THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 28(1), IS

<313920C0CCB1E2BFF82E687770>

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

14.531~539(08-037).fm

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

03 장태헌.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Slide 1

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

,, RFID,. ITU-R [7], IoT (Internet of Thing), (ultra reliable) (low latency). IoT ( ) , [1]., [8] 10 IoT.,. Ofcom [10] IoT/M2M, (utilities),,

DBPIA-NURIMEDIA

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

10(3)-09.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

11 함범철.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

Æ÷Àå½Ã¼³94š

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

DBPIA-NURIMEDIA

04 박영주.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 25(1), IS

03-ÀÌÁ¦Çö

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

08김현휘_ok.hwp

제 3 편

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

05 목차(페이지 1,2).hwp

디지털포렌식학회 논문양식

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

00내지1번2번

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

No

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 2, Feb ,., LTE,. MCL (MCL [3], E-MCL [4], A-MCL [5] ) [

DBPIA-NURIMEDIA

10 이지훈KICS hwp

04김호걸(39~50)ok

Microsoft PowerPoint ppt

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

大学4年生の正社員内定要因に関する実証分析

,.. 2, , 3.. 본론 2-1 가상잡음신호원생성원리, [8].,. 1.,,. 4 km (13.3 μs).,. 2 (PN code: Pseudo Noise co- 그림 2. Fig. 2. Pseudo noise code. de). (LFSR: Line

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 29(3),


<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

07 김상수.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 26(2),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 24(1), IS

°í¼®ÁÖ Ãâ·Â

???? 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

*금안 도비라및목차1~9

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

Microsoft Word - KSR2016S168

PCN News

*금안14(10)01-도비라및목차1~12

±è¼ºÃ¶ Ãâ·Â-1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

09È«¼®¿µ 5~152s

04_이근원_21~27.hwp

Transcription:

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 207 Mar.; 28(3), 7785. http://dx.doi.org/0.555/kjkiees.207.28.3.77 ISSN 226-333 (Print)ISSN 2288-226X (Online) Performance Comparison and Its Verification of Spectrum Sharing Technologies Using Interference Load Concept 이상준 엄중선 윤현구 장병준 Sangjoon LeeJungsun Um*Hyungoo Yoon**Byung-Jun Jang 요약., (FH: Frequency Hopping), (DC: Duty Cycle),.. 2.4 GHz.,, FH DC,., 0 FH 0 % DC. Abstract In this paper, we proposed a concept of interference load to analyze the performance of spectrum sharing technologies in unlicensed frequency bands. The interference load can quantitatively compare the technical properties of various spectrum sharing technologies, such as frequency hopping(fh), duty cycle(dc), listen-before-talk(lbt). Therefore, it can help to evaluate whether a local regulation about spectrum sharing is reasonably established or not. In order to verify the suggested concept, we applied it to 2.4 GHz frequency bands. Also, we demonstrated a real-time test-bed. Two bit error rate(ber) curves for FH with 0 random channels and DC of 0 %, show such good agreement that our proposed concept is expected to be widely used to assess various spectrum sharing technologies. Key words: Spectrum Sharing, Frequency Interference, Unlicensed Band, Frequency Hopping, Duty Cycle, Listen-before-Talk. 서론,.. 206 () (No.B077-6-0059, Free Band ) (Department of Electronical Engineering, Kookmin University) *(Electronics and Telecommunication Research Institute) ** (Department of Computer & Electronic Engineering, Myongji College) Manuscript received November 4, 206 ; Revised December 6, 206 ; Accepted December 9, 206. (ID No. 20604-5) Corresponding Author: Byung-Jun Jang (e-mail: bjjang@kookmin.ac.kr) c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved. 77

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 3, Mar. 207., []. [2]. (FH: Frequency Hopping). FH. 2.4 GHz Bluetooth. Bluetooth 2,4022,480 MHz MHz 79,600. /79. (DC: Duty Cycle). DC,. 20 0.4 DC 2 %, 2 % DC 98 %. (LBT: Listen-Before-Talk). LBT.. RFID/USN FH, DC, LBT, 2.4 GHz(2,4002,483.5 MHz) 5.8 GHz (5,7255,825 MHz) ISM(Industrial, Scientific, and Medical) FH [3].,.,,.,. 900 MHz RFID. 2004 900 MHz RFID FH LBT, RFID FH.,, LBT FH FH [4]., LBT.,. UWB(Utra Wide Band) (interference temperature) [5]. UWB (white noise), (colored noise).., FH, DC, LBT.., SDR(Software-Defined Radio) USRP(Universal Software Radio Peripheral) LabVIEW,.. 78

. 간섭부하개념,,.,,,, 3.,, 3. FH, DC, LBT. FH, DC, LBT,,,.,., FH, DC, LBT (Interference load). [6],.. 2- 간섭영역기준의간섭부하 그림. Fig.. Geographical model for interference load.. R Friis (). () P t, G t G r, λ, PLE (Path Loss Exponent). PLE 2 2. () R (2). (2) (interference area) 2 (3).. (3). (3),. (3) P r...,, mw(0 dbm), LBT C. I load. (2) (3) 79

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 3, Mar. 207.,, [5]. (5) 그림 2. mw 75 dbm Fig. 2. Normalized interference load(p t: mw, P s: 75 dbm). (4) P T mw, P S I load = LBT. 2 mw 75 dbm LBT I load= PLE. Friis PLE 2 I load P T P S., 3 db, 3 db., PLE 2 2, 2., P T MHz.,. [6] 2-2 DC 와 FH 을포함한간섭부하 (3). I load T DC Duty Cycle, M U (spectrum overlapping rate) FH., FH M U, M U 0. M U FH. 30 MHz, /30 FH MHz 0 MHz M U /3., MHz M U /30., FH FH. M U (N) (BW victim) (BW interferer ). M U., M U. LBT BW victim BW interferer,.. 2-3 LBT 의간섭부하 3 LBT. 3(a) 3(b)., (6) 80

(a) 그림 3. Fig. 3. Comparison high and low interference loads. (b) (a).,., 3(b),. 4 2. 4(a), 4(b) LBT. 2.. 간섭부하의적용사례 2.4 GHz ISM. 2.4 GHz ISM 802.b/g Wi-Fi, Bluetooth, Zigbee. Bluetooth mw Class, 2.5 mw Class 2, 2 MHz 0 mw Bluetooth Low Energy(BLE) 3. 2.4 GHz PLE 3.3. MHz mw FH, DC, LBT. (b) 그림 4. Fig. 4. Interference scenarios according to the different value of interference load., DC 0 % FH 0. (5) /0(0 db)., 0 FH DC 0 %. Wi-Fi, 50 % DC 83.5 MHz 8 MHz (BW) 7 db. Bluetooth 3 FH DC 22 db 32 db. Zigbee 0 mw, DC 0 %, FH 36 db.,,, FH, DC 8

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 3, Mar. 207. 무선기기의 간섭부하 비교 표. 2.4 GHz Table. Comparison with interference load values of 2.4 GHz wireless devices. Pt BW (mw) (MHz) DC FH (CH) Iload Iload (db) 0 Reference Reference w/ DC 0 % 0. 0 Reference w/ DC % 0.0 Reference w/ FH 0 0 Wi-Fi (802.b/g) 8 0.5.87 Bluetooth class 0.5 79 0.69 Bluetooth class 2 2.5 0.5 79 0.064 Bluetooth low energy 0 2 0.5 40 0.203 Zigbee 0.3 0. 0.025 0 20 0 7.3 22.2 3.9 26.9 36.8 능을 간섭 측면에서 상호 비교할 수 있다. (b) 테스트베드 실험 구성 그림 5. Fig. 5. Configuration of a test-bed. Ⅳ. 테스트베드를 통한 검증 실험 장에서 살펴본 바와 같이, 간섭부하 개념은 다양한 무선기기가 주변기기에 어느 정도 간섭을 줄 수 있는지 정량적으로 비교 분석할 수 있는 장점이 있다. 출력이 작 을수록, FH 채널이 많을수록, DC가 작을수록 간섭부하는 작아진다. 또한, 각각의 주파수 공동사용 기술의 비교도 가능하다. 예를 들어 0채널을 이용한 FH과 0 %의 DC 를 갖는 두 개의 기술은 동일한 성능을 갖게 됨을 알 수 있다. 본 장에서는 간섭부하에 대한 이론의 타당성을 확인하 기 위하여 SDR 보드인 USRP와 LabVIEW를 이용한 테스 트베드를 구축하여 그 타당성을 실험적으로 검증한다. 이 를 위하여 FH 및 DC 기능을 하는 간섭원을 구성하였다. III [7] 4- 테스트베드 구성 본 논문에서 제안한 간섭부하 개념을 검증하기 위한 82 (a) 테스트베드의 구성은 그림 5(a)와 같다. 실험 구성은 피간 섭원, 간섭원 및 채널의 3부분으로 구성된다. 먼저 피간 섭원은 Host PC 에서 LabVIEW 프로그램을 이용해 송신 부와 수신부 모뎀을 구현하였다. Host PC의 모뎀 출력은 기가비트 이더넷 케이블을 통해 USRP 보드로 연결되어, RF(Radio Frequency) 신호를 생성하게 된다. 수신부는 USRP 보드로 입력된 RF 신호가 기저대역 신호로 변환된 후, 이더넷 케이블을 통해 Host PC으로 입력된다. 피간 섭원의 경우, FH와 DC의 성능비교를 목표로 하기 때문에 특정 통신규격을 사용하지 않고, OQPSK 변복조방식만을 이용해 데이터를 송수신하도록 구성하였다. 통신 속도는 저속인 250 kbps로 설정하였다. 간섭원은 Host PC 2에서 LabVIEW를 이용해 FH 또는 DC 기능을 갖는 간섭신호를 발생시키고, 이를 USRP를 통해 RF 신호를 송신하도록 하 였다. 간섭원의 경우도 피간섭원과 같은 변조방식을 사용

,. Agilent E4437B AWGN(Additive White Gaussian Noise). SNR FH, DC BER(Bit Error Rate).,, AWGN Mini-Circuits ZB3PD-63-s+ 3 USRP BER. 5(b). PC USRP, PC USRP AWGN 3. 4-2 간섭부하개념의실험을통한검증 2.4 GHz ISM, 0 db. 6 7. 6 DC 0 % DC %. DC 0 %, 20 2, DC %, 20 0.2. DC 0 % BER 6, DC % BER. DC 0 % BER DC % BER 0, 0 db.., DC 0 % DC % 0. DC FH DC 0 % 0 FH. DC 0 %, 20 2, FH, 0 0.4. 7. DC 0 % BER, 0 FH BER., DC FH 0 % BER. DC FH.. 그림 6. DC 0 % DC % BER Fig. 6. BER of DC 0 % and DC % interference. 그림 7. DC 0 % FH 0 % BER Fig. 7. BER of DC 0 % and FH 0 % interference. 83

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 3, Mar. 207..,.,. (hidden node)'., msec.. RFID,., RFID 4 W.. [8].. 결론. FH, DC, LBT,. 2.4 GHz, US- RP LabVIEW. FH DC, 0 FH 0 % DC., 0 % DC % DC BER 0.. References [], " ", Journal of Information Technology Applications & Management, vol. 2, no. 4, pp. 449-462, 204. [2],, ".", 2(8), pp. 349-355, 2008. [3] ( 206-52), 206 6. [4],, " RFI/USN PHY/MAC ",, 24(), pp. 73-8, 203. [5] Jay E. Padgett, Robert A. Ziegler, "Analysis of the interference temperature concept to support spectrum sharing between licensed services and unlicensed devices", Telcordia Technologies, 2004. [6] Jan Kruys, "Spectrum sharing criteria based on interference load", SpectrumConsult, 205. [7],,, " ",, 26(6), pp. 589-592, 205. [8],,, "908.594 MHz RFID USN ",, 9(6), pp. 647-656, 2008. 84

207 2: ( ) 207 3: [ 주관심분야 ], 995 2: ( ) 997 2: ( ) 2002 8: () 20022004: () 2004: [ 주관심분야 ],, MIMO, RFID/USN 2004 2: () 2006 2: ( ) 207 2: () 2006 3: [ 주관심분야 ],, 990 2: ( ) 992 2: ( ) 997 2: ( ) 995 3999 : LG() 999 2003 9: 2003 02005 8: 203 9205 8: (CP) 2005 9: [ 주관심분야 ] RF,, 85