J Korean Soc Food Sci Nutr 한국식품영양과학회지 43(7), 1017~1024(2014) http://dx.doi.org/10.3746/jkfn.2014.43.7.1017 토종발효미생물을이용한오디발효주의항산화활성및향기성분분석 채규서 정지혜 윤해훈 손락호 ( 재 ) 고창복분자연구소 Antioxidant Activity and Main Volatile Flavor Components of Mulberry Wine Fermented with Saccharomyces cerevisiae B8 Kyu Seo Chae, Ji Hye Jung, Hae Hoon Yoon, and Rak Ho Son Gochang Black Raspberry Research Institute ABSTRACT This study was carried out to develop mulberry wines fermented with traditional microorganisms (Saccharomyces cerevisiae B8). S. cerevisiae B8 is a traditional fermentation microorganism isolated from domestically grown Rubus occidentalis. Each S. cerevisiae B8 and Fermivin was inoculated into mulberry up to 1 10 9 CFU/kg, followed by incubation at 25 C for 10 days. Mulberry fermented with S. cerevisiae B8 () had a high alcohol content (16.47%), and the fermentation rate of was faster than that of mulberry fermented with Fermivin (). The total polyphenol and flavonoid contents of were higher than those of. DPPH radical scavenging activity of was as high as that of. ABTS radical scavenging activity of was higher than those of and mulberry juice (MBJ). In addition, reducing power of was much higher than other samples. Flavor constituents of the two fermented wines were analyzed by gas chromatography and mass spectrometry. Twentythree compounds from the sample were separated and identified as fifteen esters, six alcohols, an aldehyde, and an acetate. Particularly, tetradecanoic acid, ethyl ester of orris and violet flavor were ten times more abundant in than in. Several ester components were two times more abundant in than in. In conclusion, current findings indicate that might have better antioxidant activities with flavor, which contributes to improved wine production with high quality and function. Key words: mulberry, antioxidant activity, flavor component, traditional microorganism, fermentation 서 최근수많은식품소재들의건강증진효능및질병예방효과가밝혀지면서소비자들은과거식품이갖는영양소공급을위한 1차적기능을넘어식품의생리활성측면에대한관심이증대되고있다 (1). 그중에서과실에는강력한항산화효과를가지는여러가지생리활성성분, 즉비타민, 카로티노이드및플라보노이드와같은페놀성화합물이많이존재하는것으로알려지고있는데, 이러한성분들은산화적스트레스에의해발생되는항궤양, 항경련, 위장관의위액분비조절과설사예방, 당뇨예방, 암, 심장병및퇴행성질병들의예방과감소에크게기여한다고보고되고있다 (24). 산화적스트레스를유발하는 free radical은수많은화합물의화학적반응및여러가지산화, 환원반응등내적요인과흡연, 음주, 스트레스, 대기오염등외적요인에의해생성되며, 생체내에서 free radical 반응에의해생성되는활성산 Received 28 February 2014; Accepted 12 May 2014 Corresponding author: Rak Ho Son, Gochang Black Raspberry Research Institute, Gochang, Jeonbuk 585943, Korea Email: sonnaco@hanmail.net, Phone: +82635605191 론 소종 (reactive oxygen species, ROS) 은 DNA 분절과단백질의불활성화및과산화반응을일으켜생체기능을저하시킴으로써여러질환을유발하는원인이된다 (57). 대표적인항산화음식으로알려져있는와인은생활수준의향상과여성의사회진출, 저가의와인공급등으로대중화를불러왔으며 (8), 와인의다양한생리활성이검증되면서단감 (9), 오디 (10,11), 머루 (12), 살구 (13) 등다양한원료를이용한와인관련연구가꾸준히진행되고있다. 오디 (Morus alba, mulberry) 는뽕나무과 (Moraceae) 뽕나무속 (Morus) 에속하는낙엽활엽교목의성숙한열매로검은색또는자홍색을띠고, 5월에서 6월에채취하여식용으로이용하거나한약재로사용하기도한다 (14). 오디는 상심자 로불리며백발을검게하고소갈 ( 당뇨 ) 을덜어주며오장을이롭게하는자양강장제뿐만아니라빈혈, 고혈압, 관절통및대머리치료제로써사용되고있으며 (15), 다량의안토시아닌계및 naphthoquinone계색소를함유하고있다. 현재까지오디에대한기능성연구로는오디의항당뇨효과 (16), 뽕나무오디추출물의항염증항산화작용에대한생리활성에관한연구 (17), 꾸지뽕나무의폴리페놀함량과항산화효과 (18), 뽕나무와꾸지뽕나무의수용성추출물에의한
1018 채규서 정지혜 윤해훈 손락호 항산화활성연구 (19), 품종이다른오디추출물의 Helicobacter pylori에대한항균활성및항산화효과 (20), 오디추출물의신경세포보호활성및항균활성 (21), 오디추출물의알코올분해능및항산화효과 (22) 등의오디및그추출물에대한기능성연구가많이보고되었다. 과실발효주는원료의특성이품질에가장큰영향을미치지만발효에사용되는효모에따라서도품질의차이가나타난다. 따라서오디발효주에적합한효모의선택은오디발효주의맛과품질특성을결정하는중요한요소이다. 대표적인과실주인포도주생산시사용되는효모대부분은 Saccharomyces cerevisiae이며다른효모에비하여가장많은알코올을생산하는효모라고보고된바있다 (23,24). 본연구에서는다양한생리활성이알려지면서관심과활용가치가높아진오디를이용하여국내복분자로부터분리된토종발효미생물인 S. cerevisiae B8(KCCM11415) 과대조군으로현재상업적인주류제조에많이사용되는 S. cerevisiae Fermivin을이용하여발효주를제조한후, 이에대한품질특성확인및항산화활성을비교하고향기성분을분석하여토종발효미생물 (S. cerevisiae B8) 을이용한오디발효주의개발가능성을알아보고자하였다. 재료및방법실험재료본실험에사용된오디 ( 과상2호 ) 는전라북도고창군에서 2012년에수확한것을구입하여 40 C에서냉동보관하여사용하였다. 보당에사용된설탕은 ( 주 ) 삼양사 (Seoul, Korea) 에서구입하였다. 발효에사용된효모는시판건조효모 Saccharomyces cerevisiae Fermivin(DSM Food Specialties, B.V., Heerlen, Netherlands) 과순창군발효미생물관리센터 (Sunchang Research Center for Fermentation Microbes, Sunchang, Korea) 가국내복분자로부터분리한토종발효미생물인 Saccharomyces cerevisiae B8( 기탁번호 KCCM11415) 을분양받아사용하였다. 발효주제조오디의발효에사용한효모 S. cerevisiae B8은 YPD (1% bacto yeast extract, 2% bacto peptone, 2% dextrose) 배지 (Difco, Sparks, MD, USA) 를사용하여 25 C에서 48시간동안진탕배양한후 10,000 g에서 10분간원심분리하여얻은균체를사용하였다. 또한시판건조효모 Fermivin은계량하여 15% 설탕용액에 20 C에서 10 15 분간배양한후활성화시켜발효에사용하였다. 오디발효주제조과정은오디 10 kg을으깬뒤설탕을 2.0 kg( 과실무게의 20%) 을넣어보당한후 Fermivin 및 S. cerevisiae B8을오디 1 kg당약 1 10 9 CFU가되도록접종하여교반해준다음 25 C에서 8~11일동안발효시켰으며, 발효가완료된오디발효주는유압압착기 (Stainless 70L, Tomotech Ltd., Seoul, Korea) 를사용하여 1차여과하였고그다음 5 C에서 2일동안냉동보관하여 pore size 1.2 μm membrane filter를사용하여여과하였다. 발효특성알코올함량은알코올분석기세트 (Alcoholyzer wine, Anton Paar, Graz, Austria) 를이용하여측정하였으며, 당도는상온에서굴절계 (PAL1 Pocket Refractometer, ATAGO, Tokyo, Japan) 를이용하여측정하였다. ph는 ph meter(s20, Mettler Toledo, Schwerzenbach, Switzerland) 로측정하였으며, 총산도는 AOAC 방법 (25) 에의해오디발효주 10 ml를 0.1 N NaOH 용액으로 ph 8.3까지중화시키는데소비된 0.1 N NaOH의소비량으로정의하였고 citric acid(%, w/w) 로표시하였다. 환원당은 dinitrosalicylic acid method에따라 UV/VIS spectrophotometer(uv2450, Shimadzu, Kyoto, Japan) 를이용하여 550 nm에서흡광도를측정하고표준물질 glucose(sigma Aldrich Co., St. Louis, MO, USA) 를농도별로제조하여정량하였다 (26). 총폴리페놀및총플라보노이드함량측정식물체에존재하는페놀화합물은 2차대사산물로서분자내에하나이상의 hydroxyl기를가지고있어서단백질및거대분자들과결합하는성질이있고 2가금속이온과의결합력이우수하며수소공여작용을통해 free radical을제거함으로써항산화작용과항암등의효과를나타내는것으로알려져있다 (27,28). 총폴리페놀함량은페놀성물질인 phosphomolybdic acid와반응하여청색을나타내는원리를이용한 FolinDenis 방법 (29) 을이용하여측정하였다. 시료액 1 ml에 FolinCiocalteau's phenol reagent 1 ml 를가하고 3분간반응시킨다음 10% Na 2CO 3 1 ml를넣고 1시간동안실온에서반응시킨후 UV/VIS spectrophotometer(uv2450, Shimadzu Co.) 를사용하여 700 nm에서비색정량하였다. 이때 gallic acid(sigmaaldrich Co.) 를표준물질로사용하여검량곡선을작성하고이로부터총폴리페놀함량을구하였다. 총플라보노이드함량은 Davis 방법 (30) 을이용하여측정하였다. 시료액 1 ml에 diethylene glycol 2 ml, 1 N NaOH 0.02 ml를가한다음 37 C 항온수조에서 1시간동안반응시킨후 UV/VIS spectrophotometer(uv2450, Shimadzu Co.) 를사용하여 420 nm에서흡광도를측정하였다. 이때총플라보노이드함량은 rutin(sigmaaldrich Co.) 을표준물질로사용하여검량곡선을작성하고이로부터총플라보노이드함량을구하였다. 2,2Diphenyl1picrylhydrazyl(DPPH) radical 소거활성측정 DPPH는아스코르빈산및토코페롤, polyhydroxy 방향
토종발효미생물을이용한오디발효주의항산화활성및향기성분분석 1019 족화합물, 방향족아민류에의해전자나수소를받아불가역적으로안정한분자를형성하여환원되어짐에따라짙은자색이탈색되어지는원리를이용하여다양한천연소재로부터항산화물질탐색에이용되고있다 (31). DPPH radical 소거활성은 Choi 등 (32) 의방법을일부변형하여측정하였다. 즉농도별로조제한시료액 0.1 ml에 ethanol 0.2 ml를가하고 2 10 4 M DPPH 용액 0.3 ml를 5초간 vortex mixer로혼합하여실온에서 30분간반응시키고 ELISA (Synergy HT, BioTek, Washington, DC, USA) 를사용하여 517 nm에서흡광도를측정하였다. 대조구는시료대신에 ethanol을첨가하여실험하였다. DPPH radical scavenging =(1 A activity (%) B ) 100 A: absorbance of sample, B: absorbance of blank ABTS radical 소거활성측정 ABTS radical을이용한항산화활성의측정은 potassium persulfate와의반응에의해생성된 ABTS radical이추출물내의항산화물질에의해제거되어 radical 특유의색인청록색이탈색되는것을이용한방법으로 DPPH 방법과함께항산화활성을탐색하는데자주이용되고있다 (33). ABTS assay는 Arts 등 (34) 의방법을변형하여측정하였다. 즉농도별로조제한시료액 5 μl에 ABTS radical 용액 195 μl를첨가하여 7분간반응시킨후 ELISA(Synergy HT, BioTek) 를사용하여 734 nm에서흡광도를측정하였고, 대조구는시료대신에 ethanol을첨가하여실험하였다. ABTS radical scavenging =(1 A activity (%) B ) 100 A: absorbance of sample, B: absorbance of blank 환원력 환원력은 Oyaizu(35) 의방법을변형하여측정하였다. 농도별로조제한시료액 1 ml에 0.2 M phosphate buffer(ph 6.6, 2.5 ml) 와 1% K 2Fe(CN) 6 2.5 ml를첨가하고 water bath(50 C, 20 min) 에서반응시켰다. 반응액에 10% trichloroacetic acid 2.5 ml를첨가하여원심분리 (3,000 g, 5 min) 한후상등액 2.5 ml를취한후증류수 2.5 ml와 0.1% FeCl 3 0.5 ml를첨가하여 700 nm(uv2450, Shimadzu Co.) 에서측정하였다. 향기성분분석각각의시료액은 gas chromatography(gc2010, Shimadzu Co.) 에 mass selective detector(240ms, Shimadzu Co.) 를부착한 GC/MS를사용하여각각의향기성분을분석하였다. GC에의하여분리된각각의휘발성향기성분은 Kovats gas chromatographic pattern을 authentic chemical의 pattern과비교하였다. 휘발성향기성분의 GC 분석조건으로 analytical column은 ZB5MS(0.25 μm ID 60 m, 0.25 μm film thickness, Phenomenex Inc., Torrance, CA, USA) 를사용하였고, injector 온도는 250 C, oven 온도는 50 C에서분당 3 C로 250 C까지올린후 20 분간유지하도록하였다. Carrier gas는 He을사용하였고평균 flow rate는 1 ml/min로고정하였다. 한편휘발성향기성분의동정을위한 MS의분석조건으로 MS ionization voltage는 70 ev, source 온도는 200 C, inter face temperature는 250 C, mass spectrum scan range는 50 500 m/z로하였다. 통계처리본연구의실험결과에서평균과표준편차는 SPSS program 12.0(Statistical Package for Social Sciences, SPSS Inc., Chicago, IL, USA) 을이용하여계산하였고, 최소유의차검정 (LSD) 에의해평균간의유의차를 95% 유의수준 (P<0.05) 에서 Duncan's multiple range test에의해유의성을검정하였다. 결과및고찰오디발효주의발효특성토종발효미생물 S. cerevisiae B8과수입시판건조효모 Fermivin을이용한오디의발효특성을확인하기위하여발효기간에따른이화학적특성을측정하였다 (Table 1, Fig. 1). 본연구에사용된오디의당도는 12.3 Brix, 환원당 14.77% 였으며과실무게에대한 20% 보당후당도는 30.4 Brix, 환원당 37.45% 였다 (Table 1). S. cerevisiae B8의 Table 1. Physicochemical characteristics of mulberry and mulberry wines with fermented using two yeast Samples Alcohol content (%,v/v) Soluble solid ( Brix) Reducing sugar (%, w/v) ph Total acidity (% as citric acid) Mulberry 0 12.3±0.03 14.77±0.06 5.17±0.01 0.22±0.03 Before primary fermentation 0 30.4±0.28 37.45±0.02 5.17±0.01 0.24±0.01 After primary fermentation 1) 15.44±0.10 b2)3) 11.2±0.05 a 1.79±0.12 a 4.30±0.17 b 0.75±0.02 a 16.47±0.11 a 10.5±0.22 b 1.68±0.05 a 4.51±0.15 a 0.45±0.01 b 1), mulberry fermented with Fermivin;, mulberry fermented with Saccharomyces cerevisiae B8. 2) Values are the mean±sd (n=3). 3) Values within a column (different microorganism) followed by different superscripts are significantly different at P<0.05.
1020 채규서 정지혜 윤해훈 손락호 A Alcohol content (%). B ph. 20 18 16 14 12 10 8 6 4 2 0 6 5 4 3 2 1 0 Alcohol content of Alcohol content of Soluble solid of Soluble solid of 0 1 2 3 4 5 6 7 8 9 10 Fermentation time (days) ph of ph of Total acidity of Total acidity of 0 1 2 3 4 5 6 7 8 9 10 Fermentation time (days) Fig. 1. Changes in quality characteristics (alcohol content, soluble solid, ph, and total acidity) of mulberry wines fermented using two yeast (Fermivin, S. cerevisiae B8) during fermentation time. A: alcohol content, soluble solid of and, B: ph and total acidity of and. 발효양상은발효 2일째부터알코올생성량이급격하게증가하여 5일째에알코올생성량및당도의변화가정지하여발효완료후최종알코올 16.47%, 당도 10.5 Brix, 환원당 1.68% 로나타났다. 대조군으로사용된 Fermivin은 10일째에발효가완료되어이와비교하였을때 Fig. 1과같이 S. cerevisiae B8의발효속도가약 2배빠르며최종알코올생성량이약 1% 정도높은것으로확인되었다. Kim 등 (36) 에따르면오디를 30 Brix로보당하여 S. cerevisiae KCCM12224를이용하여발효하였을때 14.4% 의알코올을생성한다고보고하였으며, 본실험결과와비교시 S. cerevisiae B8이약 1~2% 높은알코올생성량을나타내었다. 이는균주에따라서각각다른알코올생성량을나타내는것으로사료된다. 발효기간동안의 ph 및산도의변화는 Fig. 1과같이초기 ph 5.17에서조금씩감소하였으며산도는 0.24% 에서발효가진행됨에따라 Fermivin은 0.75%, S. cerevisiae B8은 0.45% 로증가하였다. S. cerevisiae B8은일반적인과실주의총산함량이 0.4~0.6% 정도라는보고 (37) 와일치하는결과를보였으나 Fermivin은이를벗어나조금높은결과를보여 B8이과실주에적합한안정된산도값을보임을알수있었다. 본연구결과빠른발효속도및우수한알코올생성능을보인 S. cerevisiae B8은현재양조산업에주로이용되고 35 30 25 20 15 10 5 0 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Souble solid ( Brix). Total acidity (%). Table 2. The total polyphenol and total flavonoid contents of mulberry juice and mulberry wines Samples 1) MBJ Total polyphenol content (GAE 2) mg/ml) 2.01±0.02 a4)5) 1.90±0.02 b 1.97±0.01 a Total flavonoid content (RU 3) mg/ml) 0.77±0.05 a 0.60±0.02 b 0.57±0.01 b 1) MBJ, mulberry juice;, mulberry wine fermented with Fermivin;, mulberry wine fermented with Saccharomyces cerevisiae B8. 2) Total polyphenol contents was expressed as mg gallic acid (GAE) per 100 gram. 3) Total flavonoid contents was expressed as mg rutin (RU) per 100 gram. 4) Values are the mean±sd (n=3). 5) Values within a column (different microorganism) followed by different superscripts are significantly different at P<0.05. 있는시판효모인 Fermivin을대신하여오디발효주제조에산업적으로사용가능함을확인하였다. 총폴리페놀및총플라보노이드함량오디의착즙액 (MBJ) 과시판건조효모 Fermivin으로발효한발효주 () 및토종발효미생물 S. cerevisiae B8로발효한발효주 () 에대한총폴리페놀함량및총플라보노이드함량을비교한결과는 Table 2와같다. MBJ의총폴리페놀함량은 2.01±0.02 GAE mg/ml의함량을나타내었고, 가 1.90±0.02 GAE mg/ml, 는 1.97±0.01 GAE mg/ml로 Lee 등 (38) 의효모종류를달리하여제조한 black raspberry 발효주의품질특성연구에서균주별로발효하였을때총폴리페놀함량이감소한다는연구보고와같은경향을보이지만 는유의적인차이를보이지않을만큼높은함량을보였으며, 는유의적으로함량이감소하여 에비해 가상대적으로높은함량을가진다. 지질과산화에대한항산화제 (39) 로알려져있는총플라보노이드의함량을비교한결과도오디생과를착즙한 MBJ 가 0.77±0.05 RU mg/ml로가장높은함량을보였고, 가 0.60±0.02 RU mg/ml, 는 0.57±0.01 RU mg/ml 로두종류의발효주모두발효하였을때총플라보노이드함량이총폴리페놀과같이감소하는경향을보였으며, 두종의발효주간의함량에유의적인차이는나타나지않았다. DPPH radical 소거활성측정오디의착즙액과시판건조효모 Fermivin 및토종발효미생물 S. cerevisiae B8을이용하여발효한발효주의 DPPH radical 소거활성을측정한결과는 Table 3과같다. MBJ의 IC 50 값은 114.60±3.19 μl/ml의활성을나타냈으며, 가 70.86±0.79 μl/ml, 는 73.62±0.37 μl/ml로활성이 1.5배이상증가하여발효후에오디착즙액보다우수한활성을보였다. 이러한결과는 Joo 등 (40) 의연구에서
토종발효미생물을이용한오디발효주의항산화활성및향기성분분석 1021 Table 3. Comparison of IC 50 values of DPPH and ABTS radical scavenging activity of mulberry juice and mulberry wines Samples 1) DPPH radical scavenging activity ABTS radical scavenging activity (IC 50 μl/ml) 2) MBJ 114.60±3.19 a3)4) 70.86±0.79 b 73.62±0.37 b 20.72±0.30 a 19.90±0.19 b 19.16±0.25 c 1) Samples are the same as in Table 2. 2) Inhibitory activity was expressed as the mean of 50% inhibitory concentration of triplicate determines, obtained by interpolation of concentration inhibition curve. 3) Values are the mean±sd (n=3). 4) Values within a column (different microorganism) followed by different superscripts are significantly different at P<0.05. 과즙보다와인에서 DPPH radical 소거활성이증가하였다는보고와같은경향을보였으며, Kwon(41) 의오디발효추출물의항산화효과연구에서추출물보다발효물에서활성이증가하였다는결과와도일치하였다. 이는발효를통해생성된대사산물이나성분변성이유효성분으로작용하여활성이증가한것으로생각된다. 또한 의 DPPH 소거활성이 보다높은활성을보였으나유의적인차이는없어, 시판건조효모인 Fermivin으로제조한발효주와비교해도토종발효미생물로제조한발효주의우수한활성을확인하였다. ABTS radical 소거활성측정오디착즙액과시판건조효모 Fermivin 및토종발효미생물 S. cerevisiae B8을이용하여발효한발효주의 ABTS radical 소거활성을측정한결과는 Table 3과같이발효후활성이증가하는것을확인하였다. 의 IC 50 값은 19.90±0.19 μl/ml로발효후활성이증가하였으며, 가 19.16±0.25 μl/ml로유의적으로가장높은활성을보였다. 결론적으로 는양이온 radical인 ABTS에잘반응하는항산화물질이많을것으로생각되었으며 (42), 오디를토종발효미생물인 S. cerevisiae B8로발효한오디발효주가시판건조효모로발효한발효주보다더높은활성을보여토종발효미생물인 S. cerevisiae B8의활용가능성을확인하였다. 환원력과산화의전구물질과반응하여과산화형성을억제하는 (43) 환원력을확인하였다. 오디착즙액과시판건조효모 Fermivin 및토종발효미생물 S. cerevisiae B8을이용하여발효한발효주의 10, 25, 50, 75, 100 μl/ml 농도에서환원력을측정한결과는 Table 4와같다. 모든시료에서농도의존적으로활성이증가하였는데, 이는 Jeong 등 (44) 의꾸지뽕나무열매추출물의환원력을측정한연구에서추출물의농도가증가함에따라환원력이농도의존적으로증가한다는보고와본실험의결과가같은경향을보였으며, 가비교와인인 보다농도의존적으로높은환원력을보였다 (Table 4). 위의 DPPH radical 소거활성, ABTS radical 소거활성, 환원력등항산화활성에대한실험결과, 토종발효미생물 S. cerevisiae B8을이용하여만든오디발효주가시판건조효모 Fermivin을이용하여만든발효주에비해 ABTS 소거활성, 환원력에대해더높은항산화활성을보였고, DPPH radical 소거활성도유의적인차이는나타나지않았으나높은활성 (73.62±0.37 μl/ml) 을보이는등의결과로보아, 토종발효미생물 S. cerevisiae B8을이용하여발효주를제조하면항산화활성이우수한와인으로서의이용가치가높을것으로판단된다. 향기성분분석위항산화실험결과와같이토종발효미생물인 S. cerevisiae B8을이용한오디발효주의높은항산화활성과함께향미와식향에도움을줄수있는지확인하기위해 Fermivin으로발효한오디발효주 () 와의향기성분을분석 비교하였다. 두종의효모를이용하여발효한발효주의향기성분을분석한결과는 Table 5와같다. 오디발효주에서분석된 23개의휘발성분은술의향기성분에크게관여하는과일향이나와인향의풍미를지닌 ester류 15종과바나나, 배향의 acetate류 1종, aldehyde류 1종과술의주성분인 ethyl alcohol을제외한 alcohol 6종이분석되었다. 와 의주요향미성분인 15종의 ester류화합물은포도주향을지니는 ethyl caprylate와달콤하면서견과류향 (45) 을나타내는 decanoic acid, ethyl ester가 보다 에서 2배이상높은함량을보였으며, 특히부드럽고 orris, violet과같은 oil 특성 (46) 을나타내는 tetradecanoic acid, ethyl ester는 보다 가약 10배많은함량을보였다. 그밖에파인애플향의 butanoic acid, ethyl ester와사과향을지닌 hexanoic acid, ethyl ester 그리고 Table 4. Reducing power of mulberry juice and mulberry wines Samples 1) 10 μl/ml 25 μl/ml 50 μl/ml 75 μl/ml 100 μl/ml MBJ 0.257±0.019 b2)3) 0.251±0.008 b 0.290±0.017 a 0.675±0.023 a 0.583±0.005 c 0.626±0.009 b 1.310±0.029 a 1.110±0.008 c 1.180±0.011 b 1.945±0.034 a 1.639±0.011 c 1.724±0.009 b 2.564±0.035 a 2.184±0.024 c 2.248±0.030 b 1) Samples are the same as in Table 2. 2) Values are the mean±sd (n=3). 3) Values within a column (different microorganism) followed by different superscripts are significantly different at P<0.05.
1022 채규서 정지혜 윤해훈 손락호 Table 5. Comparison of volatile components of mulberry wine fermented with traditional microorganism and Fermivin Compound name Isoamyl alcohol Butanoic acid, ethyl ester NAmyl alcohol 1Hexanol Isoamyl acetate 1Butanol, 3methyl, acetate Benzaldehyde Hexanoic acid, ethyl ester Ethyl 2hydroxy4methylvalerate Ethyl enanthate Benzoic acid, ethyl ester Diethyl butanedioate 1Isopropyl4methyl3cyclohexen1ol Terpinenol4 Ethyl caprylate Nonanoic acid, ethyl ester Decanoic acid, ethyl ester Propanedioic acid, methyl, bis(1methylpropyl) ester Butanedioic acid, methyl, bis(1methylpropyl) ester Dodecanoic acid, ethyl ester Trimethylsilyl 2,6bis[(trimethylsilyl)oxy]benzoate Tetradecanoic acid, ethyl ester Hexadecanoic acid, ethyl ester Samples are the same as in Table 1. 1) Retention time. R.T. 1) Area R.T. Area 9.08 10.36 10.57 13.96 14.24 19.13 18.83 20.61 23.73 25.83 29.75 29.98 30.38 30.88 35.67 40.18 43.69 48.48 55.93 62.69 10,731,901 1,200,583 854,431 517,128 456,286 5,530,418 645,203 1,058,130 245,828 88,527 73,589 1,649,692 220,427 831,610 115,902 308,192 110,534 289,728 154,328 305,109 9.05 10.35 13.97 17.50 18.83 20.62 25.85 29.99 30.39 30.89 40.18 43.69 47.79 48.48 49.70 55.93 62.69 35,205,118 1,512,074 798,718 8,086,915 2,513,630 1,260,305 116,364 1,807,881 121,273 1,845,341 650,672 121,258 263,911 350,292 309,380 1,510,064 777,387 와인향기를지닌 ethyl enanthate, 부드러운 waxy 향의 hexadecanoic acid, ethyl ester 등대부분술의향미에크게관여하는 ester류화합물이 보다토종발효미생물 S. cerevisiae B8로발효한발효주인 에서더높은함량을보였다. 이와같은오디발효주의향기성분분석결과토종발효미생물 S. cerevisiae B8은시판효모인 Fermivin으로발효한발효주보다풍미나식향을향상시킬수있는대부분의 ester류의함량이약 2배에서많게는약 10 배정도훨씬높은함량을보여 S. cerevisiae B8로발효하여제조한와인은식향이나풍미향상에도움을줄것으로생각된다. 요약본연구에서는토종발효미생물 S. cerevisiae B8을이용한오디발효주 () 와시판건조효모 Fermivin을이용한오디발효주 () 의발효품질특성을비교하였고, 항산화능을확인하기위하여두종의제조된발효주와오디생과착즙액의총폴리페놀과총플라보노이드함량및 DPPH radical 소거활성, ABTS radical 소거활성, 환원력을측정하였다. 또한토종발효미생물 S. cerevisiae B8로발효한발효주의향기성분을 Fermivin 발효주의향기성분과비교하여풍미나식향에대한영향을분석하였다. S. cerevisiae B8은국내복분자로부터분리된토종발효미생물이며, 이 와 Fermivin을각각오디에 1 10 9 CFU/kg으로접종하여 25 C에서 10일동안발효를진행하였다. 그결과 의최종품질은알코올 15.44%, 당도 11.2 Bx, 산도 0.75% 로발효속도는 보다약 2배정도빠르며최종알코올생성량이약 1% 정도높아우수한알코올생성능을보였다. 총폴리페놀함량은 가 1.90±0.02 GAE mg/ml, 는 1.97±0.01 GAE mg/ml로 Fermivin보다토종발효미생물인 S. cerevisiae B8로발효한 가가장높은함량을보였고, 의총플라보노이드함량 (0.57±0.01 RU mg/ ml) 은 와비슷한함량을보였으며, MBJ보다는감소하는경향을보였다. 항산화활성검증을위한 DPPH radical 소거활성의 IC 50 값을비교한결과오디착즙액보다두종의발효주의활성이증가하였고, (73.62±0.37 μl/ml) 와 (70.86±0.79 μl/ml) 간에유의적인차이는없었다. ABTS radical 소거활성결과 IC 50 값은 (19.16±0.25 μl/ml), (19.90±0.19 μl/ml), 착즙액순으로높은활성을보였고, 환원력도 가 보다농도의존적으로높은활성을보여항산화활성실험결과 가 보다우수한활성을보였다. 두종의오디발효주에서분석된 23 개의휘발성분 (Table 4) 중술의향기성분에크게관여하는과일향이나와인향의풍미를지닌 ester류 15종과과일향의 acetate류 1종, aldehyde류 1종과술의주성분인 ethyl alcohol을제외한 alcohol 6종이분석되었다. Ethyl caprylate와달콤하면서견과류향을나타내는 decanoic acid,
토종발효미생물을이용한오디발효주의항산화활성및향기성분분석 1023 ethyl ester가 보다 2배이상높은함량을보였으며, 부드럽고 orris, violet과같은 oil 특성을나타내는 tetradecanoic acid, ethyl ester는 보다 가약 10배많은함량을보였다. 그외술의향미에크게관여하는 ester 류화합물이 보다 에서대체적으로더높은함량을보였다. 결과적으로토종발효미생물 S. cerevisiae B8 을이용한발효주는시판되는 Fermivin을이용한발효주보다우수한항산화활성을보였으며, 향기성분분석결과상대적으로풍부한 ester 화합물을지녀향미나식향에도도움을줄것으로판단되어토종발효미생물 S. cerevisiae B8의산업적활용가치가높을것으로판단된다. 감사의글 본연구는 산업통상자원부, 한국산업기술진흥원, 호남지역사업평가원 의 광역경제권선도산업육성사업 으로수행된연구결과의일부로서연구비지원에깊은감사를드립니다. REFERENCES 1. Han JH, Song YJ, Park SH. 2004. Development of drink from composition with medicinal plants and evaluation of its physiological function in aorta relaxation. Korean J Oriental Physiology & Pathology 18: 10781082. 2. Azuma K, Kakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H. 1999. Phenolic antioxidant from the leaves of Corchorus olitorius L. J Agric Food Chem 47: 39633966. 3. Ham SS, Oh DH, Hong JK, Lee JH. 1997. Antimutagenic effects of juices from edible Korean wild herbs. J Food Sci Nutr 2: 155161. 4. Cho YJ, Ju IS, Kim BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ. 2007. Biological activity of Omija (Schizandra chinensis Baillon) extracts. J Korean Soc Appl Biol Chem 50: 198203. 5. Halliwell B. 1996. Antioxidants in human health and disease. Annu Rev Nutr 16: 3350. 6. Morrissey PA, O'brien NM. 1998. Dietary antioxidants in health and disease. Int Dairy J 8: 463472. 7. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 4484. 8. Jeon HM. 2009. A study on wine selection attributes and behavioral intention by segmentation based on purchase and drinking motive focused on wine retail shop customers in seoul. J Foodservice Management Soc Korea 12: 2950. 9. Bae SM, Park KJ, Kim JM, Shin DJ, Hwang YI, Lee SC. 2002. Preparation and characterization of sweet persimmon wine. J Korean Soc Agric Chem Biotechnol 45: 6670. 10. Jung GT, Ju IO, Choi DG. 2005. Quality characteristics and manufacture of mulberry wine. Korean J Food Preserv 12: 9094. 11. Kim YS, Jeong DY, Shin DH. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Korean J Food Sci Technol 40: 6369. 12. Kang BT, Yoon OH, Lee JW, Kim SH. 2009. Qualitative properties of wild grape wine having different aging periods. Korean J Food & Nutr 22: 548553. 13. Jung GT, Ju IO, Ryu J, Choi JS, Choi YG. 2003. Studies on manufacture of wine using apricot. Korean J Food Preserv 10: 493497. 14. Park SW, Jung YS, Ko GC. 1997. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacological screening. J Kor Soc Hort Sci 38: 722724. 15. Kim SK. 1991. Benefical medicine, mulberry fruit. In Bonchohak. Younglimsa, Seoul, Korea. p 598605. 16. Kim TW, Kwon YB, Lee JH, Yang IS, Youm JK, Lee HS, Moon JY. 1996. A study on the antidiabetic effect of mulberry fruit. Korean J Seric Sci 38: 100107. 17. Kim SY, Park KY, Lee WC. 1998. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J Medicinal Crop Sci 6: 204209. 18. Cha JY, Kim HJ, Chung CH, Cho YS. 1999. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J Korean Soc Food Sci Nutr 28: 13101315. 19. Kim HJ, Cha JY, Choi ML, Cho YS. 2000. Antioxidative activities by watersoluble extracts of Morus alba and Cudrania tricuspidata. J Korean Soc Agric Chem Biotechnol 43: 148152. 20. Cho YJ, Chun SS, Lee KH, Kim JH, Kwon HJ, An BJ, Kim MU. 2006. Screening of the antimicrobial activity against Helicobacter pylori and antioxidant by extracts from mulberry fruits (Morus albba L.). J Korean Soc Food Sci Nutr 35: 1520. 21. Kim HB, Kim SY, Lee HY, Kim SL, Kang SW. 2005. Protective effect against neuronal cell and inhibitory activity against bacteria of mulberry fruit extracts. Korean J Crop Sci 50: 220223. 22. Lee EJ, Bae JH. 2011. Study on the alleviation of an alcohol induced hangover and the antioxidant activity by mulberry fruit. Korean J Food & Nutr 24: 204209. 23. Kim DS. 1998. Food fermentation microbiology. Yu Han Pub. Co., Seoul, Korea. p 250. 24. Choi HS, Kim MK, Park HS, Kim YS, Shin DH. 2006. Alcoholic fermentation of Bokbunja (Rubus coreanus Miq.) wine. Korean J Food Sci Technol 38: 543547. 25. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 3235. 26. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426428. 27. Lee SY, Shin YJ, Park JH, Kim SM, Park CS. 2008. An analysis of the Gyungokgo's ingredients and a comparison study on antioxidation effects according to the kinds of extract. Kor J Herbology 23: 123136. 28. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ. 2010. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J Agric Life Sci 44: 5766. 29. Amerine MA, Ough CS. 1980. Methods for analysis of musts and wine. John Wiley & Sons, New York, NY, USA. p 176180. 30. Chang CC, Yang MH, Chen JC. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10: 178182. 31. Jeong HS, Han JG, Ha JH, Kim Y, Oh SH, Kim SS, Jeong MH, Choi GP, Park UY, Lee HY. 2009. Antioxidant activities and skinwhitening effects of nanoencapsuled water extract from Rubus coreanus Miquel. Korean J Medicinal
1024 채규서 정지혜 윤해훈 손락호 Crop Sci 17: 8389. 32. Choi JS, Lee JH, Park HJ, Kim HG, Young HS, Mun SI. 1993. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus davidiana. Kor J Pharmacogn 24: 299303. 33. Yook HS, Kim KH, Jang SA. 2010. Quality characteristics of grape pomace with different drying methods. J Korean Soc Food Sci Nutr 39: 13531358. 34. Arts MJ, Haenen GR, Voss HP, Bast A. 2004. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem Toxicol 42: 4549. 35. Oyaizu M. 1986. Studies on products of browning reactionantioxidant activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307315. 36. Kim YS, Jeong DY, Shin DH. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Korean J Food Sci Technol 40: 6369. 37. Kim YJ, Song GC, Lee YH, Jang GH, Jeong ST, Jeong C. 2012. Fruit Wine: Science and Application. Soohaksa, Seoul, Korea. p 384400. 38. Lee Y, Kim JC, Hwang KT, Kim DH, Jung CM. 2013. Quality characteristics of black raspberry wine fermented with different yeasts. J Korean Soc Food Sci Nutr 42: 784791. 39. Choi SR, You DH, Kim JY, Park CB, Kim DH, Ryu J. 2009. Antioxidant activity of methanol extracts from Cudrania tricuspidata Bureau according to harvesting parts and time. Korean J Medicinal Crop Sci 17: 115120. 40. Joo OS, Kang ST, Jeong CH, Lim JW, Park YG, Cho KM. 2011. Manufacturing of the enhances antioxidative wine using a ripe Daebong persimmon (Dispyros kaki L). J Appl Biol Chem 54: 126134. 41. Kwon HN. 2013. The effect of the antioxidant activities of fermented mulberry extracts as cosmetic materials. J Investigative Cosmetology 9: 221227. 42. Wang M, Shao Y, Li J, Zhu N, Rangarajan M, LaVoie EJ, Ho CT. 1999. Antioxidative phenolic glycosides from sage (Salvia officinalis). J Nat Prod 62: 454456. 43. HassasRoudsari M, Chang PR, Pegg RB, Tyler RT. 2009. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem 114: 717726. 44. Jeong CH, Choi GN, Kim JH, Kwak JH, Heo HJ, Shim KH, Cho BR, Bae YI, Choi JS. 2009. In vitro antioxidative activities and phenolic composition of hot water extract from different parts of Cudrania tricuspidata. J Food Sci Nutr 14: 283289. 45. Arctander S. 1969. Perfume and flavor chemicals (aroma chemicals). Allured Publishing Co., Carol Stream, IL, USA. Vol I. 46. Arctander S. 1969. Perfume and flavor chemicals (aroma chemicals). Allured Publishing Co., Carol Stream, IL, USA. Vol II.