Effects of detachable forefoot outsole angles and shapes on muscle activity of the lower extremity during downhill walking Haeng-Seob Lee, Jae-Hu Jung, & Woen-Sik Chae* Kyungpook National University [Purpose] [Methods] Ω [Results] [Conclusion] Key words:
EVA (Ethylene-Vinyl Acetate) Fig. 3. Different types of outsole angles SBR (Styrene Butadiene Rubber) Fig. 1. Material for the forefoot of shoe outsole 20 X Z 20 Y sync LED Fig. 2. Stair descending gait Fig. 4. Experimental equipment
Table 1. Electrode placement for selected muscles Muscle RF BF TA MG LG ES Electrode placement 50% of distance between ASIS and apex of patella 50% of distance between ischial tuberosity and caput fibula 35% of distance between patella bottom and lateral ankle joint space 35% of distance between medial knee joint space and calcaneal tuberosity 30% of distance between lateral knee joint space and calcaneal tuberosity 2 cm from the spine over the muscle mass Ω
Table 2. Average IEMG during initial double limb stance (unit: % RVC) 5 10 20 * B-Type* * ES RF VM VL BF TA M 1.28 1.05 0.92 SD 0.69 0.45 0.41 M 0.90 1.15 0.94 SD 0.27 0.59 0.42 M 1.94 1.95 2.32 SD 1.28 0.94 1.37 M 1.43 2.37 1.60 SD 0.76 1.19 1.04 M 1.98 2.15 2.02 SD 1.54 1.52 1.21 M 1.79 2.07 1.63 SD 1.03 1.32 1.18 M 3.21 3.38 3.27 SD 2.53 1.90 1.75 M 3.01 3.40 2.79 SD 1.38 1.88 1.73 M 1.49 1.01 1.00 SD 1.30 0.39 0.46 M 1.01 1.23 0.86 SD 0.40 0.70 0.56 M 2.23 2.32 2.62 SD 1.23 1.31 1.32 M 2.42 2.70 2.75 SD 1.10 0.85 1.49 Fig. 5. Average IEMG in the RF during IDLS MG LG M 1.11 1.05 0.97 SD 0.58 0.42 0.43 M 0.82 0.84 0.71 SD 0.53 0.40 0.29 M 1.19 1.33 1.28 SD 0.68 0.45 0.68 M 1.01 1.23 0.96 SD 0.56 0.58 `0.08 Fig. 6. Average IEMG in the MG during IDLS
Table 3. Average IEMG during initial single limb stance (unit: % RVC) ES RF VM VL BF TA MG LG 5 10 20 M 0.74 0.64 0.78 SD 0.34 0.24 0.50 M 0.65 1.09 0.69 SD 0.28 1.27 0.34 M 2.00 1.89 2.12 SD 0.85 0.76 1.03 M 2.11 2.32 1.85 SD 1.02 1.07 1.09 M 2.35 1.97 2.19 SD 1.30 1.01 1.43 M 2.11 2.92 2.03 SD 1.11 2.60 1.42 M 4.00 3.61 3.70 SD 2.07 1.87 2.02 M 3.68 4.59 3.37 SD 2.08 3.38 2.28 M 0.87 0.77 0.79 SD 0.31 0.31 0.28 M 0.85 0.81 0.73 SD 0.42 0.28 0.38 M 1.26 1.21 1.38 SD 0.52 0.66 0.94 M 1.11 1.46 1.17 SD 0.48 1.19 0.97 M 0.89 0.82 0.86 SD 0.32 0.22 0.29 M 0.84 0.71 0.71 SD 0.30 0.29 0.30 M 1.27 1.22 1.13 SD 0.72 0.54 0.50 M 1.23 1.28 1.04 SD 0.70 0.63 0.58 Table 4. Average IEMG during terminal double limb stance (unit: % RVC) ES RF VM VL BF TA MG LG 5 10 20 M 2.47 2.53 2.03 SD 0.90 0.81 0.79 M 2.67 2.72 2.38 SD 0.70 1.11 1.63 M 2.22 1.89 1.41 SD 1.13 0.62 0.80 M 2.18 2.13 1.67 SD 1.27 1.20 1.18 M 1.76 1.68 1.49 SD 1.07 1.11 0.84 M 1.77 2.10 1.57 SD 1.01 1.64 1.05 M 2.76 2.38 2.31 SD 1.56 1.21 1.40 M 3.04 2.98 2.59 SD 2.09 1.60 1.36 M 0.66 0.67 0.80 SD 0.32 0.30 0.46 M 0.63 0.64 0.59 SD 0.24 0.28 0.28 M 1.32 1.63 1.65 SD 0.68 0.82 1.01 M 1.23 1.47 1.40 SD 0.56 0.64 1.01 M 0.53 0.52 0.42 SD 0.35 0.27 0.27 M 0.48 0.43 0.35 SD 0.22 0.27 0.15 M 0.97 1.28 1.16 SD 0.54 0.85 0.88 M 1.27 1.03 0.87 SD 1.01 0.56 0.87 * Fig. 7. Average IEMG in the RF during TDLS
Table 5. Average IEMG during terminal single limb stance (unit: % RVC) ES RF VM VL BF TA MG LG 5 10 20 M 1.09 0.95 0.99 SD 0.47 0.40 0.60 M 0.85 1.09 0.85 SD 0.31 0.69 0.41 M 1.12 1.18 1.08 SD 0.39 0.66 0.43 M 0.90 1.22 0.98 SD 0.41 0.72 0.53 M 1.05 0.95 0.88 SD 0.33 0.44 0.45 M 0.90 1.01 0.85 SD 0.52 0.48 0.41 M 0.98 0.86 1.02 SD 0.39 0.40 0.43 M 0.81 1.02 0.91 SD 0.36 0.44 0.49 M 0.83 0.84 0.87 SD 0.29 0.28 0.31 M 0.74 1.06 0.79 SD 0.25 0.78 0.24 M 1.26 1.26 1.56 SD 0.42 0.30 1.21 M 1.18 1.43 1.39 SD 0.48 0.72 1.21 M 0.61 0.52 0.50 SD 0.42 0.24 0.22 M 0.54 0.56 0.49 SD 0.52 0.31 0.21 M 0.78 0.76 0.74 SD 0.16 0.27 0.37 M 0.64 0.87 0.68 SD 0.25 0.51 0.25 * Fig. 8. Average IEMG in the VL during TSLS
Chae, W. S. (2008). Ground reaction force characteristics during forward and backward walking over 20 degree ramp. Korean Journal of Sport Biomechanics, 18(3), 71-82. Clarkson, P. M. & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation, 81(11), 52 69. Ebbeling, C. B. & Clarkson, P. M. (1989). Exercise-induced muscle damage and adaptation. Sports Med, 7(4), 207-234. Franz, J. R. & Kram, R. (2012). The effects of grade and speed on leg muscle activations during walking. Gait & Posture, 35(1), 143-147. Gardner, T. B. & Hill, D. R. (2002). Illness and injury among long-distance hikers on the Long Trail, Vermont. Wild Environ Med, 13, 131 134. Han, J. T., Kim, S. H., & Bae, S. S. (2006). The 3-D Motion Analysis of Kinematic Variety on Lower Extremities During Ramp Descent at Different Inclinations. the Journal of Physical Therapy Korea, 13(2), 16-25. Hintermann, B., Nigg, B. M., Sommer, C., & Cole, G. K. (1994). Transfer of movement between calcaneus and tibia in vitro. Clinical Biomechanics, 9(6), 349-355. Hwang, Y. T. & Park, R. J. (2008). The Study of Erector Spinae Onset Time and Lumbar Flexion Angle on Loading in Patients with Chronic Low Back Pain. Journal of Rehabilitation Research, 12(2), 47-62. Kerr, R., Arnold, G., Cochrane, L., Drew, T., & Abboud, R. (2006). The effect of shoes on ankle injuries. Journal of Biomechanics. 39(1), 110. Kim, S. P., Yuan, W. X., & Lee, M. H. (2001). Balance Adjustments of Gait Pattern to Prevent Slip and Fall. The Korea Journal of Physical Education, 40(2), 821-831. Kuster, M., Sakurai, S., & Wood, G. A. (1995). Kinematic and kinetic comparison of downhill and level walking. Clinical Biomechanics, 10(2), 79-84. Laursen, B., Ekner, D., Simonsen, E. B., Voigt, M., & SjØgaard, S. (2000). Kinetics and energetics during uphill and downhill carrying of different weights. Applied Ergonomics, 31, 159-166. Lay, A. N., Hass, C. J., & Gregor, R. J. (2006). The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. Journal of biomechanics, 39(9), 1621-1628. Mair, J., Koller, A., Dworzak, A. E., Haid, C., Wicke, K., Judmaier, W., & Puschendorf, B. (1992). Effects of exercise on plasma myosin heavy chain fragments and MRI of skeletal muscle. Journal of Applied Physiology, 72(2), 656 663. Marqueste, T., Decherchi P., Messan F., Kipson N., Grelot L., & Jammes, Y. (2004). Eccentric exercise alters muscle sensory motor control through the release of inflammatory mediators. Brain Research, 1023(2), 222 230. McVay, E. J. & Redfern, M. S. (1994). Rampway safety : Foot Forces as a function of Rampway angle. Journal of Occupational and Environmental Hygiene, 55(7), 626-634. Neumann, D. A. (2002). Kinesiology of the Musculoskeletal System: Foundations for physical rehabilitation. 1st edition. St Louis: Mosby, Inc. Ounpuu, S. (1990). The biomechanics of running: a kinematic and kinetic analysis. Instructional Course Lectures, 39, 305-318. Park, I. S., Jung, J. Y., Jeon, K. H., Won, Y. G., & Kim, J. J. (2012). Effects of Forefoot Rocker Shoes with Metatarsal Bar on Lower Extremity Muscle Activity and Plantar Pressure Distribution. Korean Journal of Sport Biomechanics, 22(1), 113-121. Redfern, M. S. & DiPasquale, J. (1997). Biomechanics of descending ramps. Gait & Posture, 6(2), 119-125. Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & Posture, 15, 32-44. Turner, D. E., Helliwell, P. S., Siegel, K. L., & Woodburn, J. (2008). Biomechanics of the foot in rheumatoid arthritis: Identifying abnormal function and the factors associated with localized disease impact. Clinical Biomechanics, 23(1), 93-100. U. S. Department of health and Human Service. (1993). Selected Topics in Surface Electromyography for use in the Occupational Setting: Expert Perspectives(DHHS Publication No. 91-100). Washington, DC: U.S. Government Printing Office.
Ω