10(3)-14.fm

Similar documents
10(3)-09.fm

10(3)-12.fm

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

14.531~539(08-037).fm

304.fm

12(2)-04.fm

DBPIA-NURIMEDIA

< DC1A4C3A5B5BFC7E22E666D>

10(3)-10.fm

605.fm

10(3)-02.fm

untitled

14.fm

82-01.fm

10(1)-08.fm

50(1)-09.fm

16(1)-3(국문)(p.40-45).fm

12.077~081(A12_이종국).fm

38(6)-01.fm

9(3)-4(p ).fm

19(1) 02.fm

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

69-1(p.1-27).fm

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

12(3) 10.fm

untitled

07.051~058(345).fm

15.101~109(174-하천방재).fm

50(5)-07.fm

fm

<30332DB9E8B0E6BCAE2E666D>


12(4) 10.fm

11(1)-15.fm

10 (10.1) (10.2),,

14(2) 02.fm

11(5)-12(09-10)p fm

82.fm

DBPIA-NURIMEDIA

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

18(3)-10(33).fm

49(6)-06.fm

3.fm

25(6)-12(조윤아).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

15(2)-07.fm

( )-83.fm

26(3D)-17.fm

93-09.fm

16(5)-03(56).fm

8(2)-4(p ).fm

07.045~051(D04_신상욱).fm

16(2)-7(p ).fm

04.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

16(4)-05.fm

17(3)-00(282).fm

51(4)-13.fm

93.fm

18211.fm

년AQM보고서_Capss2Smoke-자체.hwp

27(5A)-07(5806).fm

<312D303128C1B6BAB4BFC1292E666D>

fm

09구자용(489~500)

03-ÀÌÁ¦Çö

fm

41(6)-09(김창일).fm

06김용표(59~74)ok


( )-122.fm

Lumbar spine

(2)-02(최경자).fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

04김호걸(39~50)ok

17.393~400(11-033).fm

16(5)-06(58).fm

14(4)-14(심고문2).fm

14(4) 09.fm

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

17(2)-00(268).fm

32(4B)-04(7455).fm

인문사회과학기술융합학회

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

82-08.fm

10.123~130.fm

29(4)-07(김봉채).fm

Microsoft Word - Report_합본__도시광산.doc

10.063~070(B04_윤성식).fm

<30312DC0CCC7E2B9FC2E666D>

012임수진

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

82-02.fm

26(1)-11(김기준).fm

Microsoft Word - KSR2012A038.doc

???? 1

416.fm

DBPIA-NURIMEDIA

Transcription:

w y wz 10«3y 293~303 (2010.12.) Journal of Korean Society of Urban Environment yw p w Á½ y*á **Á½ y***áy x****á½ * y w»z»»y Á* w y œw Á** w y w ***w HOYA ( )Á**** w m (2010 11 25, 2010 12 17 k) A Study on The Chemical Mass Composition of Particle Matter in Seoul Jin-Soo Park ½ Chang-Hwan Kim* ½ Jeong-Joo Lee** ½ Jin-Ho Kim*** Ui-Hyun Hwang**** ½ Shin-Do Kim* Climate and Air Quality Research Department Air Quality Research Division, National Institute of Environmental Research *Department of Environmental Engineering, University of Seoul **Department of Occupational and Environmental Health, Yongin University ***HOYA Electronics Korea Co., LTD. ****Department of Civil Engineering, Gyeongdo Provincial College (Received 25 November 2010 : Accepted 17 December 2010) Abstract Particulate matter is a cause for concern because of its impact on visibility and human health in the world. It is needed to know about construction of particulate matter and to make a policy of reducing particulate matter, to solve the bad effect of particulate matter. In this study, try to define chemical composition of particulate matter of seoul with sampling and chemical analysis. But big portion about 30~40% of gravimetric mass are remained unknown. By way of construction the unknown portion, checking the error of analyzing process and a factor of effect. First, a factor of limit of analysis instrument Second, a factor of uncertainty from estimation of soil materials Third, a factors of uncertainty from estimation of ion fraction Fourth, a factor of conversion organic carbon to organic matter Fifth, a factor of retention of water on conditioned filter. Through checking the five factors as shown as upside, find to way to solve the gaps in gravimetric-measured mass and chemical mass. In this way, result of this study can be more closure to two other Mass. For the reconstruction of PM, concern about five factors show the analytical improve approximately 29%, 19% more chemical mass compared using the chemical analysis. Key Words : particulate matter, chemical composition, gravimetric mass, chemical mass, PM 10, PM 2.5 w jš w ƒ wš. w» w w yw w wš k p q w z w w. d yw mw y w. w yw mw 30~40% yw mw w. w yw w w ƒ y mw yw yw w y w.»» w w, m sƒ y, w sƒ y,»k», w vl w y w. w y w w š mw» yw mw w w ƒ w ƒ w. w 5ƒ w w ƒ w w w w PM 10 PM 2.5 29%, 19%» yw y. :, PM 10, PM 2.5,,, yw Corresponding author E-mail : sdkim@uos.ac.kr 293

294 Á½ yá Á½ yáy xá½ I. w 20»»,» š w ƒ», 50 l»» š, 70 y.» w ƒ š w wš» w w. w ƒ w š l w l w w» w w sƒ w.» yw š, ƒ.» w yw j,, k, w yw w y wš. w w yw,, k yw w ü ³ w» w w wwš.» d y q w» w s yw w ƒ w w 1,2,3). ù ü w ù w» yw yw sƒw»ƒ.,» w,, k w yw ³ w wš yw w wš w. 1. d» II. x w p» w w. d ew w w œ x ww, d w š d w œ ù š ƒ. d 2002 8 5 l 2005 4 28 ¾ 4» e Table 1. Period of Sampling Season Period Days Summer 2002. 8. 5. ~ 8. 21. 17 Autumn 2002. 10. 20. ~ 10. 27. 8 Winter 2003. 1. 10. ~ 1. 23. 14 Summer 2003. 6. 6. ~ 6. 13. 8 Winter 2004. 1. 5. ~ 1. 16. 12 Spring 2004. 4. 13. ~ 4. 23. 11 Summer 2004. 7. 20. ~ 8. 3. 15 Winter 2005. 1. 11. ~ 1. 31. 21 Spring 2005. 4. 9. ~ 4. 28. 20 Total 126 w 2z, 3z, ƒ 1z, 3z 126 d w. d» d Table 1. 2. d PM 10 PM 2.5 (Metal), (Ion), k (Carbon) w» w j 47 mm vl w vlq(filter Pack) w s w. PM 10 PM2.5 j w s wš w š, yw» w t lv v lq lv gq j w yw s w. PM 10 PM 2.5 16.7 l/min z ƒ t w, Áz w z k r w» w z w. d yw q w (Dwyer ) (Shinagawa ) w z ƒ 16.7 lpm w 3 w. ƒ w lv vl(teflon Filter) w (Gravitational Mass), d w š, vl(qualtz Filter) w k w. d lv vl s w» 24 w»(25 o C, 35% RH) w conditioningw z j w d d» wš x s w w. s z vl w» 24 w conditioning w z d z

yw p w 295 Fig. 1. Seasonal variation of PM 10 and PM 2.5. (gravimetric mass) d w. d ó ù z lv vl ICP/MS IC w e z w. k d w» w, j l w š vl vl(qualtz Filter) w. vl 900 C o 2 w z j qp q v, Ÿ w z, 3 C o þ š w. wv (ICP) w ICP-MS(Thermo Jarrell Ash, Model IRIS-DUO) EPA Method 3051A j q w e(cem microwave digestion system, Model MARS- 5) w e z 20 (Al, Fe, Ca, Mg, Na, K, S, Ti, Mn, Ba, Sr, Zn, V, Cr, Pb, Cu, Ni, Co, Mo, Cd) w w. Ion Chromatography(Dionex 100) w 5 (Na +, NH 4 +, K +, Mg 2+, Ca ) 2+ 3 (Cl, NO 3, SO 2 4 ) ƒƒ w. k Ÿw n (Thermal- Optical Transmission: TOT) NIOSH(National Institute for Occupational Safety and Health) Method 5040 Parameter w OC/EC Analyzer w OC EC w. 1. p III. š Fig. 1 ƒƒ PM 10 PM 2.5 w d» s s ùkü tx m / s³. d» PM 10 PM 2.5 w w Fig. 2. Gravitational Mass Ratio of PM 10 and PM 2.5. ùkü PM 10 ƒ j ùk û, s > >ƒ > ùkû. j» ƒ ƒ û, û PM 10 PM 2.5 p y» w w z (Wash out)» q. Fig. 2 d l w z ùkü. PM 2.5, z PM 10 ùkü v 1:1 z xz [PM 2.5 ]=0.31[PM 10 ] + 13.5 š 2 R 0.52 ùkû.»» ƒ 1 ƒ¾ PM 10 PM 2.5 w. l»» 0.31 PM 2.5 PM 10 s³ 30% wš ù kû. Fig. 3 PM 10 PM 2.5 w s³ ùkü. PM 10 ƒ ƒ ùkü S 1 d» s³ 1.1357 µg/

296 Á½ yá Á½ yáy xá½ Fig. 3. Metal Fraction of PM 10 and PM 2.5. Fig. 4. Ion Fraction of PM 10 and PM 2.5. m 3, 2 d» s³ 1.5571 µg/m 3, 3 d» s ³ 3.4567 µg/m 3, 4 d» s³ 1.4019 µg/m 3, 5 d» s³ 2.0176 µg/m 3, 6 d» s³ 2.9113 µg/m 3, 7 d» s³ 1.4993 µg/m 3, 8 d» s³ 3 1.3982 µg/m 3, 9 d» s³ 2.2908 µg/m ùkû. PM 2.5 S ƒ ùkû. 1 d» s³ 0.5152 µg/m 3, 2 d» s³ 0.9265 µg/m 3, 3 d» s³ 1.1015 µg/m 3, 4 d» s³ 1.0457 µg/m 3, 5 d» s³ 0.9555 µg/m 3, 6 d» s³ 1.6602 µg/m 3, 7 d» s³ 0.5537 µg/m 3, 8 d» s³ 3 1.2829 µg/m 3, 9 d» s³ 1.6424 µg/m w yw w ùkû. ƒ d» S w r PM 10 Fe, Ca, Al, K, Na, Mg, Zn w š, PM 2.5 w w. Fig. 4 PM 10 PM 2.5 w s³ ùkü. NO 3, SO 4 2 ƒ, NH 4 +ƒ ùkû. s r PM 10 2 PM 2.5 w SO 4 >NO 3 >Cl >Ca 2+ ùkû. w s w w w w w š q. d» PM 10 PM 2.5 y y j y w ƒ š, PM 10 PM 2.5 š wš p PM 2.5 w w q w. Fig. 5 mw ù w, ³x r. PM 10 [Cation] = 0.915[Anion], w wš ùkû. PM 2.5 [Cation] = 0.911[Anion], PM 10 w wš ùkû.»

yw p w 297 Fig. 5. Equivalent Ratio of Ion Fraction in PM 10 and PM 2.5. Fig. 6. Carbon fraction and ratio of OC/EC in PM 10 and PM 2.5., ³x ùkù w š (H ) w w» + ƒ» k w ww»» š w ùkù yw š. OC/EC Analyzer w k EC OC Fig. 6 ùkü.» k»» w w w» w w.»k (Elemental Carbon)» w. k PM 10 PM 2.5 w. w, y w q w» w PM 10 PM 2.5»k»k ùkü.»k ù w, m w,»k t y w. PM 10 OC/EC 1.29, PM 2.5 1.14 ùkù PM 10 w w ùkû. 2. yw ICP/MS w w(total Metal), IC w w(total Ion), OC/EC Analyzer w k

298 Á½ yá Á½ yáy xá½ Table 2. Chemical Mass of PM 10 Conc (µg/m 3 ) TM (µg/m 3 ) TI (µg/m 3 ) TC (µg/m 3 ) Unknown (µg/m 3 ) 1st 37.2863 3.6369 10.9075 3.9051 18.8368 2nd 50.2019 4.7922 12.1661 16.7470 16.4967 3th 107.4925 9.9131 38.7035 11.0925 47.7834 4th 64.4000 3.8835 24.1851 7.7723 28.5590 5th 77.9673 8.9379 27.0386 14.5070 27.4837 6th 104.7175 13.0148 30.0120 15.8738 45.8169 7th 38.6444 4.0647 18.0341 6.5580 9.9877 8th 64.1379 4.3580 24.9157 19.8812 14.9830 9th 103.4529 10.2811 26.4623 11.3107 55.3988 Table 3. Chemical Mass of PM 2.5 Conc (µg/m 3 ) TM(µg/m 3 ) TI(µg/m 3 ) TC(µg/m 3 ) Unknown (µg/m 3 ) 1st 21.2558728 1.14129506 4.5840 3.3590 12.1717 2nd 41.4815096 2.01704602 10.7147 11.0982 17.6515 3th 42.6570979 3.56953276 16.5403 9.2960 13.2512 4th 35.6500000 2.38579893 14.7300 6.3105 12.2237 5th 45.507255 2.50653408 18.4456 9.3309 15.2241 6th 38.9987981 4.31863572 16.9354 8.1475 9.5973 7th 22.6136186 1.31377292 10.8151 4.8206 5.6641 8th 41.4213868 2.71267607 18.9878 15.7587 3.9622 9th 40.5536167 3.8713022 15.3906 8.5103 12.7814 Fig. 7. Gravitational Mass vs Chemical Mass. w(total Carbon) ww yw (Chemical Mass) wš (Gravitational Mass) y w. Table 2 Table 3 d» PM 10 PM 2.5 yw ùkü, Fig. 7 ƒ w ùkü. PM 10 (Total Metal) w 10%, (Total Ion) 31%, k 18% yw mw w w unknown 41% w. PM 2.5 w 7%, 36%, k 24% 33%ƒ yw w w ùkû.

yw p w 299 Table 4. Internal and external Concentration of Si and Al in PM 10 Area PM 10 (µg/m 3 ) Si (µg/m 3 ) Al (µg/m 3 ) Si/Al Burbank (87/09) 72.3 2.19 0.83 2.64 Down town LA 67.4 2.04 0.76 2.68 Hawthorne 45.9 1.29 0.49 2.63 Long Beach 46.1 1.81 0.71 2.55 Anaheim 51.3 1.92 0.70 2.74 Rubidoux 120.6 5.29 2.12 2.50 san Nicolas 17.4 0.34 0.13 2.62 Azusa 92.1 5.72 2.27 2.52 Riverside 112.0 5.06 2.01 2.52 Phoenix 68.7 7.86 2.82 2.79 frensno 76.9 1.63 0.57 2.86 Corcoran CA 121.0 17.71 6.14 2.88 Mexicali CA 130.8 20.65 7.07 2.92 Table 5. Internal and external Concentration of Si and Al in PM 2.5 Area PM 2.5 (µg/m 3 ) Si (µg/m 3 ) Al (µg/m 3 ) Si/Al Bakersfield (95/12) 48.9 0.13 0.04 3.25 Frensno 64.6 0.09 0.03 3.00 Burbank (87/6) 42.6 0.05 0.03 1.67 Rubidoux 63.9 0.29 0.13 2.23 Long beach 72.7 0.32 0.14 2.29 Anaheim 83.5 0.43 0.17 2.53 Cheongju (95~96) Seoul (01~02) Autumn 43.6 0.35 0.16 2.19 Winter 44.1 0.32 0.22 1.45 Spring 45.9 0.60 0.24 2.50 Summer 43.1 0.13 0.09 1.44 Spring 48.8 2.85 1.10 2.59 Summer 22.9 0.38 0.18 2.11 Autumn 72.5 1.14 0.43 2.65 Winter 51.6 1.21 0.47 2.57 3. yw w 3.1. 3.1.1.»» w (Lost Metal)»» ICP/MS w m w. w m sƒw l w w w ƒ. m w w Siƒ ICP/MS w y» 3). Si SiO 2ù AlSi xk w, p Al ƒ. ü d (PM 10, PM 2.5 ) w Si w. Table 4, Table 5, ü d Si Al w. d ù»

300 Á½ yá Á½ yáy xá½ Fig. 8. Correlation of Si and Al in PM 10 and PM 2.5. ùkü ù Si/Al w š 2.1~2.9 ü w ùkü š. Al Si w, Fig. 8 ùkü w, j w ùkü š w ùkü. w d Al w Si w. PM 10, Al Si y ql(conversion Factor Al to Si in PM 10 ) Fig. 7 2.8428 w š, PM 2.5 Al Si y ql 2.5364 w. Si = 2.8428 Al (PM 10 ) Si = 2.5364 Al (PM 2.5 ) 3.1.2. m sƒ y (Soil Metal) m sƒw ƒ y w(sum of the oxides method) w 2). y w w w ƒ y xk š ƒ wš w x k w. m y x k wš y w š, m y w. mw m Si, Al, Fe, Mg, Ca, Na, K w y w (Sum of the oxides method) w. y w w m SiO 2, Al 2 O 3, Fe 2 O 3, MgO, CaO, Na 2 O, K 2 O w ƒ wš ƒ w wì w. w ƒ w ƒ w. ƒ s³ e 0.86 ù w. Soil = (2.14Si +1.89Al +1.43Fe +1.66Mg +1.4Ca + 1.35Na +1.20K) / 0.86 3.2. 3.2.1. sƒ y SO 4 2 xk H 2 SO 4, NH 4 HSO 4, (NH 4 ) 3 (SO 4, (NH 4 SO 4 ƒ xk ù (NH 4 SO 4 wxk w yw SO 4 2 (NH 4 SO 4 w, NO 3 yw mw NH 4 NO 3 w» w w. 2NH 4 (g)+so 4 2 (g) (NH 4 SO 4 NH 4 (g)+no 3 (g) NH 4 NO 3 d Sulfate Ammonium Sulfate w» w S (Moler Ratio) 1.375 yql w, Nitrate w Ammonium Nitrateƒ Ammonium Nitrate w ƒ w S w 1.29 yql w w. (NH 4 SO 4 = 1.375 SO 4 2 ~ 1.375 is Molar Ratio (NH 4 NO 3 =1.29 NO 3 ~ 1.29 is Molar Ratio 3.2.2. w vl (Particle bound water) Ammonium Sulfate Ammonium Nitrate», d Sulfate Nitrate Mass

yw p w 301 sw. sƒw» w w w (Particle Bound Water-PBW) sƒƒ v w. d Aerosol Inorganic Model (AIM) 4) w sƒw.» ammonium sulfate sodium chloride w» w.» š w. nitric acid ammonia e { w ƒ k wš. w yw š,» k y z» lifetime d w š,, w». AIM w» l sx k H + NH 4 + Na + SO4 2 NO 3 Cl H2 O w ƒ yw w w w wš ù Wexler w w mw w 5). [Water] = ( 0.002618) + (0.980314*NH 4 +)+( 0.260011 *NO 3 )+( 0.000784*SO 2 4 )+( 0.159452* + (NH 4 )+( 0.356957*NO 3 *NH 4 +) + (0.153894* (NO 3 ) + (0.212891*SO 2 4 *NH 4 +) + (0.044366* SO 2 4 *NO 3 )+( 0.048352*(SO 2 4 ) NH 4 + = amount associated with nitrate and sulfate, NO 3 = amount associated with ammonium 3.3. k 3.3.1.»»k y (OC to OM) k y» 2 Ÿyw xk š,»k» w w» x w. w» p w yw sƒ w», Ÿw mw yw»/» k sƒw. ù,»k (organic carbon) ù, ww xk w» w»k» sƒw sƒ.,»k» w» w w š. White Robert CHON» w ƒ w k k 1.3~1.39 ƒ» w 6), Grosjean Friedlander k s³ w 1.4 ql w 7). z Van Cauwenberghe 8), Countess 9), Japar 10), Turpin 11) w» w» w ƒ. Turpin w» w k w urban»k» y q l 1.6 ± 2, Non-urban 2.1 ± 0.2 w 11), ƒ y k p w» yql 1.6 w» y w. OM =1.6 OC 4. yw yw (Chemical Mass) (Gravitational Mass) Unknown w w» w w w sƒ y w w w š, d w w. ICP/MS mw ³ (Si) Al w w š m xk y w w y w w. sulfate, Nitrate, Ammonium w Ammonia w š e wwš ( w ) w mw w w.»k»» k» ƒ w y w y wš w»k w dw» w. Fig. 9 yw ùkü, mw PM 10 41% yw ƒ w w» ww yw ƒ š w yw 88%ƒ w ƒ w y w. PM 2.5 yw mw 67% w š 33%ƒ y û ƒ w 86%ƒ w ƒ w.

302 Á½ yá Á½ yáy xá½ Fig. 9. Reconstruction Chemical Mass. IV. y wš ƒwš w w w» w p v wš wš ³ v w. w d yw ww ù w û. w» w yw ³ w. w d yw mw,, k w w. w PM 10 41% PM 2.5 33%» w yw mw w. w m mw y w,, k w ƒ w w. w 5ƒ w w ƒ w w w w PM 10 88%, PM 2.5 86%» yw y. mw ƒ l w yw yw w ƒ w, z w w z d k ƒ w. wz k,, k w mw yw yw p w ƒ w w. References 1. J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, 1993, The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies, Atmospheric Environment, 27A(8), 1185-1201. 2. E. Andrews, P. Saxena, S. Musarra, L. M. Hildemann, P. Koutrakis, P. H. McMurry, I. Olmez, and W. H. White, 2000, Concentration and composition of atmospheric aerosols from the 1995 SEAVS experiment and a review of the closure between chemical and gravimetric measurements, J. Air Waste Manage., 50, 648-664. 3. S. L. Rees, A. L. Robinson, A. Khlystov, C. O. Stanier, and S. N. Pandis, 2004, Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania, Atmospheric Environment, 38, 3305-3318. 4. S. L. Clegg, P. Brimblecombe, and A. S. Wexler, 1998n, A thermodynamic model of the system H+- NH4+ Na+ SO42 NO3 Cl H2O at 298.15 K, J. of Phys. Chem., 102A, 2155-2171. 5. A. S. Wexler and Z. Ge, 1998, Hydrophobic particles can activate at lower relative humidity than slightly hygroscopic ones: a Kohler theory incorporating surface fixed charge, J. Geophy. Res., 103, 6083-6088. 6. W. H. White and P. T. Roberts, 1977, On the nature and origins of visibility-reducing aerosols in the Los

yw p w 303 Angeles air basin, Atmospheric Environment, 11, 803-812. 7. D. Grosjean and S. K. Friedlander, 1975, Gasparticle distribution factors for organic and other pollutants in the Los Angeles atmosphere, J. Air Pollution Control Assoc., 25, 1038-1044. 8. L. Van Vaeck, and K. Van Cauwenberghe, 1978, Cascade impactor measurements of the size distribution of the major classes of organic pollutants in atmospheric particulate matter, Atmospheric Environment, 12, 2239. 9. R. J. Countess, G. T. Wolff and S. H. Cadle, 1980, The Denver winter aerosol: A comprehensive chemical characterization, J. Air Pollution Control Assoc., 30, 1194-1200. 10. S. M. Japar, A. C. Szkarlat, R. A. Gorse, Jr. E. K. Heyerdahl, R. L. Johnson, J. A. Rau and J. J. Huntzicker, 1984, Comparison of solvent extraction and thermal optical carbon analysis methods: Application to diesel vehicle exhaust aerosol, Environ. Sci. Techonol., 18, 231-234. 11. Turpin, J. Barbara and H. J. Lim, 2001, Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 35, 602-610.