew w er ü œ» w w. w w ƒ¾ t wt w x w ew w er p w. Fig. 1 w w ùkü. 2.2.»» HAPs xy w 2, 5, 8, 10, 2 12, 48 w, s w w z ƒ w» w w w. p, w» {»yw» w» 40) j (EPA Method TO-17) œ s» w 41) (EPA Method TO-14). wr, Canister Tedlar bag w w» ù Ÿyw ú» ƒ š. 31,42,43) ƒ w EPA Method TO-17 w, Fig. 2 ùkü GS1 gas sampler (GERSTEL Co., Germany) w. ƒ s w s ùkù s w w w w. y» w yw»ƒ w ù kü e w, 44) Carbosieve S-III, Carbopack B, š Carbopack C w, Fig. 3 ùkü Fig. 1. Map of sampling sites. Fig. 2. GS1 gas sampler (GERSTEL Co., Germany).
s w w» (HAPs) 155 Fig. 3. Composition of Thermal desorption tube., w w» w š k w w, 250 C š 30 m g w o š, 0.2 L/min 3L z k x w w. 2.3. s» ü s x z ƒ HAPs s w ƒ HAPs d w» w s s k z s z ƒ sw trap w 7 z x w w. s z ƒ w v x s œ s s w ƒ w» d w» w s s w s œ y w Fig. 4 ùkü e š w z ƒ w x w. s e stainless steel w, s e ü ¼ 79 cm ü 7cm ü 3L w w. e k w w, Fig. 4. Schematic diagram of a reactor system used for firecracker. s š w š w. m v w p ew. sealingw sw z s š jš s s g. s ƒ óùš, z e m g p» w. w p g w. v s w w w 4 w w. 2.4. TDS(thermo desorption system), -4/CIS(cooled injection system)-4 ƒ k l (GERSTEL Co., Germany) Agilent 6890 GC/5973 MSD w. Table 1. Instrumental conditions of the TDS, CIS and GC/ MSD Initial Temperature Final Temperature Condition Initial Temperature Final Temperature Condition GC MSD Column Flow Temperature TDS (Thermo Desorption System) 30 o C 220 o C 60 o C/min CIS (Cooled Injection System) -50 o C 220 o C 8 o C/sec GC/MSD Agilent 6890 GC Agilent 5973 MSD Supelco VOCOL (60 m 320 µm 1.80 µm) Helium 1.2 ml/min 30 o C (5 min) 3 o C/min 60 o C 5 o C/min 150 o C 2 o C/min 190 o C (2 min)
156 Á½ Á Á š w TDS-2 ƒ w k k, w 50 C þƒ CIS-4 o w. CIS-4 j ƒ j m v(agilent 6890 GC) e (VOCOL 60m length, 320 µm inner diameter, 1.80 µm film thickmess, Supelco) w wš MSD(5973 MSD) w. HAPs t ƒ š t ƒ p g wš calibrationw w. standard (Retention time : R.T.) vj mass spectrometer ƒ ƒ spectrum y w ew vj w w. Table 1 GC/MSD ùkü, j m (total ion chromatogram) Fig. 5 ùkü. w yw aromatic compounds 54, isoparaffinic compounds 35, olefinic compounds 25, naphthenic compounds 30 Table 2 ùkü. Table 2. List of analyzed HAPs Aromatic compounds (60) Isoparaffinic compounds(35) Olefinic compounds (20) Naphthtenic compounds 30) 1,1-Dichloroethylene Bromobenzen Isopentane 3-Methyl-1-Butene cyclopentene Methylene chloride 1,3,5-Trimethylbenzen 2,3-Dimethylbutane 1-Pentene Methylcyclopentane trans-1,2-dichloroethane 2-Chlorotoluene 2-Methylpentane 2-Methyl-1-Butene Cyclohexane 1,1-Dichloroethane 4-Chlorotoluene 3-Methylpentane 2-Methyl-1,3-Butadiene 1,1-Dimethylcyclopentane 2,2-Dichloropropane tert-butylbenzen 2,2-Dimethylpentane trans-2-pentene cis-1,3-dimethylcyclopentane cis-1,2-dichloroethylene 1,2,4-Trimethylbenzen 2,4-Dimethylpentane cis-2-pentene trans-1,3-dimethylcyclopentane Chloroform sec-buthylbenzen 2,2,3-Trimethylbutane 4-methylpentene-1 trans-1,2-dimethylcyclopentane Bromochloromethane 4-Isopropyltoluene 3,3-Dimethylpentane 1-Hexene Methylcyclohexane 1,1,1-Trichloroethane 1,3-Dichlorobenzen 2-Methylhexane trans-2-hexene Ethylcyclopentane 1,1-Dichloropropene 1,4-Dichlorobenzen 2,3-Dimethylpentane 2-Methylpentene-2 ctc-1,2,4-trimethylcyclopentane Carbon tetrachloride n-butylbenzen 3-Methylhexane cis-2-hexene ctc-1,2,3-trimethylcyclopentane 1,2-Dichloroethane 1,2-Dichlorobenzen 3-Ethylpentane 1-Heptene cct-1,2,4-trimethylcyclopentane Benzen 1,2-Dibromo-3- chloropropane 2,2-Dimethylhexane trans-3-heptene trans-1,4-dimethylcyclohexane Trichloroethane 1,2,4-Trichlorobenzen 2,5-Dimethylhexane cis-3-heptene 1-Ethyl-1-Methylcyclopentane 1,2-Dichloropropane Hexachlorobutadiene 2,2,3-Trimethylpentane trans-2-heptene trans-1,2-dimethylcyclphexane Bromodichloromethane Naphthalene 2,4-Dimethylhexane cis-2-heptene ccc-1,2,3-trimethylcyclopentane Dibromomethane 1,2,3-Trichlorobenen 2,3-Dimethylhexane 1-Octene Isopropylcyclopentane cis-1,3-dichloropropene 2-Methylheptane trans-2-octene cis-1,2-dimethylcyclopentane Toluene 4-Methylheptane cis-2-octene n-propylcyclopentane trans-1,3-dichloropropene 3-Methylheptane 1-Nonene ccc-1,3,5-trimethylcyclohexane 1,1,2-Trichloroethane 3-Ethylhexane trans-3-nonene 1,1,4-Trimethylcyclohexane 1,3-Dichloropropane 2,5-Dimethylheptane cis-3-nonene ctt-1,2,4-trimethylcyclohexane Tetrachloroethane 3,5-Dimethylheptane(D) trans-2-nonene ctc-1,2,4-trimethylcyclohexane Dibromochloromethane 3,3-Dimethylheptane cis-2-nonene 1,1,2-Trimethylcyclohexane 1,2-Dibromoethane 3,5-Dimethylheptane(L) 1-Decene Isobutylcyclopentane Chlorobenzen 2,3-Dimethylheptane Isopropylcyclohexane 1,1,1,2-Tetrachloroethane 3,4-Dimethylheptane(D) n-butylcyclopentane Ethylbenzen 3,4-Dimethylheptane(L) Isobutylcyclohexane m-xylene 2-Methyloctane t-1methyl-2-propylcyclohexane p-xylene o-xylene Styrene Isopropylbenzen Bromoform 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane] n-propylbenzen 3-Methyloctane 3,3-Diethylpentane 2,2-Dimethyloctane 3,3-Dimethyloctane 2,3-Dimethyloctane 2-Methylnonane 3-Ethyloctane 3-Methylnonane t-1methyl- 2(4MP)Propylcyclopentane
폭죽의 연소에 의한 유해대기오염물질(HAPs)의 발생과 안전관리 Fig. 5. 157 Total ion chromatogram of HAPs by GC/MS. 결과 및 고찰 간 간격으로 채취하여 분석한 일반 대기 중 HAPs 중 방향족 화합물의 계절별 농도를 평균한 일평균 값을 3.1. 비교지역 일반 대기 중 HAPs 농도 Table 3에 나타내었다. 비교지역의 일반 대기의 시료는 겨울(2월), 봄(5월), 분석 대상 화합물 54종 중 S/N(signal/noise ratio)비 여름(8월), 가을(10월)에 부경대학교 지점에서 1일 2시 가 3이상으로 검출된 화합물은 BTEX 화합물을 중심 3.
158 Á½ Á Á š 12 yw y, p, w yw 41.1 ppb ƒ ùkû, 17.46 ppb, 5.55 ppb, ƒ 2.45 ppb > > >ƒ y. HAPs w toluene n-butylbenzene w w» w ƒ j ùkû. d y yw w BTEX(benzene, toluene, ethylbenzene, m,p,o-xylene) ƒ w,, ƒ, ƒƒ 45%, 100%, 100%, 42% 42-100% ùkû. Cheng 45) Alberta Edmonton downtown industrial ù 92 l 93 ƒ ¾ 2» w w ky y ƒ ƒ šw. ü,,, ƒ ƒ w šwš. 32) p, ù w ƒw ƒ» x» w HAPs td»» j wš. 35) 3.2. s w» HAPs s s w ƒ ƒ y w w» w Table 3. Seasonal concentration of aromatic compounds in the HAPs Aromatic compounds Spring (ppb) Summer Autumn (ppb) (ppb) Winter (ppb) Benzene 2.50 1.70 N.D. * 0.84 Toluene 5.99 2.43 1.57 7.25 Ethylbenzene 9.80 0.39 0.25 1.19 m,p-xylene 8.88 0.45 0.34 1.82 Styrene 1.94 0.11 N.D. * 1.18 o-xylene 6.27 0.28 0.20 1.45 Bromobenzene N.D. * N.D. * N.D. * N.D. * n-propylbenzene 0.90 0.03 N.D. 0.62 1,2,4-Trimetylbenzene 4.80 0.16 0.09 2.82 tert-butylbenzene N.D. N.D. N.D. N.D. sec-butylbenzene N.D. N.D. N.D. N.D. n-butylbenzene N.D. N.D. N.D. 0.28 Sum 41.1 5.55 2.45 17.5 BTEX 33.4 5.25 2.36 12.6 *not detected. HAPs w yw, q v yw, v yw, ùvl yw yw ù ƒƒ w Table 4 ùkü. s w» HAPs ƒ ùkù yw dichloromethane 476 ppb y, Benzene 690 ppb, Toluene 557 ppb y, yw w. ù y Table 4. Concentrations of HAPs in haeunde beach air of during the firework Aromatic compounds ppb Isoparaffinic compounds ppb Dichloromethane 476 2-Methylheptane N.D. Benzene 690 3-Methylheptane N.D. Toluene 557 2-Methyloctan N.D. Ethylbenzene 6.05 3-Methyloctan N.D. m,p-xylene 4.66 Sum - O-xylene 3.58 Olefinic compounds ppb Styrene 9.84 1-Pentene 41.1 Isopropylbenzene 0.33 1-Heptene 12.2 n-propylbenzene 0.93 1-Decene 8.56 1,3,5-Trimethylbenzene 1.04 Sum 61.9 1,2,4-Trimethylbenzene 3.27 Naphthenic compounds ppb 1,4-Dichlorobenzene 1.51 Methylcyclopentane 9.90 Naphthalene 1.49 Methylcyclohexane 0.68 1,2,3-Trichlorobenzene N.D. t-1-methyl-2-(4mp)cyclopentane 0.05 Sum 1760 Sum 10.6
폭죽의 연소에 의한 유해대기오염물질(HAPs)의 발생과 안전관리 Fig. 6. 159 Percent of each compounds in the beach. 합물은 미량 농도의 수준을 나타내었다. 화합물별 HAPs농도는 방향족 화합물이 1760 ppb, 올레핀계 화합물 61.9 ppb, 나프텐계 화합물 10.6 ppb 로 나타났으며 이소파라핀계 화합물은 검출 되지 않았 다. BTEX를 제외한 방향족 화합물의 농도가 전체 HAPs 농도의 27%, BTEX 농도는 전체의 69%로 높 은 비율을 차지하는 것을 Fig. 6에 나타낸 결과에서 알 수 있다. 3.3. 폭죽의 폭발연소실험에 의한 후생가스 중 HAPs 발생량 밀폐 된 장치에서 단위폭죽이 연소할 때 발생하는 후 생가스 중에서 검출된 HAPs는 총 48종으로 확인되었 으며, 그 결과를 Table 5에 나타내었다. 방향족 화합물인 Dichloromethane은 2877 ppb, 출되었다. 반응기 내에서의 HAPs 총 농도 중 BTEX 화합물 이 차지하는 농도는 98%로 아주 높게 나타난 것을 Fig. 7에서 알 수 있으며, 그 외의 방향족 화합물의 발 생량은 낮았으며, 또한, 이소파라핀계, 올레핀계, 나프 텐계 화합물의 발생량도 낮아 BTEX가 지배적으로 이 들 세 가지 화합물 군의 발생량은 미미한 결과를 나타 내었다. 한편, 폭죽놀이를 하고 있는 해운대 해수욕장의 대기 중 농도와 반응기내에서의 농도를 비교한 결과를 Fig. 8에 나타내었으며, 이 결과를 보면, 폭죽 후생가스의 영 향을 받은 해운대 해수욕장의 대기 중 HAPs 농도는 모든 화학종 군에서 주변 공기의 희석의 영향으로 10 배정도의 희석효과가 발생하게 되나, 폭죽의 폭발 연소 가스에 영향을 받은 해운대 해수욕장에서의 대기 중의 trans-1,2-dichloroethylene 2005 ppb, 1,1-Dichloroet- HAPs 농도는 일반 비교지점의 대기 중 농도수준과 비 hane 1106 ppb, Bezene 91361 ppb, Toluene 6955 교하면 최대 300배의 농도 수준차이가 큰 것으로 나타 ppb, Ethylbenzene 818 ppb, m,p,o-xylene 1184 나, 야간의 해운대 해수욕장에서의 일시적인 HAPs의 ppb, Styrene 2134 ppb로 ppm 단위 수준으로 매우 호흡에 의한 섭취량이 일반 대기에서의 섭취량보다 300 높은 농도로 확인되었다. 이소파라핀계 화합물 중 3- 배의 영향이 클 수 있는 가능성을 나타내는 것으로 판 Methylpentane이 26.6 ppb, 올레핀계 화합물 중 1- 단된다. Pentene 43.3 ppb로 다른 나머지 화합물과 비교하여서 는 높았다. 결 론 Table 5에서 알 수 있듯이 폭죽의 폭발연소의 후생가 스에서 발생하는 HAPs 중 방향족 화합물은 109472 본 연구는 폭죽의 시판 및 사용에 의한 폭발연소에 ppb로 폭죽의 폭발연소의 영향을 받은 대기 중 농도인 의해 발생한 유해대기오염물질(HAPs)의 발생의 정량적 1755 ppb의 약 60배에 이르며, 해수욕장 대기에서 자료를 확보하고, 폭죽 후생가스의 발생에 의한 환경상 N.D.였던 이소파라핀계 화합물의 농도는 26.7 ppb, 올 의 영향과 인체의 건강 및 안전 관리에 대한 대책을 레핀계 화합물은 61.9 ppb의 약 2배인 142 ppb로 검 수립하기 위한 과학적 기초자료의 확보를 위하여 실시 4.
160 Á½ Á Á š Table 5. Concentrations of HAPs in the squib reactor. Aromatic compounds ppb Isoparaffinic compounds ppb Dichloromethane 2877 3-Methylpentane 26.59 trans-1,2-dichloroethylene 2005 2,4-Dimethylhexane 0.065 1,1-Dichloroethane 1106 Sum 26.66 Chloroform 6.085 Benzene 91360 Olefinic compounds ppb Trichloroethylene 26.21 3-Methyl-1-butene 14.71 Toluene 6954 1-Pentene 43.29 Chlorobenzene 284.0 2-Methyl-1-butene 19.08 Ethylbenzene 818.4 cis-2-pentene 19.44 m,p-xylene 484.8 2-Methyl-1,3-butadiene 11.34 o-xylene 699.2 1-Hexene 18.42 Styrene 2133 trans-2-hexene 2.762 Isopropylbenzene 22.13 2-Methylpentene-2 0.326 n-propylbenzene 57.26 cis-2-hexene 0.108 1,3,5-Trimethylbenzene 28.45 1-Heptene 2.304 2-chlorotoluene 1.135 trans-3-heptene 0.205 tert-butylbenzene 0.000 trans-2-heptene 0.128 1,2,4-Trimethylbenzene 99.76 1-Octene 2.449 sec-butylbenzene 1.403 1-Nonene 2.604 p-isopropyltoluene 41.34 cis-2-nonene 0.283 1,3-Dichlorobenzene 10.82 1-Decene 4.804 1,4-Dichlorobenzene 1.047 Sum 142.3 n-butylbenzene 24.31 1,2-Dichlotobenzene 0.696 Naphthenic compounds ppb 1,2,4-Trichlorobenzene 2.100 Methylcyclopentane 0.792 Naphthalene 422.8 trans-1,3-dimethylcyclopentane 2.245 1,2,3-Trichlorobenzene 2.260 cct-1,2,4-trimethylcyclopentane 3.392 Sum 109500 Sum 6.429 Fig. 7. Percent of each categories at the firework..» s s w w ƒ ww w» (HAPs) w ƒ, x s ƒ ww š w» w w w», w
s w w» (HAPs) 161 Fig. 8. Comparison between concentrations of each compound at firework and in beach. HAPs p w» w kw w w. s s w w» (HAPs) sƒ w s e š w q ƒ s s z s z ƒ w» (HAPs) p sƒw w. 1)» w yw 41.1 ppb, 5.55 ppb, ƒ 2.45 ppb, 17.5 ppb ùkù > > >ƒ ƒ w. x w w» w (») w r, Benzene 1.70 ppb, Ethylbenzene 0.39 ppb, m,p,o-xylene 0.73 ppb, Styrene 0.11 ppb ùkû, w yw w BTEX 42-100%. 2) s z ƒ w š w w» HAPs 1827 ppb š, w yw 1755 ppb, q v yw N.D., v yw 61.9 ppb, ùvl yw 10.6 ppb ƒƒ ùkû, 69% BTEXyw w. w dichloromethane 476 ppb, benzene 690 ppb, toluene 557 ppb ùkûš,» w 400 (Benzene), 10 (m,p-xylene). w s w» w j y. 3) s s mw z ƒ HAPs w» w s s e ü œ s g w, HAPs 1260.9 ppb, w yw 109472.4 ppb, q v yw 26.7 ppb, v yw 142.3 ppb, ùvl yw 6.429 ppb. w HAPs 98% BTEXƒ wš w yw ƒ yw w ( x 1700, 20000 ) j ùkû, dichloromethane 2877 ppb, trans-1,2-dichloroethane 2005 ppb, 1,1-dichloroethylene 1106 ppb, benzene 91360 ppb, toluene 6955 ppb, m,p,o-xylene 1184 ppb š, x w 200 (styrene), 12 (toluene), w 50000 (benzene), 600 (1,2,4-trimethylbenzene). w s w HAPs» ƒ wù, s œœ ww w e ƒ, w w sƒ ƒ wz v q. 4) œœ s w ³ w xw s y ù s š, y w y w w w w» š. ù s mw
162 Á½ Á Á š w» y w, mw w»ƒ y, s y mw, ù q w š w w ³ e w Õ Ö 50y( s ù) [ ù œ ù w ] 51y m wš, s y 3 ( ) 6, 8 w š, ù q wš w q w e w w q ww š w w w m w v ƒ. s l w q y y ww, e m q w ù v ƒ. e z s y l» w y w» y w w w s» e w z w q. w w w w s q w ³ w, w l mw l yw wz w x y w y v. š x 1. Summerhays, J., Evaluation of risks from urban air pollutants in the southeast Chicago area, J. Air Waste Manage. Assoc., 1991, 41, 844-850. 2. Levin, A., D.B. Fratt, A. Leonard, R. J. F. Bruins, and L. Fradkin, Comparative analysis of health risk assessment for municipal waste combustros, J. Air Waste Manage. Assoc., 1991, 41, 20-31. 3. Hodgson, A.T., K. Garbesi,k R.G. Sextro and J.M. Daisey, Soil-gas contamination and entry of volatile organic compounds into a hause near a landfill, J. Air waste Manage. Assoc., 1992, 277-283. 4. Brian D. Eitzer, Emission of volatile organic chemicals from municipal solid waste composting facilities, Environmental Science and Technology., 1995, 29(4), 896-902. 5. y, 17 ˆkhioœ«š Œ wutxyr kkgk, 2006. 6. US EPA, National Air Quality and Emissions Trends Report, 1998, 454/R-00-003., 2000. 69-90. 7. y š ( 2001-36y). 8. y,» w sƒ»., 1997, 215-335. 9. Thomas Schmitz, dieter Hassel, Franz-Josef Weber, Determination of VOC-components in the exhaust of gasoline and diesel passenger cars, Atmospheric Environment, 2000, 34, 4639-4647. 10. Roche, A., Thevenet, R., Jacob, V., Kaluzny, P., Ferrari, C., Baussand, P., and Foster, P., Performance of a thermally desorbable type-tube diffusive sampler for very low air concentrations monitoring. Atmos. Environ., 1999, 33, 1905.1912. 11. Shigehisa Uchiyama, Masae Asai, and Shuji Hasegawa, A sensitive diffusion sampler for the determination of volatile organic compounds in ambient air Atmospheric Environment, 1999, 33, 1913-1920. 12. Hsien-Wen Kuo, Hsien-Chi Wei, Chiu-Shong Liu, Yin- Yin Lo, Wen-Chin Wang, Jim-Shoung Lai and Chang Chuan Chan, Exposure to volatile organic compounds while commuting in Taichung, Taiwan, Atmospheric Environment, 2000, 34, 3331-3336. 13. Balázs Tolnai, Andr s Gelencsár, Csilla Gél and József Hlavay, Evaluation of the reliability of diffusive sampling in environmental monitoring Analytica Chimica Acta., 2000, 408, 117-122. 14. Lioy, P.J., J. M. Daisey, Airborne toxic elements and organic substances, Environmental Science and Technology, 1986, 20(1), 8-14. 15. Hisham, M.W., and D. Grosjean, Methylchloroform and tetrachloroethylene in southern california, 1987-1990, Environmental science and Technology, 1991, 25(11), 1930-1936. 16. Brodzinsky, R. and H.B. Singh, Volatile organic chemicals in the atmosphere: An assessment of available data, Environmental science research laboratory, 1983, U.S EPA-600/3-83-027(a). 17. U.S. EPA., Cancer Risd from Outdoor Exposure to Air Toxics. U.S. EPA OAQPS, Research Triangle Park, North Carolina, USA., 1990. 18. U.S. EPA., Ranking of pollutants with respect to human health, Technical Background Document to support Rulemaking Pursuant to Clean Air Act
s w w» (HAPs) 163 Section 112(g), US Environmental Protection Agency, Research Triangle Park, NC., 1994. 19. Norback D., G. Wieslander, and C. Edling, Occupational exposure to volatile organic compounds (VOCs), and other air pollutants from the indoor application of water-based paints. The Annals of Occupational Hygiene, 1995, 39(6), 783-794. 20. ½,,, VOCs d VOCsƒ e w w - ù 6 THMs, w w, 2000, 13(1), 55-65. 21. IRIS (Integrated risk information system), U.S. EPA, Guideline for carcinogen risk assessment, 1986. 22. Lance A. WallaceEdo D. Pellizzari, Ty D.Hartwell, Charles M. Sparacino, Linda S. Sheldon and Harvey Zelon, Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey, Atmospheric Environment, 1985, 19(10), 1651-1661. 23. Rinsky RA, Smith AB, Hornung R, et al. Benzene and leukemia, An epidemiological risk assessment, N Engl. J. Med., 1987, 316(17), 1044-1050. 24. Wong O., An industry wide mortality study of vhemical workers occupationally exposed to benzene.. Dose-response analysis. Br. J. Ind. Med., 1987, 44(6), 382-395. 25. Kim Y., Jung K., Hwang T. et al., Hematopoietic and reproductive hazards of Korean electronic workers exposed to solvents containing 2-bromopropane. Scad J. Work Environ Health, 1996, 22, 387-391. 26. Derwent R.G., M.E. Jenkin, S.M. Saunders, and M.J. Pilling, Photochemical ozone creation potentials for organic compounds in northwest europe calculated with a master chemical mechanism. Atmospheric Environment, 1998, 32(14/15), 2429-2441. 27. Leggett, S., Forecast distributions of species and their atmospheric reactivities for the U.K. VOC emission inventory, Atmospheric Environment, 1996, 30(2), 215-226. 28. Weinstock B., Carbon monoxide, Trsidence Time in the Atmosphere. Science, 1969, 166, 224. 29. Œ, š,, ª, «GCŸ Ÿ kno ªƒ š l. ƒ ª, 1989, 16, 23-28. 30. š, z,, w y,» w {»yw y w. w y wz, 1998, 1(1), 41-50. 31. ùÿ, ½ t, ½,» C2~C9 {»yw, w» wz, 1998, 14(2), 95-105. 32.»,, y, ½,» y» {»yw p w, w y wz, 1999, 2(4), 261-266. 33. ½, š,, ü y VOCs. wy œwz, w tz, 1995, 348-351. 34., y, ½, y, š,, œ ü œ» p w - {»yw, wy œwz, 1999, 21(5), 69-885. 35. Ÿ, Ÿ»y z, 2002. 36. w y, http//www.cpb.or.kr/ 37. Michael A. Greene and James Joholske, 2003 Fireworks annual report; Fireworks-related deaths, emergency department-treated injuries, and enforcement activities duringn 2003, U.S. Consumer Product Safety Commission., 2004. 38. http://www.gj.cnpolice.go.kr/ 39. http://www.npa.go.kr/ 40. U.S. EPA, Method TO-17, Determination of VOCs in ambient air using active sampling onto sorbent tubes, 1997. 41. U.S. EPA, Method TO-14A, Determination of VOCs in ambient air using specially prepared canisters with subsquent analysis by GC, 2nd Edition., 1997. 42. }ˆ,, Ž, l, 1989. 43. Dewulf J., and H.Van Langenhove., Anthropogenic volatile organic compounds in ambient air and natural water: A review on recent developments of analytical methodology, performance and interpretation of field measurements. Journal of Chromatography A., 1999, 843, 163-177. 44. Bianchi, A.P. and Varney, M.S., Sampling and analysis of volatile organic compounds in estuarine air bu gas chromatography and mass spectrometry. J. of Chromatography, 1993, 643, 11-23. 45. Cheng L., L. Fu, R.P. Angle, and H.S. Sandhu, Seasonal variations of volatile organic compounds in edmonton, alberta. Atmospheric Environment, 1997, 31(2), 239-246.