Korean Journal of Environmental Agriculture Korean J Environ Agric. 2016;35(1):46-54. Korean Online ISSN: 2233-4173 Published online 2015 November 12. http://dx.doi.org/10.5338/kjea.2016.35.1.01 Print ISSN: 1225-3537 Research Article Open Access 환경제어조건에서방충망색과크기가담배가루이및꽃노랑총채벌레의물리적방제에미치는영향 정충렬 1*, 윤정범 2, 김광호 3, 이광재 4, 허정욱 1, 김현환 1 1 국립농업과학원농업공학부생산자동화기계과, 2 국립원에특작과학원원예특작환경과, 3 국립농업과학원농산물안정부작물보호과, 4 충청북도농업기술원연구개발국원예연구과 Colors and Sizes of Insect Screen Net Influence Physical Control of Bemisia tabaci and Frankliniella occidentalis under Controlled Environments Chung-Ryul Jung 1*, Jung-Beom Yoon 2, Kwang-Ho Kim 3, Guang-Jae Lee 4, Jeong-Wook Heo 1 and Hyun-Hwan Kim 1 ( 1 Farming automation division, Department of Agricultural Engineering, National Institute of Agricultural Sciences, Jeonju 54875, Korea 2 Horticultural and herbal crop environment division, National Institute of Horticultural and Herbal Science, Wanju 55365, Korea 3 Crop protection division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Korea 4 Horticulture research division, Research and Development, Chungbuk Agricultural Research and Extension Service, Cheongju 28130, Korea) Received: 7 October 2015 / Revised: 26 October 2015 / Accepted: 2 November 2015 Copyright c 2016 The Korean Society of Environmental Agriculture This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ORCID Jung-Beom Yoon http://orcid.org/0000-0002-7892-2115 Abstract BACKGROUND: The tobacco whitefly(bemisia tabaci Gennadius) and western flower thrips(frankliniella occidentalis Pergande) seriously damaged to several greenhouse crops and transmitted plant viruses such as the Tomato Yellow Leaf Curl Virus(TYLCV) and Tomato Spotted Wilt Virus(TSWV). Objective of this study was to elucidate exclusion effects of insect screen nets by various hole sizes and colors for control of the two insect pests in controlled environments such as a closed plant production system. METHODS AND RESULTS: The exclusion effects to various hole sizes of three other colors with 30 individuals of two insect pests was evaluated. B. tabaci was not showed not difference to different colors and sizes. F. occidentalis *Corresponding author: Chung-Ryul Jung Phone: +82-63-238-4059; Fax: +82-63-238-4035; E-mail: crjung7392@gmail.com showed that 0.2 mm black screen was the most effective exclusion than other colors of 0.6 and 0.8 mm. CONCLUSION: The two insects were different reponses to various hole sizes of white and other color screen nets. It was proved that the 0.4 mm white screen net used in this experimental condition was suitable for exclusion of B. tabaci and 0.2 mm black for F. occidentalis. Key words: Bemisia tabaci, Frankliniella occidentalis, insect screen net, exclusion effect 서론 담배가루이 (Bemisia tabaci Gennadius) 는전세계적으로발생되며흡즙피해와함께 Tomato Infectious Chlorosis Virus(TICV, Duffus et al., 1996) 병등 25종이상의바이러스병을매개하여시설작물의수량감소및품질저하에큰영향을주는해충이다 (Bedford et al., 1994). 또한토마토에서는황화잎말림병 (Tomato Yellow Leaf Curl Virus, TYLCV) 을매개하며병징이발현후토마토생산량이크게 46
Exclusion Effects of Bemisia tabaci and Frankliniella occidentalis 47 Table 1. The types of various insect screens used for exclusion test of B. tabaci and F. occidentalis Size (mm) Color Raw material Manufacturer Country 0.2 White Nylon Black Polypropylene Sungjae MH TEC Korea 0.3 White Polyethylene Sungjae MH TEC Korea 0.4 White Polyethylene Sungjae MH TEC Korea White Polypropylene Sungjae MH TEC Korea 0.6 Black Polyethylene Textoma Korea Red Polyethylene Nihon Widecloth, Co., Ltd. Japan 0.8 White Polypropylene Sungjae MH TEC Korea Red Polyethylene Nihon Widecloth, Co., Ltd. Japan TW30 White Polyethylene Takii & Co., Ltd. Japan 감소한다 (Horowitz et al., 2005; Park et al., 2012). 담배가루이는기주범위가넓어 86과 700 여종이상의식물을가해하며 (Greathead, 1986), 지금까지 9 가지의 biotype이보고되었다 (Brown et al., 1995). 꽃노랑총채벌레 (Frankliniella occidentalis Pergande) 는미국북부지역이원산지로 1980년부터널리퍼지기시작하여현재전세계에광범위하게분포하고있다 (OEPP/ EPPO, 1989). 특히시설재배작물에중요한해충이며 (Higgins and Mayer, 1992; Gerin and Hance, 1993), 국내에서는 1993년 8월제주도서귀포시밀감하우스재배농가에서처음발견되었다 (Chung et al., 2000). 꽃노랑총채벌레는발육단계마다서식처가다르고온실내높은온도에서번식력이왕성하며성충의몸이작기때문에잎뒷면이나꽃잎사이등에숨기좋아하는습성과빠른약제내성을획득하기때문에전세계와우리나라에서시설작물을가해하는주요해충으로자리잡았다 (Scmidt and Frey, 1995; Immaraju et al., 1992; Yu et al., 2002; Chung et al., 2013). 온실과같은재배시설에서연중발생하고약제방제를우선하였기때문에살충제에대한교차또는복합저항성을증가시켰을뿐만아니라이러한살충제로부터살아남은해충들의밀도가더욱증가되는부작용을가져왔다 (Helyer & Brobyn, 1992; Immaraju et al., 1992; Zhao et al., 1995). 꽃노랑총채벌레는고추, 토마토, 장미, 국화등 62과 224 종식물의잎과꽃을가해하고산란을통해피해를주며, 담배가루이처럼약충이 Tomato Spotted Wilt Virus (TSWV) 와 Tobacco Streak Virus(TSV) 를매개하여경제적으로막대한손실을주고있다 (Salguero et al., 1991, 1994; Helyer & Brobyn, 1992; Barbour and Brandenburg, 1994; Groves et al., 2001). 시설재배지에서총채벌레류및가루이류와같은미소해충의유입차단은 IPM(Integrated Pest Management) 에있어가장먼저고려해야할사항으로살충제가격상승으로인한농가의경제적부담과살충제에대한저항성증가를감소시키기위해서는방충망의사용이가장효과적이라할수있다 (Neal, 1992). 방충망사용은해충개체군의감소 (Berlinger et al., 1983, 1991, 1992; Robb and Parrella, 1988; Baker and Jones, 1989), 곤충매개식물병의낮은발병 (Berlinger et al., 1983; Baker and Jones, 1989) 및살충제살포횟수의감소 (Berlinger et al., 1983; Robb and Parrella, 1988) 등에있어긍정적효과를보이고있다. 시설재배지에서총채벌레류와가루이류등의유입차단을위한방충망사용은재배적방법의하나로, 연중재배가가능한육묘장, 박과 (Cucurbitaceae), 가지과 (Solanaceae) 등의과채류와엽채류및화훼류등대부분의작물에적용가능한중요한방제기술이라고할수있다 (Chung et al., 2013). 따라서본연구에서는시설재배지, 유리온실및식물공장과같은폐쇄형작물재배시스템내재배작물에피해를입히는유입해충중에서바이러스매개충인담배가루이와꽃노랑총채벌레의유입차단및방제효율을증가시킬수있는방충망크기와색상별차단효과를조사하였다. 재료및방법 실험곤충실험에사용한담배가루이와꽃노랑총채벌레는국립농업과학원작물보호과곤충사육실 (25±1, 65-70%) 과국립원예특작과학원원예특작환경과온실 (25±1, 60-70%) 에서가지와땅콩으로누대사육한개체들을각각사용하였다. 담배가루이방충망처리방충망통과실험은 SPL LifeScience Co., Ltd. (Pochun, Korea) 에서판매하고있는두종류의직사각형사육용기 (72 72 100 mm, Product No. 310076, 310077) 와고정용프레임 (80.8 80.8 21 mm, Product No. 310074) 을사용하였다. 바닥면에 1개의환기구를가진사육용기를뒤집어고정용프레임에고정시킨후담배가루이성충 30 마리를용기안에넣고프레임위에백색방충망 (Table 1) 을덮은후사육용기입구를프레임에고정시켰다. 담배가루이성충은 30 마리를 1회반복으로한후 5 반복처리하였다. 성충유인을위해토마토의어린잎하나를 1.5 ml 튜브에집어넣고물을
48 Jung et al. Fig. 1. The schematic diagrams for exclusion test of insect screens to B. tabaci and F. occidentalis. (A): B. tabaci, (B): F. occidentalis. 채운후사육용기한쪽면에투명테이프를부착하여고정시켰다. 담배가루이성충에수분을공급하기위해물에적신솜을직경 1.5 cm 크기의실험용기에넣은후용기바닥면에고정하였다. 사육용기안에처리된개체의탈출을방지하기위해방충망이처리된부분을 parafilm 으로추가고정시켰다 (Fig. 1). 성충처리 24 시간뒤에방충망통과여부를조사하였다. 사육실내온도와상대습도는 24±1, 60±10% 로각각설정하였고낮과밤의처리시간은각각 12 시간을유지하였다. 담배가루이색상별방충망처리 SPL LifeScience Co., Ltd. 의직사각형사육용기 (Product No. 310076, 310077) 와고정용프레임 (Product No. 310074) 을사용하여백색과적색의 0.6 mm 및 0.8 mm 망 (Table 1) 을설치 고정하였다. 담배가루이성충및기주식물처리방법은백색방충망처리방법과동일하다. 꽃노랑총채벌레방충망처리방충망처리방법및개체수는담배가루이에서사용한방법과동일하다. 성충유인을위해직경 2 cm 백색플라스틱튜브의마개에물에불린땅콩을세로로이등분하여그반쪽을올린후방충망위에고정시켰다. 꽃노랑총채벌레성충은 30 마리를한반복으로하여 5 반복처리하였다. 처리 24 시간뒤에방충망을통과하여땅콩에유인된개체와사육용기아랫면에남아있는개체를구분하여조사기록하였다. 꽃노랑총채벌레색상별방충망처리 2 종류의 0.2 mm 망 ( 흑색과백색 ), 3 종류의 0.6 mm 망 ( 적색, 흑색및백색 ), 2 종류의 0.8 mm 망 ( 적색및백색 )(Table 1) 을백색방충망에서사용한것과동일한방법으로꽃노랑총채벌레성충을대상으로처리하였다. 통계처리백색및흑색의색상별방충망에대한담배가루이와꽃노랑총채벌레의차단효과는양측검정을실시하였고 TW30을포함한 5 가지의백색방충망의크기별차단효과에대한유의성검정은 SAS 프로그램 (SAS, 1989) 의 PROC GLM을이용하여분산분석한후처리간의평균을비교하였다. 분산분석에서처리간차이가인정되는경우그차이는최소유의차검정 (LSD) 을이용하여비교하였다. 결과 방충망크기별담배가루이차단효과 6 가지크기별백색방충망중에서 0.2 mm 망은담배가루이를 100% 차단하였다. 방충망크기중에서 0.3 mm와 0.4 mm의망도각각 97.8% 및 96.7% 이상의차단효과를나타냈지만이들 3 종류의방충망사이에서는크기별유의성은보이지않았다 (Fig. 2, F = 862.25; df = 6; P = 0.0001). 0.6 mm 이상의방충망에서는차단효과가 42.2% 까지감소하였고일본에서총채벌레유입차단용으로사용하고있는 TW30에서는 12.5% 의차단율을나타냈다. 이는방충망처리없이토마토잎만을처리하여대조구로사용한무처리결과와유사하여담배가루이차단에는효과가없음을보여주었다. 방충망의크기가커질수록담배가루이또한쉽게통과할수있음을보여주고있는데차단효과를고려한다면 0.4 mm
Exclusion Effects of Bemisia tabaci and Frankliniella occidentalis 49 Fig. 2. Exclusion effects of B. tabaci to insect screens of various sizes with white color. Control means that cage not installed insect screen net. Each treatment consisted 30 individuals and was replicated three times. Different letters above standard error bars indicate significant difference among means at Type I = 0.05 (LSD test). Teitel (2007) was reported that the average thorax size of B. tabaci adult females and males were 245.5 and 184.4 μm, respectively. Fig. 3. Exclusion effects of B. tabaci to insect screens of two types with white and red colors. Each treatment consisted 30 individuals and was replicated three times. NS means not significant. 의방충망사용이적합한것으로판단된다. 색상별담배가루이차단효과두종류의망크기 (0.6 및 0.8 mm) 와두종류의색상 ( 백색및적색 ) 을가진방충망을대상으로색상별차단효과를비교조사한결과, 두종류의방충망모두에서색상별차단효과에서는차이가없음을확인하였다. 0.6 mm 망의경우백색이적색보다담배가루이성충차단율이다소높게나타났지만통계적으로유의한차이를보이지않았다 (Fig. 3A, t = 1.00; P = 0.3745). 0.8 mm 망에서는백색보다적색에서다소높게나타났지만통계적인유의차가없었다 (Fig. 3B, t = -1.60; P = 0.2334). 이러한결과는방충망색상은담배가루이의유입차단에유의한영향을미치지는않으나방충망크기가차단효과에영향을미치는요인임을시사한다. 방충망크기별꽃노랑총채벌레차단효과 5 가지크기 (0.2, 0.3, 0.4, 0.6, 0.8 mm) 별백색방충망
50 Jung et al. Fig. 4. Exclusion effects of F. occidentalis to insect screens of various sizes with white color. Control means that cage not installed insect screen net. Each treatment consisted 30 individuals and was replicated five times. Different letters above standard error bars indicate significant difference among means at Type I = 0.05 (LSD test). Teitel (2007) was reported that the average thorax size of F. occidentalis adult females and males were 261.3 and 215.8 μm, respectively. Fig. 5. Exclusion effects of F. occidentalis to different three colors. Each treatment consisted 30 individuals and was replicated five times. Different letters above standard error bars indicate significant difference among means at Type I = 0.05 (LSD test). 처리에서 0.2 mm의방충망에서 86.8% 의차단효과를나타낸반면, 다른방충망에서는 40% 미만의차단효과를보였다 (Fig. 4, F = 30.91; df = 5; P = 0.0001). 0.3 mm 망에서는 35.8% 까지, 0.4 mm에서는 20.0% 까지차단하였다. 그러나 0.6 mm 망이상의차단효과는 24.3% 로증가하여 0.8 mm에서는 34.2% 까지증가하였지만서로유의한차이는보이지않았다. 시설재배지에서꽃노랑총채벌레의유입차단을위해서는 0.2 mm의방충망사용이적합한것으로판단되며 0.2 mm의망 보다큰방충망을사용할경우유입된개체의이동을억제하기위해점착트랩의사용이필요할것으로여겨진다. 색상별꽃노랑총채벌레차단효과흑색과백색의 0.2 mm 방충망을비교한결과, 흑색망에서는 100% 차단효과를, 백색에서는 87.8% 의차단효과를나타내어차단효과에서는흑색이백색보다높았다 (Fig. 5A, t = 5.36; P = 0.0007).
Exclusion Effects of Bemisia tabaci and Frankliniella occidentalis 51 3 종류의색상 ( 적, 흑및백색 ) 을가진 0.6 mm 방충망과 2 종류의색상 ( 흑색과백색 ) 을가진 0.8 mm 방충망처리에서는색상별차단효과가다르게나타났다. 0.6 mm 망에서는백색 (26.6%)< 흑색 (41.3%)< 적색 (51.0%) 순으로차단효과가높게나타난반면 (Fig. 5B, F = 3.50; df = 2; P = 0.0635), 0.8 mm 망에서는적색망이백색망대비약 1.3 배차단효과가높게나타났지만통계적유의차는없었다 (Fig. 5C, t = -1.79; P = 0.1302). 본연구를통하여백색과적색간의색상차이및 0.6, 0.8 mm 망처리효과를비교해보면, 꽃노랑총채벌레는방충망의색상차이를인지하는것으로여겨지며백색망보다는적색망이꽃노랑총채벌레방제에효과적인것으로조사되었다. 그러나인공광을사용하는식물공장과같은폐쇄형재배시스템보다는온실과같은반폐쇄형시설재배지등에서꽃노랑총채벌레를대상으로유입차단을위해서는 0.6 mm의적색방충망보다는 0.2 mm의흑색방충망을사용하는것이효과적인것으로판단된다. 고찰 시설내바이러스를매개하는담배가루이와꽃노랑총채벌레는연중발생하기때문에연속적이며효과적인방제방법이필요하다. 대부분의농가에서는주로식물추출물등의친환경자재나살충제를사용하는화학적방제가중심을이루고있다. 그러나살충제를지속적으로살포하는화학적방제는결과적으로살충제에대한저항성증가와함께해충의밀도를증가시키는결과를초래하고있다 (Helyer & Brobyn, 1992; Immaraju et al., 1992; Zhao et al., 1995). 또한친환경재배의한방법으로천적과점착트랩등을사용하고있으나, 천적사용은방제효율대비구입비용이문제가되며, 친환경자재인점착트랩의사용은설치와제거에노동력이소요되는등의문제점이거론되고있다. Brown과 Czosneck(2002) 은 TYLCV 매개충인담배가루이방제에대해병해충관리보다는원천차단이병충해해결방법이라고언급하였다. 병해충원천차단의한방법으로방충망을이용한담배가루이차단효과를폐쇄된실내에서조사하였다 (Oida et al., 2007). 0.4 mm 방충망을사용할경우 100% 차단은안되었지만방충망통과개체수가크게줄어들었고 0.3 mm 이하방충망에서는유입차단효과가매우높다고하였다. 또한온실포장실험을통해 0.4 mm와 0.35 mm 방충망을처리한결과, 가루이류발생수에차이가없음을확인하였고 0.4 mm 이하의방충망은차단효과가높다고하였다. 본연구에서는온실포장실험을진행하지않았지만폐쇄된실내실험을통해얻어진결과와유사하여 0.4 mm 방충망처리가담배가루이의폐쇄공간유입차단에효과적임을확인하였다. Matsuura 등 (2005) 은같은속 (congener) B. argentifolii를대상으로방충망을이용한실내및온실포장실험을진행한결과, 실내의완전차단을위해서는 0.4 mm 이하방충망의필요성과함께온실포장실험에서는 0.2~0.4 mm 망과 0.3 0.4 mm 망을사용하는것이차단율을 95% 이상으로향상시킬수있는효과적방법이라고하였다. 최근 Chung 등 (2013) 은담배가루이를대상으로망사규격별로통과실험을진행하였는데방충망크기가 54 mesh에서는개체가쉽게통과할수있었던반면, 직교로직조된 60 mesh부터 83 mesh까지의방충망은통과하지못하였으며유의성도없었다고하였다. Fujinaga 등 (2007) 은파총채벌레 (Thrips tabaci) 를대상으로꽃도라지 (Eustoma grandiflorum) 시설재배출입구에 0.6 mm 방충망을설치하여시설내파총채벌레수의현저한감소를보고하였으나본연구에서는통계적으로는유의하지않았지만차단율비교에서는 0.6 mm (24.3%) 보다 0.3 mm (35.8%) 과 0.8 mm 망 (34.2%) 이높게나타나파총채벌레와는상반된결과를나타내었다. 이러한결과는생물종간의특성때문에나타난결과로판단된다. 방충망의색상을달리하여시설외부에서내부로유입차단을위한연구가진행되었는데, Kuwabara 등 (2013) 은오이노지재배터널바깥쪽에 0.8 mm 적색 PE 방충망을설치한후점착트랩을이용하여담배가루이와오이총채벌레의유입차단효과를조사하였다. 담배가루이의경우적색망이 0.8 mm 백색망보다차단효과가높았지만 0.4 mm 낮았다고하였다. 오이총채벌레의경우적색망이 0.8 mm 백색망보다는차단효과가높았고, 0.4 mm 백색방충망과는차단효과가유사하였으며시설재배오이의온실포장시험에서도유사한결과를보여오이총채벌레에대한적색방충망의유입차단효과를증명하였다. 본연구에서도담배가루이와꽃노랑총채벌레를대상으로 0.6 및 0.8 mm 적색방충망을처리하여색상별차단효과를조사하였다. 0.8 mm 망에서는동일한크기의백색망보다도담배가루이의차단효과가다소높게나타난반면 0.6 mm 망에서는백색망이높게나타나상반된결과를보여주었다. 0.6과 0.8 mm의적색망은동일한크기의백색망보다꽃노랑총채벌레의차단효과가높게나타나 Kuwabara 등 (2013) 의결과와유사하였다. 흑색망처리에서는 0.2와 0.6 mm의백색망보다차단효과가높게나타나방충망색상에따라꽃노랑총채벌레유입차단반응이있음을보여주었다. 본연구에서는 0.2 mm의적색망과 0.4 mm의흑색, 적색망및 0.8 mm 의흑색망을확보하지못해비교실험을진행하지못했지만방충망크기와색상간의상관관계를고려하여차단효과를추정해보면망크기가커지더라도적색과흑색의색상간에는차이가없을것으로판단된다. 또한색상차이로인한온실내차광을생각한다면흑색보다는적색이농작물의생육에유리할것으로추측되지만토마토온실재배포장에서의비교실험이필요하다고생각된다. 오이총채벌레의전기망막전도 (ERG, electroretinography) 측정결과에따르면성충은적색을인식하는것으로알려져있는데 (Murai, personal communication), 적색망이오이총채벌레의어떤행동에영향을끼쳐차단효과향상으로이어지는지그기작구명을위한연구가필요하다. 꽃노랑총채
52 Jung et al. 벌레의적색과흑색에대한유입차단효과또한오이총채벌레에서보고된사례와유사할것으로추측된다. 색상에대한가루이류와총채벌레류의반응과관련하여가장쉽게판단할수있는방법은현재시설재배농가에서많이사용하고있는황색과청색의점착트랩이며, 발광다이오드 (LED, Light- Emitting Diode) 또한해충방제를위한광반응연구에이용되고있다. Kim 등 (2012) 의보고에따르면흑색 LED 처리가담배가루이유인에효과적이었고그다음으로청색, 황색및녹색광이라고하였다. 온실가루이에대해서 Jeon 등 (2014) 은청색광이가장효과적이었으며그다음으로녹색, 백색, 적색, 자외선및황색광순으로다양한반응을나타내었다. 꽃노랑총채벌레의반응에대해서 Yang 등 (2015) 은녹색광이효과적이고그다음으로청색, 적색및백색광순이었다고하였다. 한편오이총채벌레는 470 nm의청색광과반사점착판을같이사용했을때유인율이높다고하였다 (Nakamura et al., 2014). Kuwabara 등 (2013) 은 0.4 mm 적색망이설치된온실내부가고온이되지않기때문에오이생육에영향이적다고하였지만, Chung 등 (2013) 은극세사의방충망을온실에설치할경우온실내부온도의상승과함께환기불량으로높은습도가유지되며이러한환경조건에서는병발생의위험이높고차광의부작용을초래할수있다고하였다. 또한온실내부온도분포에영향을주는다양한환경조건에대한반복적인실험이필요하다고요구하였다. 이러한문제점을해결하기위해서는온실내부공기유동과온도분포등의자료를이용하여환경조건의변화를모의추정하는컴퓨터및전산유체역학 (Computational Fluid Dynamics, CFD) 의기술이필요하다 (Bailey et al., 2003; Fatnassi et al., 2013). 이러한 CFD 기술의활용은방충망설치가온실내온도상승및습도에미치는영향을알수있을것으로판단된다. 측창을열어작물을재배하는개방된시설재배지와작물의생육에필요한환경조건의조절이가능한유리온실이나식물공장 ( 스마트팜 ) 처럼환경이조절된폐쇄공간내에서작물을재배할경우염려되는담배가루이와꽃노랑총채벌레의발생은생물적또는화학적방제이외에 0.4 mm의백색망충망과 0.2 mm의흑색방충망사용하여효과적으로방제할수있을것으로생각된다. 요약 주요온실해충인담배가루이와꽃노랑총채벌레를대상으로크기가다른백색의여섯가지의방충망 (0.2, 0.3, 0.4, 0.6, 0.8 mm과 TW30) 과세종류의색상 ( 흑, 백, 적 ) 을가지고차단율을조사하였다. 담배가루이와꽃노랑총채벌레는 0.2 mm 방충망에서는각각 100% 와 86% 의높은차단효과를보였다. 그러나 0.3 및 0.4 mm 망에서담배가루이는 96% 이상의높은차단율을보인반면꽃노랑총채벌레는 40% 미만의낮은차단효과를나타냈다. 담배가루이에대한 0.6와 0.8 mm의백색과적색망의색상별차단효과를조사한결과 0.6 mm 망 에서는백색이, 0.8 mm 망에서는적색이우수하였지만큰차이는보이지않았다. 꽃노랑총채벌레에대한 0.2 mm 백색과흑색망에서는백색보다흑색에서 100% 의완벽한차단효과를나타낸반면, 0.6과 0.8 mm의흑, 백, 적또는백, 적의반응에서백색보다는적색의차단효과가높았다. 공기순환과경제성측면에서생각해보면담배가루이방제에는 0.4 mm 백색방충망을, 꽃노랑총채벌레방제에는 0.2 mm의흑색방충망을사용하는것이효과적이다. Acknowledgment This work was supported by a grant from the Agenda Program (PJ011416), Rural Development Administration, Republic of Korea. We authors thank to two representatives, Kwon, S. Y.(Sungjae MH TEC Co., Ltd.) and Kim, J. W.(Textmoa Co., Ltd.) for supply of insect screens nets, respectively. References Bailey, B. J., Montero, J. I., Parra, J. P., Robertson, A. P., Baeza, E., & Kamaruddin, R. (2003). Airflow resistance of greenhouse ventilators with and without insect screens. Biosystems Engineering, 86(2), 217-229. Baker, J. R., & Jones, R. K. (1989). Screening as part of insect and disease management in the greenhouse. North Carolina Flower Growers' Bulletin, 34, 1-9. Bedford, I. D., Briddon, R. W., Brown, J. K., Rosell, R. C., & Markham, P. G. (1994). Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 125(2), 311-325. Berlinger, M. J., Gol berg, A. M., Dahan, R., & Cohen, S. (1983). The use of plastic covering to prevent the spread of Tomato Yellow Leaf Curl Virus in greenhouses. Hassadeh, 63, 1862-1865. Brown, J. K., & Czosnek, H. (2002). Whitefly transmission of plant viruses. Advances in Botanical Research, 36, 65 100. Brown, J. K., Frohlich, D. R., & Rosell, R. C. (1995). The sweet potato or silverflies biotypes of Bemisia tabaci or a species complex. Annual Review of Entomology, 40(1), 511-534. Chung, B. K., Lee, H. S., & Kim, Y. B. (2013). Establishment of 60 mesh nets to reduce crop loss by Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) in tomato greenhouse Korean Journal of Applied Entomology, 52(1), 23-27. Chung, B. K., Kang, S. W., & Kwon, J. H. (2000).
Exclusion Effects of Bemisia tabaci and Frankliniella occidentalis 53 Chemical control system of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse eggplant. Journal of Asia-Pacific Entomology, 3(1), 1-9. Duffus, J. E., Liu, H. Y., & Wisler, G. C. (1996). Tomato infectious chlorosis virus A new clostero-like virus transmitted by Trialeurodes vaporariorum. European Journal of Plant Pathology, 102(3), 219-226. Fatnassi, H., Boulard, T., & Bouirden, L. (2013). Development, validation and use of a dynamic model for simulate the climate conditions in a large scale greenhouse equipped with insect-proof nets. Computers and Electronics and Agriculture, 98, 54-61. Fujinaga, M., Furuhata, S., Yoneyama, C., Miyamoto, K., Miyasaka, M., & Ogiso, H. (2007). Seasonal prevalence of Iris Yellow Spot Virus viruliferous Thrips tabaci on sticky blue sheets beside an onion field and the effect of insect-proof nets in preventing invasion. Annual Report of the Kanto-Tosan Plant Protection Society, 54, 89-92. Gerin, C., & Hance, T. (1993). Evaluation of the damage caused by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on the host plant. Influence of the predation by Amblyseius cucumeris (Oudemans) (Acari: Phytoseidae). Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 58, 409-425. Greathead, A. H. (1986). Bemisia tabaci - a literature survey on the cotton whitefly with an annotated bibliography (ed. Cock, M. J. W.), pp. 17-25. CAB International Institute of Biological Control, Ascot, UK. Groves, R. L., Sorenson, C. E., Walgenbach, J. F., & Kennedy, C. G. (2001). Effects of imidacloprid on transmission of tomato spotted wilt tospovirus to pepper, tomato and tobacco by Frankliniella fusca Hinds (Thysanoptera: Thripidae). Crop Protection, 20(5), 439-445 Helyer, N. L., & Brobyn, P. L. (1992). Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Annals of Applied Biology, 121(2), 219-231. Higgins, C. J., & Myers, J. H. (1992). Sex ratio patterns and population dynamics of western flower thrips (Thysanoptera: Thripidae). Environmental Entomology, 21(2), 322-330. Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216-225. Immaraju, J. A, Paine, T. D., Bethke, J. A., Robb, K. L., & Newman, J. P. (1992). Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouse. Journal of Economic Entomology, 85, 9-14. Jeon, J. H., Kim, M. G., & Lee, H. S. (2014). Phototactic behavior 4: attractive effects of Trialeurodes vaporariorum adults to light-emitting diodes under laboratory conditions. Journal of the Korean Society for Applied Biological Chemistry, 57(2), 197-200. Kim, M. G., Yang, J. Y., Chung, N. H., & Lee, H. S. (2012). Photo-response of tobacco whitefly, Bemisia tabaci gennadius (Hemiptera: Aleyrodidae), to lightemitting diodes. Journal of the Korean Society for Applied Biological Chemistry, 55(4), 567-569. Kuwabara, K., Takahashi, M., & Tadenuma, M. (2013). Effect of red thin thread screen for control of Thrips palmi and Bemisia tabaci in greenhouses cultivated cucumber. Annual Report of the Kanto-Tosan Plant Protection Society, 60, 107-109. Nakamura, Y., Shibao, M., Tanaka, H., & Yano, E. (2014). Timing of the attraction of melon thrips, Thrips palmi (Thysanoptera: Thripidae), to reflective-type traps combined with blue sticky board and a blue LED array. Japanese Journal of Applied Entomology and Zoology, 58(4), 313 318. Navas, S. E., Funderburk, J. E., Beshear, R. J., Olson, S. M., & Mack, T. P. (1991). Seasonal patterns of Frankliniella spp.(thysanoptera: Thripidae) in tomato flowers. Journal of Economic Entomology, 84(6), 1818-1822. Nava, S. E., Funderburk, J. E., Mack, T. P., Beshear, R. J., & Olson, S. M. (1994). Aggregation indices and sample size curves for binomial sampling of flower-inhabiting Frankliniella species (Thysanoptera: Thripidae) on tomato. Journal of economic entomology, 87(6), 1622-1626. Neal, K. (1992). Screen pests out, reduce chemical use. Greenhouse Manager, 10(12), 54-55. Matsuura, A., Tamura, M., & Shima, S. (2005). Relationship between mesh size of insect-proof nets and invasion prevention effect for the silverleaf whitefly. Kyushu Plant Protection Research, 51, 64-68. Oida, H., Tsugane, T., Kubo, C., Kusakawa, T., Shimizu, K., Nonomiya H., Kazato, N., & Nakadai, K. (2007). Distribution, seasonal occurrence and physical control of sweet potato whitefly Bemisia tabaci (Homoptera: Aleyrodidae) Q-biotype and Chiba prefecture. Annual Report of the Kanto-Tosan Plant Protection Society, 54, 143-150.
54 Jung et al. Park J. A., Hemayet Jahan, S. M., Song, W. G., Lee, H. J., Lee, Y. S., Choi, H. S., Lee, K. S., Kim, C. S., Lee, S. C., & Lee. K. Y. (2012). Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. Journal of Asia-Pacific Entomology, 15(1), 186-191. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C. Schmidt, M. E., & Frey, J. E. (1995). Monitoring of the western flower thrips Frankliniella occidentalis in greenhouse, Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 60, 847-850. Teitel, M. (2007). The effect of screened openings on greenhouse microclimate. Agricultural and Forest Meteorology, 143(3), 159-175. Yang, J. Y., Sung, B. K., & Lee, H. S. (2015). Phototactic behavior 8: phototactic behavioral responses of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), to light-emitting diodes. Journal of the Korean Society for Applied Biological Chemistry, 58(3), 359-363. Zhao, J. Y., Liu, W., Brown, J. M., & Knowles, C. O. (1995). Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 88(5), 1164 1170.