탈원전·탈석탄·신재생 에너지 확대 정책에 따른 신규 전원구성의 수급 안정성 평가

Similar documents
에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

2

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

에너지경제연구 제13권 제1호

공휴일 전력 수요에 관한 산업별 분석

에너지경제연구 Korean Energy Economic Review Volume 14, Number 2, September 2015 : pp. 99~126 산유국의재생에너지정책결정요인분석 1) 99

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

192

에너지경제연구 제13권 제1호

에너지경제연구 Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp 에너지전환정책및고령화가국민경제에미치는영향 : 확률적중첩세대일반균형모형 (Stochastic Overlapping Genera

I

<C7A5C1F620BEE7BDC4>

박선영무선충전-내지

°í¼®ÁÖ Ãâ·Â


04-다시_고속철도61~80p

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

02김헌수(51-72.hwp

<313120B9DABFB5B1B82E687770>

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

45-51 ¹Ú¼ø¸¸

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

에너지경제연구 제14권 제1호

DBPIA-NURIMEDIA

에너지경제연구 제13권 제2호

Æ÷Àå½Ã¼³94š

정보기술응용학회 발표

½Éº´È¿ Ãâ·Â

BSC Discussion 1

#Ȳ¿ë¼®

차 례... 박영목 **.,... * **.,., ,,,.,,

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

6.24-9년 6월

ecorp-프로젝트제안서작성실무(양식3)

untitled

공연영상

Microsoft PowerPoint - Freebairn, John_ppt

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 57~83 발전용유연탄가격과여타상품가격의 동조화현상에대한실증분석 57

-

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 141~163 신재생에너지지원정책의지대발생효과와규제 : 신재생에너지공급의무화제도 (RPS) 를중심으로 141

???? 1

1. 연구 개요 q 2013년 연구목표 제2-1과제명 건축물의 건강친화형 관리 및 구법 기술 연구목표 건강건축 수명예측 Lifecycle Health Assessment (LHA) 모델 개발 건축물의 비용 기반 분석기술(Cost-based Lifecycle Health

DBPIA-NURIMEDIA

433대지05박창용

레이아웃 1

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

< E20BDC5C0E7BBFDC0FCBFF8BCB3BAF1C0C720BDC3B0A3B4EBBAB020C6AFBCBA20B9D720B9DFC0FCBCB3BAF1B1B8BCBABFA120B9CCC4A1B4C220BFB5C7E220BFACB1B828B1E8BCF6B4F620B1B3BCF6B4D4292E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

공급업체평가를 위한 DEA 모형의 확장

03-서연옥.hwp

歯김미성원고.PDF

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<C5EBC0CFB0FA20C6F2C8AD2E687770>

09È«¼®¿µ 5~152s

<B8F1C2F72E687770>

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp

재영 솔루텍의 Vision 달성을 위하여…

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

Buy one get one with discount promotional strategy

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

에너지경제연구 제17권 제1호

hwp

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

1.장인석-ITIL 소개.ppt

PowerPoint 프레젠테이션

À±½Â¿í Ãâ·Â

03¼ºÅ°æ_2

<33312D312D313220C0CCC7D1C1F820BFB0C3A2BCB12E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

11. 일반 10 김린 지니 3(cwr).hwp

DBPIA-NURIMEDIA

歯1.PDF

歯Product1.PDF

(5차 편집).hwp

untitled

hwp

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

01이정훈(113~127)ok

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

DBPIA-NURIMEDIA

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

untitled

09구자용(489~500)

DBPIA-NURIMEDIA


2011 IT 기술예측조사03-요약.indd

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Transcription:

에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 1~35 탈원전 탈석탄 신재생에너지확대정책에따른 신규전원구성의수급안정성평가 - 1 -

~ - 2 -

~ - 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

P r - 10 -

< 표 1> 몬테카를로시뮬레이션기반의 LOLP 추정방법 - 11 -

min min min - 12 -

~ - 13 -

- 14 -

< 표 2> 시나리오정의 < 표 3> 시나리오 2 에서활용될전원구성계획을위해추가적으로 필요한발전설비용량및도입년도 - 15 -

< 표 4> 시나리오 3 에서활용될, 제 8 차전력수급기본계획 에서제안될 것으로예상되는수요전망과전원구성계획 - 16 -

- 17 -

[ 그림 1] 2014 년부하지속곡선 - 18 -

< 표 5> 첨두부하시전력수요변동성 ( 전력수요의경험적확률분포 ) < 표 6> 전통적전원별기술특성치자료 - 19 -

- 20 -

< 표 7> 신재생에너지및집단에너지기술특성치자료 < 표 8> 신재생에너지부하지속곡선단계별평균출력량 ( 이용률 ) < 표 9> 첨두부하시풍력 / 태양광출력량변동성 ( 신재생에너지발전량의경험적확률분포 ) - 21 -

< 표 10> 온실가스및환경오염물질배출계수 - 22 -

< 표 11> 예비율과공급신뢰도분석 - 23 -

~ - 24 -

[ 그림 2] 설비예비율과공급예비율의차이 < 표 12> 발전비용분석 1) ( 단위 : 십억원 ) - 25 -

< 표 13> 온실가스및환경오염물질배출량분석 ( 연평균 ) - 26 -

- 27 -

접수일 (2017 년 10 월 18 일 ), 게재확정일 (2017 년 11 월 9 일 ) - 28 -

,,,,. 2013.,,. 2011. :,, 10(2), 169-186. 2014. 4. 2015. 7. 2017.,,. 2015. 7,,. 2012.,,,. 2009. RPS(Renewable Portfolio Standard),, 58(3), 467-477,,,,,,. 2013. I -. 2014. (http://epsis.kpx.or.kr). 2016. 2015,. 2012.,, 37(3), 135-149,,,,,,. 2015. :,,,,,,,. 2014. - 29 -

:. 2017. 86 (2016). 2017. :. 2014. KIER Focus. 2006. Anderson, D. 1972. Models for determining least-cost investments in electric supply Bell Journal of Economics and Management Science 3(1): pp267-299 Aghaei, J., Akbari, M.A., Roosta, A., Gitizadeh, M. and Niknam, T. 2012. Integrated renewable-conventional generation expansion planning using multiobjective framework IET Generation Transmission & Distribution, 6: pp773-784 Aghaei, J. Akbari, M.A., Roosta, A., and Baharvandi, A. 2013, Multiobjective generation expansion planning considering power system adequacy Electric Power Systems Research 102: pp8-19 Bessiere, F. 1970. Investment 85 model of electricite de France Management Science 17(4): pp192-211 Billington, R. and Allan, R. 1984. Reliability evaluation of power systems, New York, Plenum Press Birge, J. R., and Louveaux, F. 2011. Introduction to stochastic programming. Springer Science & Business Media. Black and Veatch. (2012). Cost and performance data for power generation technologies. Technical Report Prepared for the National Renewable Energy Laboratory. Bloom, J.A. 1982. Long range generation planning using decomposition and probabilistic simulation IEEE Transaction on Power Apparatus and Systems PAS-101(4): pp797-802 Choi, D.G. and Thomas, V.M. 2012. An electricity generation planning model incorporating demand response Energy Policy 41: pp429-441 - 30 -

Choi, D.G., Park, S.Y., and Hong, J.C. 2015. Quantitatively exploring the future of renewable portfolio standard in the Korean electricity sector via a bottom-up energy model Renewable and Sustainable Energy Reviews 50: pp793-803 Cote, G. and Laughton M.A. 1980. Prediction of reserve requirements in generation planning International Journal of Electrical Power and Energy Systems 2(2): pp87-95 Farghal, S.A. and Aziz, M.R.A. 1988. Generation expansion planning including the renewable sources IEEE Transactions on Power Systems 3: pp816-822 Feng, Y. and Ryan, S.M. 2013. Scenario construction and reduction applied to stochastic power generation expansion planning Computers and Operations Research 40: pp9-23 Gitizadeh, M., Kaji, M., and Aghaei, J. 2013. Risk based multiobjective generation expansion planning considering renewable energy sources. Energy, 50: pp74-82. Hobbs. B.F. 1995. Optimization methods for electric utility resource planning European Journal of Operations Research 83: pp1-20 Hu, Z. and Jewell, W.T. 2013. Optimal generation expansion planning with integration of variable renewable and bulk energy storage systems Proceedings of IEEE Conference on Technologies for Sustainability, pp1-8 Kim, Y.-C., and Ahn, B.-H. 1993. Multicriteria generation-expansion planning with global environmental considerations IEEE Transactions on Engineering Management 40(2): pp154-161 Jin, S., Ryan, S.M., Watson, J.P. and Woodru, D.L. 2011. Modeling and solving a large-scale generation expansion planning problem under uncertainty Energy Systems 2: pp209-242 Jonghe, C.D., Delarue, E., Belmans, R. and D'haeseleer, W. 2011. Determining optimal electricity technology mix with high level of wind power penetration Applied Energy 88: pp2231-2238 Meza, J.L.C., Yildirim, M.B., Masud, A.S.M. 2007, A model for the multiperiod multiobjective power generation expansion problem IEEE Transaction on Power Systems 22(2): pp871-878 - 31 -

Min, D. and Chung, J. 2013. Evaluation of the long-term power generation mix: The case of South Korea's energy policy Energy Policy 62: pp1544-1552 Min, D., Ryu, J. and Choi, D.G. 2017. A long-term capacity expansion planning model for an electric power system integrating large-size renewable energy technology Computers & Operations Research In Press Noonan, F. and Gigolio, R.J. 1977. Planning electric power generation: a non-linear mixed integer model employing Benders Decomposition Management Science 23(9): pp946-956 Park, S.Y., Yun, B.-Y., Yun, C.Y. Lee, D.H., Choi, D.G. 2016. An analysis of the optimum renewable energy portfolio using the bottom-up model: Focusing on the electricity generation sector in South Korea Renewable and Sustainable Energy Reviews 53: pp319-329 Peterson, E.R. 1973. A dynamic programming model for the expansion of electric power systems Management Science 20(4): pp656-664 Pisciella, P., Vespucci, M.T., Bertocchi, M.. and Zigrino, S. 2016. A time consistent risk averse three-stage stochastic mixed integer optimization model for power generation capacity expansion Energy Economics 53: pp203-211 Sanghvi, A.P., Balu, N.J., Lauby, M.G. 1991. Power system reliability planning practices in north America IEEE Transactions Power Systems 6(4): pp1485-1492 Scherer, C.R. and Joe, L. 1977. Electric power system planning with explicit stochastic reserve constraint Management Science 23(9): pp978-985 Stremel, J.P. 1982. Production costing for long-range generation expansion planning studies IEEE Transaction on Power Apparatus and Systems PAS-101(3): 526-536 Tekiner, H., Coit, D.W., and Felder, F.A. 2010. Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation Electric Power Systems Research, 80: pp1394-1405 - 32 -

< 표 A1> 분석결과 시나리오 1 & 2-33 -

< 표 A2> 분석결과 시나리오 3 & 4-34 -

ABSTRACT The Korean government has recently decided to dramatically expand renewable energy technologies (RETs) while reducing the portion of nuclear and/or coal power generations. The large deployment of RETs could possibly hurt the power system reliability because of the unreliability of RETs. This paper proposes a model for analyzing the effects of unreliable RETs on the reliability of power supply and the level of reasonable reserve margin. Numerical analysis provides some interesting findings. First, the 7 th basic power supply plan (the 7 th basic plan for long-term electricity supply and demand) could fail to meet the target level of power system reliability after 2024. In addition, the power system reliability could possibly worsen in the 8 th basic power supply plan, which reduces the portion of nuclear and coal power generation and increases RETs, even though the 8 th basic power supply plan sets the installed reserve and capability margin as 20% and 18% respectively, which are higher than those in the 7 th basic power supply plan, 16% and 12% respectively. Key Words:Power generation mix, Renewable energy, Supply uncertainty, Power system reliability - 35 -