DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Can032.hwp

03-서연옥.hwp

DBPIA-NURIMEDIA

012임수진

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Lumbar spine

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

03-ÀÌÁ¦Çö

인문사회과학기술융합학회

???? 1

歯1.PDF

139~144 ¿À°ø¾àħ

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

09권오설_ok.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

untitled

Æ÷Àå½Ã¼³94š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010


03이경미(237~248)ok

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

1..

09È«¼®¿µ 5~152s

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

γ

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

서론 34 2

???? 1

04_이근원_21~27.hwp

( ) ) ( )3) ( ) ( ) ( ) 4) 1915 ( ) ( ) ) 3) 4) 285

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con


Rheu-suppl hwp

TOYOBO Reagent 만의독보적인기술 ReverTra Ace M-MLV RTase 의 RNase H domain 에 mutation 시키므로 RNase H activity 를낮추고,mRNA 의 degradation 을막아 cdna 합성효율을높임 KOD Polyme

10(3)-09.fm

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.1-16 DOI: * A Study on Good School

09구자용(489~500)

Æ÷Àå82š

현대패션의 로맨틱 이미지에 관한 연구

大学4年生の正社員内定要因に関する実証分析

,......

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있


DNA/RNA Amplification Overview AccuPower PreMix series 는세계적으로기술력을인정받은특허기술로보다경제적인가격과편리한방법으로실험할수있는제품입니다. Conventional PCR, Real-Time PCR 수행을위한 DNA ampli

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

디지털포렌식학회 논문양식

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: NCS : G * The Analy

Microsoft Word - KSR2016S168

À±½Â¿í Ãâ·Â

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * Experiences of Af

230 한국교육학연구 제20권 제3호 I. 서 론 청소년의 언어가 거칠어지고 있다. 개ㅅㄲ, ㅆㅂ놈(년), 미친ㅆㄲ, 닥쳐, 엠창, 뒤져 등과 같은 말은 주위에서 쉽게 들을 수 있다. 말과 글이 점차 된소리나 거센소리로 바뀌고, 외 국어 남용과 사이버 문화의 익명성 등

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

02¿ÀÇö¹Ì(5~493s

04서종철fig.6(121~131)ok


DBPIA-NURIMEDIA

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

DBPIA-NURIMEDIA

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ


43(1)-4(p.23-30).fm

04조남훈

14.531~539(08-037).fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

한국 출산력의 저하 요인에 관한 연구

005송영일

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

#Ȳ¿ë¼®

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Crt114( ).hwp

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability

12이문규

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

(5차 편집).hwp

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

Statistical Data of Dementia.

Transcription:

Original Article Journal of Apiculture 32(2) : 119~131 (217) DOI: 1.17519/apiculture.217.6.32.2.119 Development of Rapid Detection System for Small Hive Beetle (Aethina tumida) by using Ultra-Rapid PCR Jung-Min Kim, Su-Jin Lim, Truong A Tai, Ki-Jeong Hong 1 and Byoung-Su Yoon* Department of Life Science, Kyonggi University, Suwon 16227, Korea 1 Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University, Sunchon 57922, Korea (Received 2 June 217; Revised 28 June 217; Accepted 28 June 217) Abstract For the Rapid detection of small hive beetle (SHB; Aethina tumida) and for the mass-survey against SHB invasion, SHB-specific ultra-rapid PCR system was developed. Three different pairs of Aethina tumida-specific primers were deduced from cytochrome oxidase subunit I (COI) gene in mitochondrial DNA of SHB. Using optimized SHB-specific ultra-rapid PCR, 2.1 1 1 molecules of COI gene belonged to SHB could be detected specifically and quantitatively within 18 minutes 4 seconds. For the purpose of the application in apiary field, a DNA extraction method from bee debris was separatedly developed. When 1 5 SHB-specific COI molecules (1/1 body of SHB larvae) are existed in 1g of bee debris, it could be verified inner 1 minutes as qualitative and quantitative manner. SHB-specific ultra-rapid PCR we proposed would be expected to apply widely, either in apiary field or laboratory, for the rapid detections and the control against SHBinvasion. Key words: Ultra-Rapid PCR, Small Hive Beetle, SHB, Parasites, Honeybee (Small Hive beetle; SHB; Aethina tumida Murray), 1998 (Thomas, 1998),.,,, 214,. Kodamaea ohmeri *Corresponding author. E-mail: bsyoon@kyonggi.ac.kr 119

12,, (Benda et al., 28). Deformed Wing Virus (DWV) (Eyer et al., 28). 216 9,, (, 217).,. 1998, 1, Trap., 216 9,,.,,,.,,,, (Murihas, 24; Spiewok and Neumann, 26)., PCR. PCR PCR (cycle) (step;,, ), 4 PCR 1, (Lee et al., 27; Han et al., 28; Yoo et al., 212)., COI(cytochrome oxidase subunit I) (Evans et al., 2; Evans et al., 22), 1, (mitochondrial DNA; mtdna), DNA(eDNA; environmental DNA), COI, 1 (Microenvironment)., Ward (27) PCR (Real-Time PCR),,.,., PCR, DNA SHB PCR. (SHB) SHB

121 Table 1. Recombinat DNA clone for Cytochrome Oxidase subunit I in Small Hive Beetle Target insect Recombinant DNA Identical sequence in GenBank Target gene Small hive beetle Cytochrome oxidase ptop-shb COI* KP134137 Aethina tumida subunit I (COI) Honey bee ptop-rps 828** AADG636 Ribosomal Protein S18 Apis mellifera *DNA sequences of this clone is identical to reported sequences of KP134137 (236-98), except only 563 position. **DNA sequences of this clone is 1% identical to reported sequences of AADG636 (26215-2742)., SHB 9% EtOH 2 C. COI SHB genomic DNA (gdna),, DNeasy Blood & Tissue kit (Qiagen Co, Germany). gdna COI mtdna, Biophotometer (Eppendorf Co, Germany) DNA 7 C. (Apis mellifera) gdna, SHB. SHB. SHB (Bee debris), 2g SHB 1 DNA. SHB DNeasy Blood & Tissue kit (Qiagen Co, Germany) gdna, 7 C. 2g SHB 1 gdna (mtdna ) 3.59µg, 37ng/µl. 3ng gdna COI. SHB SHB COI (molecular cloning) (Table 1). GenBank Database SHB COI, 683bp. primer SHB-COI F/R, (Table 2). SHB-COI F/R SHB gdna PCR 683 PCR ( ), T-vector cloning, ptop- SHB COI. ptop-shb COI ( ), GenBank KP134137( SHB, 214) (683 682 ; ). PCR primer 2, NCBI primer Blast, SHB, (Apis mellifera) (Apis cerena), (213) (Galleria mellonella L.), (Achroia grisella F.), (Vespa mandarinia Smith), (Anax parthenope Julius), (Tenodera aridifolia Stoll), (Lasius niger).

122 Table 2. Specific primer pairs for SHB-specific COI gene and Honeybee-specific genes Target genes Name of primers Sequence (5 3 ) Reference Aethina tumida, Cytochrome oxidase subunit I (COI) Honey bee (β-actin) Honey bee (RPS) SHB-COI F TGCGACCCTCAGGCATAACC SHB-COI R TGGGAATCATTGAACAAATCCGGC This study SHB27F TCTAAATACTACTTTCTTCGACCCATC SHB315R TCCTGGTAGAATTAAAATATAAACTTCTGG Ward et al., 26 SHB-DP-F1 TGATTCTTCGGACACCCAGA SHB-DP-R1 AGGCTCGAGTATCAACGTCT This study SHB-DP-F2 CTACTTTCTTCGACCCATC SHB-DP-R2 AATGCTCATAGAGTTACTGG This study β-actin151-f ATGCCAACACTGTCCTTTCTGG Yang and Cox-. β-actin151-r GACCCACCAATCCATACGGA Foster 25 RPS18 417 F1 GTCATGGGCACGAATATTGA RPS18 417 R1 TTACTTCTTTTTCGATACACCCAC This study RPS18 173 F1 CATGGCTAATCCTAGACAATACAAG RPS18 149 R CCCAATAATGACGCAAACCT This study, Ward (27) SHB primer ptop-shb COI PCR,, PCR,, β-actin 4s Ribosomal Protein S18 (RPS) primer. primer (Table 2). SHB COI, primer annealing. 55 C 1 C PCR, DNA ptop-shb COI 2.9 1 6 (.3 femtomole= 3 attomole), primer.5µm, 1µl 2xGreenstar qpcr Master Mix (Bioneer, Korea), 2µl PCR. PCR Exicycler TM Quantit ative Thermal Block (Bioneer, Korea), 95 C 5min, 95 C 3, annealing 55 C 1 C 3, 72 C 3 1 35. Ct (Threshold Cycles) primer annealing, Genechecker (Genesystem, Korea) PCR. PCR ptop-shb COI 2.9 1 6, primer 1µM, 5µl 2 RapiMix (Genesystem, Korea), 1µl PCR. PCR 95 C, 3, 95 C 5, annealing 52~6 C 5, 72 C 5 1 4. Ct annealing. SHB COI primer, primer 1µM, 5µM, 2µM, 1µM, 5nM PCR. 1µl, ptop- SHB COI 2.9 1 6, 2 RapiMix primer PCR.

123 95 C, 3, 95 C 5, annealing 52~6 C 5, 72 C 5 1 4. SHB ptop-shb COI 2.9 1 6 2.9 1 PCR, 2 RapiMix, primer Forward Reverse primer 1µl PCR. PCR 95 C, 3 5,,, annealing, 95 C( ), primer annealing (52~6 C), 72 C( ), 3, 2, 1 PCR. gdna SHB primer 1ng gdna, PCR SHB primer 3 PCR, rdna β-actin1 primer. 1, ptop- SHB COI 2.9 1 6 1ng gdna, primer, 2 RapiMix PCR. 95 C, 3, 95 C 2, annealing 52~6 C 2, 72 C 2 1 4. gdna SHB ptop- SHB COI, PCR,. gdna 1ng, ptop-shb COI 2.9 1 6 2.9 1. PCR 1ng gdna 2.9 1 6 2.9 1 DNA, 2 Rapi master Mix, Primer, 95 C, 3, 95 C 2, annealing 52~6 C 2, 72 C 2 1 5 PCR. SHB- PCR SHB. 2g 1 SHB gdna 3.59µg, 3ng SHB PCR. total DNA SHB PCR, SHB,. Ward (27) SHB PCR SHB-, Ct (29.69 cycles)., gdna RPS β-actin gene PCR. SHB primer 3 annealing PCR (Real-Time PCR) Exicycler TM Quantitative Thermal Block (Bioneer CO.,

124 Table 3. Ct and Tm values on each annealing temperature of three primer pairs Annealing temperature ( C) SHB-DP F1/R1 SHB-DP F2/R2 SHB 27F/315R Ct Final fluorescence Ct Final fluorescence Ct Final fluorescence 52 - - 17.61.36 189.33 28.22 - - 54 15.99.53 181.33 26.22 16.85.47 25. 37.33 19.46.68 172. 32.67 56 15.17.34 187. 27.33 17.89.78 182.67 25.11 19.1.99 178.67 26.89 58 16.89.18 156.67 17.11 - - 21.31 1.54 158. 32.67 6 16.96.56 157.67 22.44 - - 21.29.84 147. 26. Tm values ( C) 74.91.32 77.2.16 76.53.32 Table 4. Ct and Tm values for each concentration of three primer pairs Final concentration SHB-DP F1/R1 SHB-DP F2/R2 SHB 27F/315R Ct Final fluorescence Ct Final fluorescence Ct Final fluorescence 1µM 16.37.31 142.67 6.89 15.87.16 184. 6. 18.77.22 15.67 3.11 5µM 14.53.31 169.67 3.11 14.83.18 22.67 4.89 17.73.24 17.33 1.56 2µM 15.27.16 192.33 3.78 15.6.4 251.67 2.89 18.4.27 185.33 4.89 1µM 15.1.13 232.67 15.78 16.2.33 255. 2.67 2.2.33 25. 4.67 5nM 16.7.22 233.33 7.56 19.3.2 265.33 6.44 23.17.31 199.33 5.11 Tm values ( C) 74.91.33 76.69.16 76.86.32 Korea) PCR. SHB primer SHB-DP F1/R1, SHB-DP F2/R2, 45~65 C, SHB-DP F1/R1 primer 56 C 4 C, SHB-DP F2/R2 primer 54 C 4 C. SHB 27F/315R primer 57 C 3 C annealing, 3 primer 52~6 C annealing PCR annealing ( ). PCR Genechecker (Genesystem, Korea), 52~6 C annealing Ct (Table 3). SHB-DP F1/R1 primer 56 C Ct, 54 C. 74.91.33. SHB-DP F2/R2 primer 54 C Ct, 77.2.16 C. SHB 27F/315R primer Ct 54, 56 C Ct 56 C. PCR 3 SHB primer annealing, primer, 54 C. PCR primer 5nM(5pmole/µl), 1µM(1pmole/µl), 2µM(2pmole/µl), 5µM(5pmole/µl) 1µM(1pmole/µl) PCR (Table 4). primer 3, Ct Melting graph. SHB-DP F1, R1 primer 1µM Ct

125 Molecules of DNA (Log 1 ) 7 6 5 4 3 2 1 y=-.2615x + 1.619 R 2 =.9989 y=-.2621x + 11.454 R 2 =.9981 y=-.353x + 12.298 R 2 =.9935 15 2 25 3 35 4 Ct (Threshold cycle) DP1 DP2 SHB Fig. 1. Detection limit and Tm using three primer pairs for SHB COI specific Ultra-rapid quantitative PCR. Ultra-rapid PCR with each primer pairs was performed using optimal condition. ptop-shb COI was used as template in PCR that was diluted from 2.9 1 6 to 2.9 1 molecules /PCR, respectively. 2.9 1 1 molecules template were amplified successfully by UR-PCR using SHB DP F2/R2 pairs and SHB 27F/315R pairs, except SHB DP F1/R1 pairs. primer, SHB-DP F2, R2 primer 2µM Ct. SHB 27F, 315R primer 2µM Ct 1µM, 5µM Primer Ct, 1µM,.5µM Primer Ct 2cycle 2µM. 3 primer annealing primer DNA 2.9 1 8 2.9 1. PCR,, 2, 2, 2, 3 Ct Tm. PCR 5 18 4 (Fig. 1). SHB-DP F1/R1 primer PCR, 2.9 1 2, Ct, Ct (Regression equation) Y=-.2615X +1.619 (Regression coefficient; R 2 ).9989., 2.9 1 1 3 1. Tm (Temperature of mid-point) 76. C, 2.9 1 Tm 73.3 C, 73. C, Tm. SHB-DP F2/R2 primer PCR, 2.9 1 1, Y= -.2621X+11.454, R 2 =.9981. Tm 77.7 C, 2.9 1 Tm 74.3 C, 72.3 C, Tm. SHB 27F/315R primer PCR, 2.9 1 1, Y=-.353X+12.298, R 2 =.9935. Tm 77.6 C, Tm 69. C, Tm (Table 5). SHB 3 primer DNA primer 1ng gdna. RPS gdna, RPA- DNA PCR Tm, gdna. SHB 3 primer gdna PCR,

126 Table 5. Ct and Tm using three primer pairs for SHB-specific Ultra-rapid qpcr Molecules of recombinant DNA SHB-DP F1/R1 SHB-DP F2/R2 SHB 27F/315R Ct Tm Ct Tm Ct Tm 2.9 1 6 16.62.66 76.7.17 19.44.85 77.67.3 18.85.8 77.87.6 2.9 1 5 2.15 1.47 75.67.18 23.58 1.66 77.49.1 23.13.91 77.6.5 2.9 1 4 23.81 1.6 75.85.28 26.91.81 77.39.18 26.51 1.5 77.89.34 2.9 1 3 28.1.87 75.67.18 31.54 1.72 77.71.38 3.1.94 77.69.17 2.9 1 2 31.74 1.9 76.5.29 34.91 1.24 77.69.17 33.9 1.53 77.6.5 2.9 1 1 34.49 2.22 74.59 1.38 38.37.52 77.58.35 35.28 1.42 77.6.5 2.9 1 37.17 1.7 73.29 1.38 4.19 2.14 74.26 38.93.99 77.6.19 Negative 28.6 7.4 72.97.46 38.91 1.29 72.31 37.74 68.96 1.8 Average Tm value (Positive) 75.84.26 77.59.25 77.69.38 Average Tm value (Negative) 73.22.78 73.29 1.38 68.96 1.8 Total reaction time 18min 4sec / 5 cycles 9 6 3 9 6 3 RPS18 173 F1, 149R 6 7 8 9 SHB DP F2, R2 6 7 8 9 Fig. 2. Melting temperature analysis of ultra-rapid PCR with genomic DNA from honeybee and/or SHB-specific DNA using various primer pairs. RPS genes were successfully amplified by both ultra-rapid PCRs with gdna from honeybee and/or RPA-specific DNA. All ultra-rapid PCRs using SHB-DP F1/R1, -DP F2/R2, -27F/315R pairs with gdna from honeybee and/or SHB-specific DNA produced correct or incorrect product, respectively. 9 6 3 9 6 3 SHB DP F1, R1 6 7 8 9 SHB 27F,315R 6 7 8 9, Tm PCR 3 C. gdna SHB DNA, 2.9 1 2 SHB PCR (Fig. 2). gdna SHB DNA primer SHB. SHB ptop-shb COI 2.9 1 6 2.9 1, 1ng gdna PCR (Fig. 3; 1ng 3kb DNA.5 femtomole, 3 1 8 molecules ). Primer 3 SHB PCR 1ng gdna 2.9 1 1, Tm SHB DP F1/R1 primer 75.82 C.21 C, SHB DP F2/R2 primer 77.82 C.25 C, SHB 27F/315R primer 77.82 C.17 C

127 Molecules of DNA (Log 1 ) 7 6 5 4 3 y=-.265x + 11.118 R 2 =.9945 y=-.2447x + 11.839 R 2 =.9847 y=-.2757x + 12.145 R 2 =.995 2 1 15 2 25 3 35 4 45 Ct (Threshold cycle) DP1 DP2 SHB Fig. 3. Detection limit of ultra-rapid PCR using three SHB-specific primer pairs with SHB-specific DNA and honeybee gdna. Ultra-rapid PCR reactions were performed at optimal conditions for each primer pairs with 1ng honeybee gdna. All ultra-rapid PCRs using SHB DP1, SHB DP2, SHB 27F/315R primer pairs could be detected with 2.9 1 1 molecules of SHB-specific DNA under 1 ng honeybee gdna.. SHB DNA, 2.9 1 PCR,, primer Tm, 79.38 C.59 C (SHB DP F1/R1 primer ), 79.53 C 1.38 C(SHB DP F2/R2 primer ), 71.59 C.57 C(SHB 27F/315R primer ), Tm SHB- Tm., 3 SHB primer SHB- PCR SHB 2.9 1 1 SHB, (Table 6). SHB, gdna primer 2 (RPA, β-actin) SHB primer 3 (SHB-DP F1/R1, -DP F2/R2, -27F/315R) PCR (Fig. 4). β-actin RPS gdna, Tm, DNA ( ), gdna. SHB primer 3 PCR SHB COI, SHB Tm. Table 6. Ct and Tm values for each number of molecular copies with 3 primer pairs in 1ng Honeybee gdna Molecules of recombinant DNA SHB-DP F1/R1 SHB-DP F2/R2 SHB 27F/315R Ct Tm Ct Tm Ct Tm 2.9 1 6 18.38.83 76.6.12 23.8 1.4 77.88.18 2.9.76 77.78.19 2.9 1 5 21.22.72 75.69.26 25.31.22 77.7.33 24.16.98 77.6.15 2.9 1 4 25.65.41 75.76.13 31.92.45 77.91.16 29.17 1.37 77.68.28 2.9 1 3 3.26 1. 75.76.13 35.32.67 77.82.22 32.45 1.26 77.8.3 2.9 1 2 33.13 1.8 75.88.21 38.4.46 78.2.18 35.65.26 77.89.9 2.9 1 1 36.57.77 75.75.45 42.92.7 77.61.36 39.54.64 78.2.18 2.9 1 36.57.75 79.57.54 44.23.76 79.21 1.71 42.16 1.3 78.47. Negative 27.22 9.15 79.19.65 44.24 1.32 79.84 1.4 42.4 1.48 71.59.57 Average Tm value (Positive) 75.82.21 77.82.25 77.82.17 Average Tm value (Negative) 79.38.59 79.53 1.38 71.59.57 Total reaction time 18min 4sec

128 β-actin 151 F, R RPS18 173 F1, 149R 9 9 6 6 3 3 6 7 8 9 6 7 8 9 SHB DP F1, R1 SHB DP F2, R2 SHB 27F, 315R 9 9 9 6 6 6 3 3 3 6 7 8 9 6 7 8 9 6 7 8 9 Fig. 4. Melting temperature analysis of Ultra-rapid PCRs using 5 different primer pairs with total DNA from bee debris and SHB larvae. 3.59µg total DNA was isolated from 2 gram bee debris and 1 SHB larvae. Ultra-rapid PCRs using each primer pairs with 3ng total DNA were performed. All results demonstrated successful amplification according to primers-specificity., 2g SHB, total DNA 3.59µg, 3ng total DNA 8/1, SHB SHB mtdna, PCR. SHB SHB PCR. SHB total DNA 1/1 total DNA SHB PCR (Fig. 5). total DNA 3ng, 3ng,.3ng,.3ng, SHB-DP F1/R1, -DP F2/R2 primer PCR SHB. total DNA 3ng, 3ng,.3ng,.3ng 8/1,, 8/1,, 8/1,, 8/1,, SHB DNA, 1 1 SHB,,. SHB DNA,.8 SHB SHB 6.64 1 3,.8 SHB SHB 1.37 1 3,.8 SHB SHB 2.38 1 2,.8 SHB SHB

129 Amount of DNA (Log 1 ) 6 5 4 3 2 1 y=-.268x + 1.371 R 2 =.9971 15 2 25 3 35 4 Ct (Threshold cycle) Standard 8/1 8/1 8/1 8/1 Fig. 5. CTs of Ultra-rapid PCRs using serially diluted total DNA from bee debris and SHB larvae on regression equation using C T s and SHB-specific DNAs. Total DNA was isolated from 2 gram of bee debris and 1 SHB larvae. Serially diluted total DNA were measured as.8 (6.64 1 3 molecules),.8 (1.37 1 3 molecules),.8 (2.38 1 2 molecules),.8 (1.31 1 1 molecules) SHB larvae, respectively. Standard is indicated PCRs using serially diluted SHB-specific DNA. 8/1, 8/1, 8/1, 8/1 are indicated.8,.8,.8,.8 SHB larvae, respectively. 1.31 1 1. SHB, SHB. (SHB). SHB, SHB SHB, SHB. SHB, SHB, SHB (,,, SHB ), SHB (Murihas, 24; Spiewok and Neumann, 26).,., (micro-environment).. SHB, DNA (edna; environmental DNA) SHB DNA, PCR total DNA SHB DNA. Ward (27) PCR PCR, PCR, 5 C 2 95 C 1, 95 C 15, 6 C 1 4. PCR 2 / PCR, (5 C, 95 C, 6 C) (Ramping time), 62, PCR 79 Sequence Detection System (Applied Biosystems, USA) PCR 2., PCR, 95 C 3, 95 C 2, 56 C 2, 72 C 2 1 5 Genechecker (Genesystem, Korea). PCR 18 4, 4 (15 ) Ct (Table 6).

13, SHB PCR 4 cycles Ct (Table 6). PCR (polymerase) (95 C), 4 cycles PCR. PCR 1 (2 5 ), Ward (27) 4 1 (6 ), PCR, 2 (Table 6). 9 SHB, SHB.,, SHB. PCR,. 1, SHB (Small hive beetle; SHB; Aethina tumida) SHB. 3 Aethina tumida- cytochrome oxidase subunit I (COI). PCR 2.1 1 1 COI 18 4., DNA, 1g 1 5 COI (1/1 SHB ), 1.,,,., ( 11558-2, 11512-3), (31227-3) ( 11567-2), 217.. 217. ; SHB. ( ). 11-1543-1739-1. 2-21.. 213. 4 - - 1. Journal of the Korean Veterinary Medical Association, 49(2): 116-122. Benda, N. D., D. Boucias, B. Torto and P. Teal. 28. Detection and characterization of Kodamaea ohmeri associated with small hive beetle Aethina tumida infesting honey bee hive. J. Apic. Res. 47(3): 194-21. Evans, J. D., J. S. Pettis and H. Shimanuki. 2. Mitochondrial DNA Relationships in an Emergent Pest of Honey Bees: Aethina tumid (Coleopters: Nitidulidae) From the United States and Africa. Entomological Society of America Vol. 93(3). Evans, J. D., J. S. Pettis, W. M. Hood and H. Shimanuki. 22. Tracking an invasive honey bee pest: mitochondrial DNA variation in North American small hive beetles.

131 Apidologie 34: 13-19. Eyer, M., Y. P. Chen, M. O. Schafer, J. Petter and P. Neumann. 28. Small hive beetle, Aethina tumida, as a potential biological vector of honeybee viruses. Apidologie 4: 419-428. Han, S. H., D. B. Lee, D. W. Lee, E. H. Kim and B. S. Yoon. 28. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American Foulbrood (AFB). J. Invertebr. Pathol. 99: 8-13. Lee, D. W., E. H. Kim, M. S. Yoo, S. H. Han and B. S. Yoon. 27. Ultra-rapid real-time PCR for the detection of human immunodeficiency virus (HIV). Kor. J. Microbiol. 43: 91-99. Lee, S., K. J. Hong, Y. S. Cho, Y. S. Choi, M. S. Yoo and S. H. Lee. 217. Review of the subgenus Aethina Erichson s. str. (Coleoptera: Nitidulidae: Nitidulinae) in Korea, reporting recent invasion of small hive beetle, Aethina tumida. Journal of Asia-Pacific Entomology, 2(2): 553-558. Murihas, A. M. 24. Aethina tumida arrives in Portugal. Will it be eradicated? Eurbee Newsletter 2: 7-9. Spiewok, S., P. Neumann. 26. Cryptic low-level reproduction of small hive beetles in honeybee colonies. J. Apic. Res. 45: 47-48. Thomas, M. C. 1998. Florida pest alert - the small hive beetle. American bee Journal 138(8): 565. Ward, L., M. Brown, P. Neumann, S. Wilkins, J. Pettis and N. Boonham. 27. A DNA method for screening hive debris for the presence of small hive beetle (Aethina tumida). Apidologie 38: 1-9. Yoo, M. S., K. C. N. Tai, P. V. Nguyen, S. H. Han, S. W. Kwon and B. S. Yoon. 212. Rapid detection of Sacbrood virus in honeybee using ultra-rapid real-time polymerase chain reaction. J. Virol. Methods. Yang, X. and Cox-Foster, D. L. 25. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. PNAS 21: 747-7475.