Korean Society for Biotechnology and Bioengineering Journal 30(4): 155-160 (2015) http://dx.doi.org/10.7841/ksbbj.2015.30.4.155 ISSN 1225-7117 / eissn 2288-8268 연구논문 큰잎모자반뿌리및줄기추출물의항산화효과 박지혜 1, 배난영 1, 박선희 1, 김민지 2, 김꽃봉우리 2, 최정수 3, 안동현 1 * Antioxidant Effect of Sargassum coreanum Root and Stem Ji-Hye Park 1, Nan-Young Bae 1, Sun-Hee Park 1, Min-Ji Kim 2, Koth-Bong-Woo-Ri Kim 2, Jung-Su Choi 3, and Dong-Hyun Ahn 1 * Received: 22 June 2015 / Revised: 27 July 2015 / Accepted: 28 July 2015 2015 The Korean Society for Biotechnology and Bioengineering Abstract: The present study was to investigate the antioxidant activity in ethanol and water extracts of root and stem of Sargassum coreanum. Antioxidant activities were evaluated by total polyphenol contents, DPPH radical scavenging activity, chelating effect, reducing power, and rancimat method. Total polyphenol contents of ethanol and water extracts were 32.79 mg/g and 15.55 mg/g, respectively. Ethanol extract showed higher DPPH radical scavenging activity than water extract and similar activity to BHT. Reducing power of extracts was increased in a concentration-dependent manner and ethanol extract had more reducing power than water extract. Ethanol and water extracts have little chelating effect at all concentrations. Antioxidant index (AI) of ethanol extract measured by Rancimat was higher than that of water extract, but their AI was lower than that of BHT. These results indicate that ethanol extract of S. coreanum root and stem has more potent antioxidant activity than water extract through DPPH radical scavenging and reducing power, and could potentially be used as a good source of natural antioxidants. 1 부경대학교식품공학과 / 식품연구소 1 Department of Food Science & Technology/Institute of Food Science, Pukyong National University, Busan 608-737, Korea Tel: +82-51-629-5831, Fax: +82-51-629-5824 e-mail: dhahn@pknu.ac.kr 2 부경대학교수산과학연구소 2 Institute of Fisheries Sciences, Pukyong National University, Busan 619-911, Korea 3 경남정보대학교호텔외식조리계열 3 Subdivision of Culinary Arts, Kyungnam College of Information and Technology, Busan 617-701, Korea Keywords: Sargassum coreanum root and stem, Ethanol extract, Anti-oxidant activity, DPPH radical scavenging 1. INTRODUCTION 산소는정상적인대사과정중활성산소 (reactive oxygen species), 활성질소 (reactive nitrogen species) 또는활성염소를가진반응성이매우큰 free radical을생성한다. 이중활성산소종은일반적인 triplet oxygen ( 3 O 2 ) 보다반응성이커서인체내의성분들을산화시키는물질로, superoxide radical (O - 2 ), hydroxyl radical (OH ), peroxyl radical (ROO ) 등과같은 radical 뿐만아니라비라디칼인 singlet oxygen ( 1 O 2 ), hydrogen peroxide (H 2 O 2 ), hydroperoxide (ROOH), hypochlorous acid (HOCl) 등을포함한다. 이러한활성산소종은높은반응성으로단백질, 불포화지방산등과결합하여과산화지질을생성하고 DNA 및 RNA 등에손상을일으키며생체막의손상, 면역능력의약화와함께류마티스성관절염, 심장병, 파킨스씨병, 알츠하이머병그리고암과같은질환과노화를유발하게된다 [1-3]. 이러한활성산소종으로부터발생하는손상을억제하기위해활성산소를조절할수있는물질로알려진항산화제에대한연구가활발히진행되고있으며이에따라천연항산화제인 tocopherol, ascorbic acid, carotenoid, glutathione 및합성항산화제인 BHA, BHT 등많은항산화제가개발되고있다. 합성항산화제의경우탁월한효과와경제성때문에폭넓게사
156 Korean Society for Biotechnology and Bioengineering Journal 30(4): 155-160 (2015) 용되고있으나과량사용시독성을나타내는것으로보고되고있으며 [4], 천연항산화제로널리알려진 tocopherol 은안전하기는하나단독으로는산화연쇄반응저지능력이낮고가격이비싼단점이있다. 따라서안전하고항산화효과가뛰어난천연항산화제의개발에관심이높아지고있다 [5,6]. 이러한이유로최근에는천연해양식물로부터효능이있는물질을찾으려는관심이높아지면서해조류의생리활성에대한기초연구뿐만아니라유효활성성분을추출하여식품첨가물또는의약품으로개발하고자하는노력이증대되고있다 [7-9]. 해조류는해양환경에서재생가능한자원으로잠재적으로식품으로써의가능성을가지고있으며 [10], 카로티노이드, 식이섬유, 단백질, 필수지방산, 비타민, 미네랄및폴리페놀등과같은생리활성화합물의원료이다 [11,12]. 큰잎모자반 (Sargassum coreanum) 은우리나라의동해안과남해안및제주에분포하며모자반과에속하는식용갈조류로어린줄기와잎부분은먹거나식물체전체를말려사료로이용한다. 큰잎모자반은 5~8 cm 의원뿔모양의뿌리와뿌리로부터나온 5~7 mm 굵기의원기둥모양중심줄기를가지고있으며여러갈래로갈라져가지와잎을낸다. 큰잎모자반에대한연구결과를보면항암 [13], 항염증 [14], 항응고 [15], 항고지혈, 항고혈압과항동맥경화 [16,17] 등의효과가있다고보고되고있으며큰잎모자반의효소적추출물에대한연구에서항산화효과 [18] 가있다고보고되고있다. 본연구에서는큰잎모자반에서잘이용되지않는뿌리및줄기로부터에탄올및물추출물의항산화능을알아보고이를바탕으로식품산업에항산화물질로서의적용가능성을제시하고자한다. 2. MATERIALS AND METHOD 2.1. 실험재료본실험에사용한큰잎모자반 (S. coreanum) 은부산인근해안에서채취하여담수로깨끗이씻은다음뿌리와줄기부분을따로세절하고동결건조하여잘게분쇄한후 -20 o C 에서동결저장하면서사용하였다. 2.2. 추출동결건조된분말을 95% 에탄올로추출한다음잔사에물을이용하여추출하였다. 먼저 95% 에탄올을시료의 10 배량가하여실온에서 Shaker (Dongwon Science Co., Busan, Korea) 를이용하여 180 rpm 으로교반하면서 24 시간추출한후원심분리기 (UNION 32R, Hanil Co., Incheon, Korea) 로 1977 g 에서 10 분간원심분리하였다. 상층액을취한후남은잔사에동일한용매를가하여같은방법으로 2 회반복추출하였다. 에탄올추출후남은잔사는 37 o C 에서건조하여물추출에사용하였다. 물추출물은건조된잔사에 10 배량의증류수를가하여에탄올과동일하게 3 회반복추출하여취하였다. 상층액은여과지로여과한후 37 o C water bath 에서 rotary evaporator (RE200, Yamato Co., Tokyo, Japan) 를이용하여감압하에농축하고 37 o C 에서건조하였다. 건조된시료는 -20 o C 에보관하면서실험에사용하였다. 2.3. 총페놀화합물함량측정총페놀화합물함량은페놀성물질이 phosphomolybdic acid 와반응하여청색을나타내는것을이용한 Folin-Denis 법 [19] 을변형하여측정하였다. 초순수 6.5 ml 에시료 0.5 ml 을가한후 Folin-Ciocalteu's 용액 0.5 ml 을혼합한다음상온에서 3 분간반응시켰다. 반응이끝나면무수탄산나트륨포화용액을 1 ml 첨가하고전체가 10 ml 이되도록초순수를가하여상온에서 1 시간방치시킨후 UV/visible spectrophotometer (GENESYS 10 UV, Rochester, NY, USA) 로 765 nm 에서흡광도를측정하였다. 총페놀화합물함량은 gallic acid 를표준물질로하여동일한방법으로측정하여얻은표준곡선으로부터총페놀화합물함량을정량하였으며, mg gallic acid equivalents/g 단위로나타내었다. 2.4. DPPH radical 소거능측정 DPPH radical 소거능은 Blois [20] 의방법을변형하여측정하였다. 시료 0.5 ml 에 0.2 mm DPPH (1,1-diphenyl-2-picrylhydrazyl) 용액을 0.5 ml 가하여혼합하여 30 분간방치시킨후 UV/visible spectrophotometer 로 517 nm 에서흡광도를측정하였다. 대조구는시료대신용매를가하여동일한방법으로측정하였으며시료자체의색에대한흡광도값을보정해주기위해 0.2 mm DPPH 대신메탄올을넣어같은방법으로흡광도를측정하였다. DPPH radical 소거능은다음과같이계산하였다. DPPH radical scavenging effect (%) = (1 시료첨가구의흡광도 / 무첨가구의흡광도 ) 100 2.5. 환원력측정환원력은 Oyaizu [21] 의방법을변형하여측정하였다. 시료 0.5 ml 에 0.2 M sodium phosphate buffer (ph 6.6) 2.5 ml 를첨가한후 potassium ferricyanide 용액 2.5 ml 를가해충분히혼합하여 50 o C 에서 20 분간반응시킨다. 반응이끝나면 10% trichloroacetic acid (TCA) 용액 2.5 ml 를첨가한다음 3000 rpm 에서 10 분간원심분리하였다. 상층액 2 ml 에증류수 2 ml 과 0.1% iron (Ⅲ) chloride 용액 0.4 ml 를가하여혼합한후초순수 4.4 ml 를가하여 700 nm 에서흡광도를측정하였다. 대조구는 ascorbic acid 를사용하였으며, 환원력은다음과같이계산하였다. Reducing power (Abs) = 시료첨가구의흡광도 공시험의흡광도 2.6. 금속봉쇄력측정금속봉쇄력은 Shimada 등 [22] 의방법에따라측정하였다. 시
큰잎모자반뿌리및줄기추출물의항산화효과 157 료 0.2 ml 에초순수 0.74 ml 를혼합한후, 2 mm FeCl 2 용액 0.02 ml 와 ferrozine 용액 0.04 ml 를첨가하여실온에서 20 분간방치한후 562 nm 에서흡광도를측정하였다. 대조구는시료대신용매를가하여동일한방법으로측정하였다. 또한시료자체의색에대한흡광도값을보정해주기위해시료대신에동량의증류수를가해흡광도를측정하였다. Chelating effect (%) = (1 시료첨가구의흡광도 / 무첨가구의흡광도 ) 100 2.7. 유지산화안정도측정산화안정도실험은 rancimat (743 Metrohm Co., Herisau, Switzerland) 을이용하여측정하였다. 먼저 reaction vessel 에 lard oil 을 3.0 g 취하고최종농도가 5, 1, 0.5 mg/ml 이되도록시료를첨가한다음 vortex 하여혼합한다. Rancimat 기계에 reaction vessel 을주입한다음 100 o C 에서시간당 20 L 의여과된공기를주입하여산화시켰다. 이때발생하는휘발성산화생성물이 65 ml 의초순수가들어있는 absorption vessel 로이행될때나타나는전기전도도의변화에따라자동적으로산출된유도기간으로부터산화안정도를측정하였다. 추출물의항산화정도를측정하고동시에추출물을첨가하지않은것을대조구로하여항산화정도를비교하여 antioxidant index (AI) 로나타내었다. AI 는각항산화제를첨가한실험구의유도기간을대조구의유도기간으로나눈값으로, 유지산화안정도수치가큰것일수록항산화성이높음을의미한다 [23, 24]. 2.8. 통계처리본실험결과에대한통계처리는 SAS program (Statistical analytical system V8.2, SAS Institute Inc., Cary, NC, USA) 을이용하여분산분석을하였으며 p<0.05 수준에서 Duncan 의다중검정법을통해유의성을검증하였다. 3. RESULTS AND DISCUSSION 3.1. 총페놀화합물함량페놀화합물은식물계에널리분포되어있는 2 차대사산물로서 phenolic acid 류, phenylprophanoid 류, flavonoid 류등이대부분이다 [25]. 이는 phenolic hydroxyl 기를가지고있어단백질또는효소, 기타거대분자들과결합하는성질이있으며또한항균, 항산화및항암등의다양한생리활성기능을가진것으로알려져있다 [26,27]. 페놀화합물의항산화작용은수산기를통한수소공여로라디칼들과쉽게공명으로안정화될수있는구조를가지고있어항산화활성을가지는것으로보고되고있다 [28]. 따라서천연물의항산화연구중에서페놀화합물의함량과항산화활성의연관성에대한연구가활발히이루어지고있다 [29]. 큰잎모자반뿌리및줄기를 95% 에탄올및물로추출한뒤총페놀함량을알아본결과 (Table Table 1. Total polyphenol contents (TPC) of Sargassum coreanum root and stem extracts (unit: mg gallic acid equivalents/g) TPC Ethanol 32.79±0.80 a1) Water 15.55±0.18 b 1)a-b Means with different superscripts in the same column are significantly different (p<0.05). 1), 각각 32.79 및 15.55 mg gallic acid equivalents/g 으로 95% 에탄올추출물에서더높은페놀함량을보였다. 이는사용되는용매에따라추출되는페놀화합물의양이다른것은용매의극성에따라추출되는물질이매우다르게나타나기때문이다 [30]. Kwon 등 [31] 의연구에서도복분자완숙의경우에탄올의농도가높을수록페놀함량이높았으며물보다에탄올추출물에서페놀함량이더높았다고보고하여본연구결과와일치하였다. 3.2. DPPH radical 소거능항산화물질은 free radical 의소거작용을가지며이는활성라디칼전자를공여하여식물중의항산화효과나인체에서노화를억제하는척도로이용한다. 그중에서도 DPPH 는짙은자색을띄는비교적안정한 radical 로서항산화물질의전자공여능으로인해방향족화합물및방향족아민류에의해환원되어자색이탈색에의해나타내는정도를지표로하여항산화활성을측정하는방법이다 [32]. 이에 DPPH radical 소거능이높으면 free radical 을환원시키거나상쇄시키는능력이높아지며, 활성산소와같은 free radical 의소거작용증진으로인체내의노화를억제하는효과가있는것으로알려져있다 [30]. 따라서큰잎모자반뿌리및줄기추출물의 DPPH radical 소거능을측정한결과 (Table 2), 에탄올추출물에서는 1, 0.5, 0.1, 0.05 및 0.005 mg/ml 의농도에서각각 95, 96, 76, 59 및 17% 의라디칼소거능을보였으며대조구인 BHT 와유의적인차이가없었다. 이는 0.5 mg/ml 에서 95% 의라디칼소거능을보인꽈배기모자반에탄올추출물과유사하였다 [33]. 또한물추출물에서는에탄올과같은농도에서각각 93, 93, 61, 40 및 11% 로대조구인 ascorbic acid 는 0.05 및 0.005 mg/ml 농도에서각각 95% 및 18% 로활성이현저히감소하는반면물추출물에서는 0.1 mg/ml 의농도에서부터활성이감소하는것으로나타났다. 본연구에서에탄올추출물이물추출물보다총폴리페놀함량이더높았으며, DPPH radical 소거능에서도에탄올추출물이물추출물보다더높게나타났다. 이는식물체의총페놀함량과 DPPH radical 소거능이매우밀접한상관관계를가진다고보고되고있어 [34,35], 총폴리페놀함량이더높은에탄올추출물에서 DPPH radical 소거능효과가더좋게나타난것으로사료된다. 따라서큰잎모자반뿌리및줄기추출물의 DPPH radical 소거능은추출용매에따른차이가조금있지만에탄올추출물과물추출물모두높은 radical 소거능을가져항산화기능성소재로활용가능성이있는것으로사료된다.
158 Korean Society for Biotechnology and Bioengineering Journal 30(4): 155-160 (2015) Table 2. DPPH radical scavenging effect of Sargassum coreanum root and stem extracts (unit: %) Concentration (mg/ml) 1 0.5 0.1 0.05 0.005 Ethanol 95.59±0.34 Aa1) 96.85±0.34 Aa 76.93±0.82 Bc 59.32±0.13 Cb 17.03±0.18 Da Water 93.59±0.07 Ac 93.49±0.07 Ad 61.71±0.07 Bd 40.84±0.20 Cc 11.62±0.96 Db BHT 94.63±0.15 Ab 94.40±0.13 Ac 79.61±0.71 Bb 56.06±3.03 Cb 10.82±0.57 Db Ascorbic acid 95.08±0.19 Aab 95.17±0.05 Ab 95.60±0.11 Aa 95.73±0.05 Aa 18.67±1.10 Ba 1) Means with different superscripts in the same row ( A-D ) and column ( a-d ) are significantly different (p<0.05). 3.3. 환원력환원력의측정은항산화물질의환원물이노란색의 Fe 3+ /ferricyanide 복합체 (potassium ferricyanide (III)) 를 ferrous 형태로환원시켜나타난파란색의 Perl's prussian blue 의정도를 700 nm 에서측정하는원리이다. 흡광도의수치자체가시료의환원력을나타내어흡광도수치가높을수록환원력의세기가높다는것을나타낸다 [29]. 큰잎모자반뿌리및줄기의환원력을비교한결과 (Table 3), 에탄올추출물의경우 0.1, 0.5 및 1 mg/ml 의농도에서각각 0.12, 0.41, 0.68 의값을보였으며물추출물의경우에탄올추출물과같은농도에서각각 0.05, 0.15, 0.26 의값을보여에탄올추출물이물추출물보다환원력이높았으며에탄올과물추출물모두대조구인 ascorbic acid 보다는낮은환원력을보였다. 이상의결과, 에탄올추출물이물추출물보다두배이상의높은환원력을보였는데, 이는총페놀화합물함량을측정한결과에서도에탄올추출물이물추출물보다두배이상의높은폴리페놀화합물함량을나타내었다. Kim 등 [30] 의연구에서패추출물의환원력을측정한결과총페놀화합물함량이비교적높은발효주정추출물의환원력은높고총페놀화합물함량이낮은물추출물은환원력이낮다고보고하였으며, Lee 등 [35] 의결과에서도환원력은총폴리페놀화합물함량과상관관계가높은것으로나타났다. 따라서, 에탄올추출물에서환원력이더높은결과는총폴리페놀함량결과와상관관계가높을것으로사료된다. Table 3. Reducing power of Sargassum coreanum root and stem extracts (unit: Absorbance at 700 nm) Concentration (mg/ml) 1 0.5 0.1 Ethanol 0.68±0.00 Ab1) 0.41±0.01 Bb 0.12±0.00 Cb Water 0.26±0.02 Ac 0.15±0.00 Bc 0.05±0.01 Cc Ascorbic acid 1.92±0.01 Aa 0.94±0.02 Ba 0.19±0.00 Ca 1) Means with different superscripts in the same row ( A-C ) and column ( a-c ) are significantly different (p<0.05). 3.4. 금속봉쇄력철은인체내에서여러효소의중요한구성성분이되며산소의운반과세포호흡등생리과정에서필수적인금속이온이다. 그러나철의축적으로인한과잉현상은철과생체내존재하는 H 2 O 2 와의 Fenton reaction (Fe 2+ +H 2 O 2 Fe 3+ +OH+ OH ) 에의해세포노화및세포손상을야기하는강력한 hydroxyl radical 이나 superoxide radical 등의생성을촉진하여세포내지질및단백질의산화를촉진하고, 식품의가공및저장중에는지방질의산화를촉진한다 [36]. 큰잎모자반뿌리및줄기추출물의금속봉쇄력은 Table 4 와같다. 큰잎모자반뿌리및줄기의에탄올및물추출물모두 0.1, 0.5 및 1 mg/ ml 의농도에서 10% 미만의활성을나타내었으며물추출물이에탄올추출물보다활성이조금더높게나타났다. 이에대조구인 EDTA 의경우 0.1, 0.5 및 1 mg/ml 의농도에서 100% 에가까운값을보여에탄올과물추출물모두 EDTA 보다금속봉쇄력이낮게나타났다. 이는 Lee 등 [37] 의연구결과에서와송의에탄올추출물은 DPPH radical 소거능환원력에서높은효과를보였고, 물추출물은금속봉쇄력에서더높은활성을보인것으로보고되었으며, Lee 등 [38] 의연구결과에서노랑느타리버섯균사체에탄올추출물은 5 mg/ml 의농도에서 60% 이상의항산화능을가지나금속봉쇄력은 5% 미만으로나타나본연구와비슷한결과를보였다. 따라서항산화능의주된기작이금속봉쇄력에기인한것이아닌것으로사료되었으며이들의결과와꽈배기모자반추출물이 [33] 유사한경향을보이는것으로나타났다. 3.5. 유지산화안정도 Rancimat 에의한항산화지수는시료를첨가한후유지를일정한온도로가열하면서공기를주입하면유지가산화되어 aldehyde, ketone 등의저분자량휘발성산화생성물이발생하기시작한다. 이러한휘발성산화생성물들이증류수의전기전도도를증가시키면이차이를측정하여유도기간을산출함으로써일정조건에서의유지산패의정도를측정하거나항산화제의효율을분석할수있는것이다 [37]. 큰잎모자반의뿌리및줄기추출물의유지산화억제능을알아보기위해 Table 4. Chelating effect of Sargassum coreanum root and stem extracts (unit: %) Concentration (mg/ml) 1 0.5 0.1 Ethanol - 1) - - Water 7.02±2.21 NS2), b3) 5.40±1.20 b - EDTA 100.04±0.08 NS, a 100.00±0.00 a 99.65±0.60 1) -: Less than 5%. 2) NS: not significantly different in the same row. 3) Means with different superscripts in the same column ( a-b ) are significantly different (p<0.05).
큰잎모자반뿌리및줄기추출물의항산화효과 159 Table 5. Antioxidant activity of Sargassum coreanum root and stem extracts on lard oil Antioxidant index 1) (mg/ml) 5 1 0.5 Ethanol 1.48±0.12 NS2), b3) 1.43±0.21 b 1.29±0.02 b Water 1.03±0.11 NS, b 0.73±0.06 c 0.69±0.48 b BHT 12.51±0.59 Aa 8.17±0.15 Ba 6.67±0.19 Ba 1) Antioxidant index: induction time of oil containing of each extraction/ induction time of test oil. 2) NS: not significantly different in the same row. 3) Means with different superscripts in the same row (A-B) and column ( a-c ) are significantly different (p<0.05). rancimat 에의한항산화도를알아본결과 (Table 5), 에탄올추출물및물추출물은 0.5, 1, 5 mg/ml 의농도에서각각 1.29, 1.43, 1.48 및 0.69, 0.73, 1.03 의유지산화억제능을보여농도가증가함에따라유의적인차이가없는것으로나타났으며두추출물사이에도유의적인차이가거의없는것으로나타났다. 항산화효과가뛰어난것으로알려진 BHT 와비교해보았을때, BHT 의유지산화억제능은 12.51, 8.17, 6.67 로에탄올및물추출물보다활성이높은것으로나타났다. 이는 Kim 등 [39] 의연구에서패 70% 발효주정추출물을감마선조사한후 rancimat 에의한항산화도를측정한결과 5 mg/ml 의농도에서 1.07 의유지산화억제능을보여큰잎모자반뿌리및줄기의에탄올및물추출물의결과와큰차이가없었다. 항산화물질과그상태에따라유도기간이다르게나타나는것은각각의항산화물질은과산화물의생성을제어할수도있고항산화물질내부에함유한금속성분등에의해서과산화물의생성을촉진할수도있기때문이다 [40]. 4. CONCLUSION 본연구는큰잎모자반 (S. coreanum) 의뿌리및줄기의항산화활성을탐색하고자 95% 에탄올과물로각각추출하였다. 큰잎모자반뿌리및줄기의총페놀화합물함량을측정한결과, 에탄올추출물과물추출물각각 32.79 mg/g 과 15.55 mg/g 으로에탄올추출물이물추출물보다더높은페놀화합물함량을나타내었다. DPPH radical 소거능측정결과 0.05, 0.1, 0.5 mg/ml 의농도에서에탄올및물추출물은각각 59, 76, 96% 및 40, 61, 93% 로에탄올추출물이더높은 radical 소거능을보였으며, 에탄올추출물은천연항산화제인 BHT 와유사한소거능을보였다. 환원력및 rancimat 에의한유지산화억제능의경우큰잎모자반뿌리및줄기추출물은대조구에비하여낮은항산화력을나타내었다. 금속봉쇄력은 1 mg/ml 의농도에서 100% 에가까운 EDTA 에비해에탄올및물추출물모두 10% 미만의활성을보였다. 이를통해큰잎모자반뿌리및줄기에서높은 DPPH radical 소거능으로높은항산화활성을가지며특히물추출물보다에탄올추출물에서더높은활성을가지는것을알수있었다. 따라서본연구결과, 큰 잎모자반뿌리및줄기는천연항산화소재로서의활용가능성이내재되어있다고사료된다. Acknowledgements 이논문은 2014 년도정부 ( 교육부 ) 의재원으로한국연구재단의지원을받아수행된기초연구사업입니다 (No. 2012R1A6 A1028677). REFERENCES 1. Choi, S. H., E. K. Kim, S. J. Lee, Y. J. Jeon, S. H. Moon, C. H. Lee, B. T. Jeon, I. S. Park, T. K. Park, B. Kim, S. H. Park, and P. J. Park (2008) ESR spectroscopy investigation of antioxidant activity and protective effect on hydroxyl radical-induced DNA damage of enzymatic extracts from Picrorrhiza kurroa. J. Food Biochem. 32: 708-724. 2. Wiseman, H. (1996) Dietary influences on membrane function: Importance in protection against oxidative damage and disease. J. Nutr. Biochem. 7: 2-15. 3. Lee, S. H., K. N. Kim, S. H. Cha, G. N. Ahn, and Y. J. Jeon (2006) Comparison of antioxidant activities of enzymatic and methanolic extracts from Ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr. 35: 1139-1145. 4. Branen, A. L. (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. 5. Hatano, T. (1995) Constituents of natural medicines with scavenging effects of active oxygen species: Tannins and related polyphenols. J. Nat. Med. 49: 357-363. 6. Masaki, H., S. Sakaki, T. Atsumi, and H. Sakurai (1995) Activeoxygen scavenging activity of plant extracts. Biol. Pharm. Bull. 18: 162-166. 7. Cho, S. H., J. Y. Cho, S. E. Kang, Y. K. Hong, and D. H. Ahn (2008) Antioxidant activity of mojabanchromanol, a novel chromene, isolated from blown alga Sargassum siliquastrum. J. Environ. Biol. 29: 479-484. 8. Mabeau, S. and J. Fleurence (1993) Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 4:103-107. 9. Kim, Y. M., D. S. Kim, and Y. S. Choi (2004) Anticoagulant activities of brown seaweed extracts in Korea. Korean J. Food Sci. Technol. 36: 1008-1013. 10. Kumar, M., V. Gupta, P. Kumari, C. R. K. Reddy, and B. Jha (2011) Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Comp. Anal. 24: 270-278. 11. Bhaskarm, N. and K. Miyashita (2005) Lipid composition of Padina tetratomatica (Dictyotales, Phaeophyta), a brown seaweed of the west coast of India. Indian J. Fish. 52: 263-268. 12. Chandini, S. K., P. Ganesan, P. V. Suresh, and N. Bhaskar (2008) Seaweeds as a source of nutritionally beneficial compounds-a review. J. Food Sci. Technol. 45: 1-13.
160 Korean Society for Biotechnology and Bioengineering Journal 30(4): 155-160 (2015) 13. Yang, H. P. (2007) Antioxidant and antitumor activities of enzymatic extracts from Sargassum coreanum. Ph.D. Thesis. Jeju National University, Jeju, Korea. 14. Kang, B. K., K. B. W. R. Kim, M. J. Kim, S. W. Bark, W. M. Pak, N. K. Ahn, Y. U. Choi, N. Y. Bae, J. H. Park, and D. H. Ahn (2015) Anti-inflammatory effect of Sargassum coreanum ethanolic extract through suppression of NF-κB pathway in LPS-induced RAW264.7 cells and mouse. Microbiol. Biotechnol. Lett. 43: 112-119. 15. Athukorala, Y., K. W. Lee, S. K. Kim, and Y. J. Jeon (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol. 98: 1711-1716. 16. Athukorala, Y. and Y. J. Jeon (2005) Screening for angiotensin 1- converting enzyme inhibitory activity of Ecklonia cava. J. Food Sci. Nutr. 10: 134-139. 17. Ren, D., H. Noda, J. Amano, T. Mishino, and K. Nishizawa (1994) Study on antihypertensive and antihyperlipidemic effects of marine algae. Fish. Sci. 60: 83-88. 18. Ko, S. C., S. M. Kang, G. N. Ahn, H. P. Yang, K. N. Kim, and Y. J. Jeon (2010) Antioxidant activity of enzymatic extracts from Sargassum coreanum. J. Korean Soc. Food Sci. Nutr. 39: 494-499. 19. Swain, T. and W. E. Hillis (1959) The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10: 63-68. 20. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. 21. Oyaizu, M. (1986) Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315. 22. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948. 23. Cheon, S. U., J. S. Yoon, and H. O. Boo (2004) Allelopathic and antioxidant activities of extracts and residues from persimmon (Diospyros kaki Thunb.) leaves. Korean J. Weed. Sci. 24: 21-29. 24. Oh, J. Y., U. Choi, Y. S. Kim, and D. H. Shin (2003) Isolation and identification of antioxidative components from bark of Rhus javanica Linne. Korean J. Food Sci. Technol. 35: 726-732. 25. Azuma, K., M. Nakayama, M. Koshioka, K. Ippoushi, Y. Yamaguchi, K. Kohata, Y. Yamauchi, H. Ito, and H. Higashio (1999) Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food. Chem. 47: 3963-3966. 26. Kim, J. Y., J. A. Lee, and S. Y. Park (2007) Antibacterial activities of Oenothera laciniata extracts. J. Korean Soc. Food Sci. Nutr. 36: 255-259. 27. Kim, H. J., B.S. Jun, S. K. Kim, J. Y. Cha, and Y. S. Cho (2000) Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L.). J. Korean Soc. Food Sci. Nutr. 29: 1127-1132. 28. Choi, S. Y., S. Y. Kim, J. M. Hur, H. G. Choi, and N. J. Sung (2006) Antioxidant activity of solvent extracts from Sargassum thunbergii. J. Korean Soc. Food Sci. Nutr. 35: 139-144. 29. Choi, Y. M., B. H. Chung, J. S. Lee, and Y. G. Cho (2006) The antioxidant activities of Artemisia spp. collections. Korean J. Crop Sci. 51: 209-214. 30. Kim, M. J., J. S. Choi, E. J. Song, S. Y. Lee, K. B. W. R. Kim, S. J. Lee, S. J. Kim, S. Y. Yoon, Y. J. Jeon, and D. H. Ahn (2009) Effects of heat and ph treatments on antioxidant properties of Ishige okamurai extract. Korean J. Food Sci. Technol. 41: 50-56. 31. Kwon, J. W., H. K. Lee, H. J. Park, T. O. Kwon, H. R. Choi, and J. Y. Song (2011) Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. Korean J. Med. Crop Sci. 19: 325-333. 32. Choi, C. H., E. S. Song, J. S. Kim, and M. H. Kang (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J. Food Sci. Technol. 35: 1216-1220. 33. Cho, S. H., S. E. Kang, J. Y. Cho, A. R. Kim, S. M. Park, Y. K. Hong, and D. H. Ahn (2007) The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food 10: 479-85. 34. Seog, H. M., M. S. Seo, S. R. Kim, Y. K. Park, and Y. T. Lee (2002) Characteristics of barley polyphenol extract (BPE) separated from pearling by-products. Korean J. Food Sci. Technol. 34: 775-779. 35. Lee, H. R., B. R. Jung, J. Y. Park, I. W. Hwang, S. K. Kim, J. U. Choi, S. H. Lee, S. K. Chung (2008) Antioxidant activity and total phenolic contents of grape juice products in the Korean market. Korean J. Food Preserv. 15: 445-449. 36. Lee, G. H. (2014) Studies on the antioxidative activity and antidiabetic efficacy of the extract of fermented A. victorialis var. platyphyllum. Ph.D. Thesis. Joongbu University, Korea. 37. Lee, S. J., E. J. Song, S. Y. Lee, K. B. W. R. Kim, S. J. Kim, S. Y. Yoon, C. J. Lee, and D. H. Ahn (2009) Antioxidant activity of leaf, stem and root extracts from Orostachys japonicus and their heat and ph stabilities. J. Korean Soc. Food Sci. Nutr. 38: 1571-1579. 38. Lee, Y. L., G. W. Huang, Z. C. Liang, and J. L. Mau (2007) Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT -Food Sci. Technol. 40: 823-833. 39. Kim, M. J., E. J. Song, S. Y. Lee, K. B. W. R. Kim, S. J. Kim, S. J. Lee, S. Y. Yoon, A. R. Kim, Y. J. Jeon, J. G. Park, J. I. Choi, J. W. Lee, M. W. Byun, and D. H. Ahn (2008) Effects of γ-irradiation on antioxidant and physicochemical properties of Ishige okamurai extracts. J. Korean Soc. Food Sci. Nutr. 37: 1485-1490. 40. Martínez-Tomé, M., M. A. Murcia, N. Frega, S. Ruggieri, A. M. Jiménez, F. Roses, and P. Parras (2004) Evaluation of antioxidant capacity of cereal brans. J. Agric. Food Chem. 52: 4690-4699.