untitled

Similar documents
untitled

A 617

hwp

72 순천향의과학 : 제14권 2호 2008 Fig.1. Key components of the rehabilitation evaluation of patients with the rheumatic diseases. The ICF provides a good frame

Microsoft PowerPoint - 발표자료(KSSiS 2016)

J Korean Soc Phys Ther Vol.25, No.4, August 2013 The Journal of Korean Society of Physical Therapy plssn elssn X Original articles 가

Lumbar spine

1

04-다시_고속철도61~80p

DBPIA-NURIMEDIA

The influence of coupled rtms and prism illusion on motor cortical activity and motor function recovery in stroke: A case study Seung-Min Lee* 1 & Jon

감각형 증강현실을 이용한

975_983 특집-한규철, 정원호

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>


139~144 ¿À°ø¾àħ

<30352DC1A4B0E6B8B82C20C1A4C0AFC1F82E687770>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

<31302E20BFACB1B8BDC7BCD2B0B35FC7D1BEE7B4EB5B4B524F535D2E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

12이문규

WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi

À±½Â¿í Ãâ·Â

001-학회지소개(영)

황지웅

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ


학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

(

<31325FB1E8B0E6BCBA2E687770>

0125_ 워크샵 발표자료_완성.key

11¹Ú´ö±Ô

16_이주용_155~163.hwp

°í¼®ÁÖ Ãâ·Â

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

,.,..,....,, Abstract The importance of integrated design which tries to i


목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

1) 측두하악관절장애 (TMD) 환자에게초음파와근막이완술이측두하악관절및경부의기능적회복에미치는영향, 1 The Effect of Ultrasound and Myofascial Release on a Functional Recovery of Neck in Patients

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * Meta Analysis : T

PJTROHMPCJPS.hwp

<B9DABDC3BFEEBBF9C7DAB5E5BEC6BFF42E485750>

Microsoft Word - 1-차우창.doc

Output file

DBPIA-NURIMEDIA

untitled

012임수진

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

레이아웃 1

10(3)-09.fm

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Å©·¹Àγ»Áö20p

노인정신의학회보14-1호

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

<342EBEC8BCBABFAD2CB9DAC7E2C1D82E687770>

03신경숙내지작업

<BAF1B8B8C3DFB0E8C7D0BCFAB9D7BFACBCF62D E E687770>

PowerPoint 프레젠테이션

04조남훈

<36355FB1E8B9CEBCF62DC7AABCC520C1F5C8C4B1BAC0CC20C0D6B4C220B3FAC1B9C1DF2E687770>

30이지은.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

인문사회과학기술융합학회

Àå¾Ö¿Í°í¿ë ³»Áö

歯1.PDF

(conversion disorder),, (,,, 2000;,, 1996;, 2002; Kozlowska, Scher, & Williams, 2011; Uijen & Bischoff, 2011). (,, 1996;,, 2001;, 2004; Ruddy & House,


지원연구분야 ( 코드 ) LC0202 과제번호 창의과제프로그램공개가능여부과제성격 ( 기초, 응용, 개발 ) 응용실용화대상여부실용화공개 ( 공개, 비공개 ) ( 국문 ) 연구과제명 과제책임자 세부과제 ( 영문 ) 구분 소속위암연구과직위책임연구원

°ø±â¾Ð±â±â

원고스타일 정의

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

<BFACB1B85F D30335FB0E6C1A6C0DAC0AFB1B8BFAA2E687770>

<C5EBC0CFB0FA20C6F2C8AD2E687770>

½Éº´È¿ Ãâ·Â

02이용배(239~253)ok

±èÇö¿í Ãâ·Â

스포츠과학 143호 내지.indd

09권오설_ok.hwp

03-ÀÌÁ¦Çö


433대지05박창용

03-서연옥.hwp

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

Æ÷Àå82š

서론 34 2

45-51 ¹Ú¼ø¸¸

04서종철fig.6(121~131)ok

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

ZNMMZTUCJDUV.hwp

untitled

untitled

사단법인 커뮤니케이션디자인협회 시각디자인학회

16(1)-3(국문)(p.40-45).fm



歯제7권1호(최종편집).PDF

ÀÌÁÖÈñ.hwp

Transcription:

Brain & NeuroRehabilitation Vol. 3, No. 2, September, 2010 운동학습을위한새로운치료적접근법 : 가상현실과로봇 국립재활병원뇌졸중재활과 박시운 Motor Learning by Novel Therapeutic Approaches: Virtual Reality and Robotics Si-Woon Park, M.D., MSCR Department of Stroke Rehabilitation, National Rehabilitation Center Recent emphasis on motor learning approach and advances in rehabilitation engineering facilitated new development of therapeutic systems in neurorehabilitation. Virtual reality and robotic technology has been applied to provide stimulating and challenging environment in which participants can practice tasks repetitively, to augment feedback of performance, and to guide precise and repetitive movement. Virtual reality is a computer-based technology that provide real-time interactive and multisensory simulated environment. It has been adopted in upper limb rehabilitation, gait training, and driver retraining. Virtual reality can be either immersive or nonimmersive depending on the components used in the system, and immersive environment seems to be more effective in rehabilitation. By providing enhanced feedback, environments offering motivation and tasks meaningful to participants, virtual reality can facilitate motor learning. Robotic systems can be classified into 2 types: exoskeleton and end-effector. A lot of robotic systems have been developed and used for upper limb exercise and gait training. Studies revealed those systems are beneficial to enhance arm motor function and walking ability. Application of robotics in rehabilitation has several advantages: enabling massed practice by increasing therapy intensity and amount; provision of force feedback; possibility of automating therapy sessions; setup of therapy specific to individuals; precise, objective and reliable assessment of motor function. Combination of virtual reality and robotics would make it possible to develop better rehabilitation systems that could enhance motor learning in more effective way. (Brain & NeuroRehabilitation 2010; 3: 77-85) Key Words: motor learning, rehabilitation, robotics, virtual reality 서론 운동 (movement) 은개체와과업, 그리고환경의상호작용에의하여발생한다. 운동조절에대한이해에따라운동기능의재활을위해사용하는전략들도변천해왔다. 신경재활 (neuro-rehabilitation) 에있어서과거에는중추신경계의계층적구조와반사작용을기반으로감각적자극을가함으로써운동을유발하는운동치료기법, 즉 Bobath 의자세반응, Brunnstrom의 central facilitation, Rood의감각자극치료법및 Proprioceptive Neuromuscular Facilitation (PNF) 등으로대표되는신경발달적접근 (neurodevelopmental approach) 이주축을이루었으나, 근래에는개체를환경과의관계속에서변화하고적응해가는존재 교신저자 : 박시운, 서울강북구가오리길 111 142-884, 국립재활병원뇌졸중재활과 Tel: 02-901-1607, Fax: 02-902-3835 E-mail: seanpark05@yahoo.co.kr 로파악하는시스템이론에바탕을둔운동학습접근법 (motor learning approach) 이점차강조되고있다. 운동학습은과업과환경적제약에조화되도록개체가지각과활동의협력을증진시켜가는과정이라고할수있다. 1 운동학습이론의원리에따르면재활이라는것은근본적으로필요한동작을성공적으로수행해내는방법을재학습해가는과정이다. 기술습득은연습을통해과오를줄여가는과정으로이해된다. 운동학습이론에의하면수행의향상은연습의양에비례한다. 따라서과제특이적 (task-specific) 인반복적연습이강조된다. 연습은단일과제의밀집된반복적연습보다는 (massed practice) 시간적간격을두고반복적연습을수행할때 (distributed practice) 학습효과가더크다. 항상똑같은과제 (constant practice) 보다는다양하게변형된과제를연습하는것 (variable practice) 이기술습득시에는더어려울수있지만습득된기술을보존하는데는더도움이되며, 새로운과제를배우기위한일반화 (generalization) 에도유리하다. 단일과제만을연습하는것 (blocked practice) 보다는여러가지과제들을무작위 77

Brain& NeuroRehabilitation:2010; 3: 77~85 순서에따라연습하면 (random practice) 일정시간후에각과제들을더잘수행할수있다 (contextual interference). 2 운동학습의원리를치료에적용할때과제의수행을독려하면서보상적행동에적응하지않도록억제시키는것이치료의목표가된다. 이를위해올바른과제수행방법을구두로가르치거나시범을보여서환자로하여금배워야할동작이무엇인지분명히지각하게하고, 수기를통해올바른동작수행을돕고, 수행한동작에대해적절한시점에정확한피드백을주는것이중요하다. 재활분야에서운동학습이론의도입과의용공학기술의발달은신경재활의영역에새로운장을열어주었다. 재활대상자가특정한과제를반복적으로연습할수있도록자극적이고도전적인환경을만들어주고, 수행하는동작에대한피드백을확대하며, 과제의반복적이고정확한수행을가이드하기위한방법으로가상현실 (virtual reality) 과로봇을재활치료분야에적용하게되었다. 본종설의목적은, 신경재활분야에서지금까지소개된가상현실및로봇시스템의종류와그효과에대한문헌을고찰하고, 운동학습의측면에서그적용방향을논의하고자한다. 본론 1) 가상현실과재활가상현실은컴퓨터를기반으로하여대화식의 (interactive) 다감각적 (multisensory) 모의환경을실시간으로제공하는기술이다. 현실감을줄수있도록 3차원적이고몰입될수있는환경을제공하는것이중요한데, 현실감을주는정도에따라몰입적 (immersive) 가상현실과비몰입적 (nonimmersive) 가상현실로구분할수있다 (Table 1). 몰입적가상현실에는대형스크린이나머리부분탑재형디스플레이 (head-mounted display, HMD), 또는 cave system, video capture system 등을사용한다. 비몰입적가상현실은컴퓨터마우스나햅틱, 또는조이스틱등을사용한다. 3 재활의학분야에서가상현실은자세균형과수부기능등의운동재활과인지재활, 그리고일상생활동작의훈련및운전재활의분야에서주로활용되어왔다. 4 (1) 가상현실과상지재활가상현실을재활치료에적용한다양한장비들이개발되어있으며그치료효과에대해서도적지않은연구들이이미수행되었다. 장등 5 은 video capture system과 cyber glove를사용한가상현실시스템을이용하여만성뇌졸중환자들의운동기능향상과대뇌피질의재구성을조사하였다. 가상현실시스템은피험자의영상을대형모니터에투사하여몰입적인현실감을구현하고 cyber glove 를이용하여피험자의움직임이모니터에나타나는치료용게임과상호작용이가능하도록구성되었다. 그결과 Fugl- Meyer Assessment, 수부기능검사 (Manual Function Test) 및 Berg 균형검사에서가상현실치료군이대조군보다유 Table 1. Virtual Reality Applications in Rehabilitation Type of VR Components Purposes References Nonimmersive Nonimmersive Video capture system Cyber glove 3-D display Haptic system HMD Cyber glove 3-D display Magnetic tracker 3-D display Cyber glove Force feedback glove HMD Treadmill Wide screen Treadmill Wide screen Driving simulator Telerehabilitation system Desktop display Ankle robot Arm rehabilitation Balance and gait training Arm and hand rehabilitation Arm rehabilitation Arm and hand rehabilitation Arm and hand rehabilitation Driver rehabilitation Arm and hand rehabilitation Ankle rehabilitation 5, 12, 13 6 7 8 9 14 17 18, 19 10, 11 15, 16 VR: virtual reality, HMD: head-mounted display 78

박시운 : 운동학습을위한새로운치료적접근법 : 가상현실과로봇 의하게나은결과를보였으며, 가상현실치료후기능적자기공명영상에서병변반대측 (contralesional) 운동피질의활성화가감소되고병변측 (ipsilesional) 피질의활성화가증가하여병변측피질쪽으로편재화 (lateralization) 가증가되는변화를보였다. Broeren 등 6 은햅틱을이용한가상현실시스템을뇌졸중으로인한편마비환자의상지재활에적용하여수부의기민성과장악력및상지운동조절능력의향상을보인사례를보고하였다. 이때사용한가상현실시스템은 3차원입체디스플레이를컴퓨터모니터에구현하고햅틱을이용하여가상의물체를조작할때감각적피드백이제공되도록구성되었다. Subramanian 등 7 은 HMD와 cyber glove 를이용한몰입적가상현실을뇌졸중환자의상지재활에적용하였고, Stewart 등 8 은 3차원입체영상을제공하는디스플레이와손가락에장착하는자기트래커 (magnetic tracker) 를이용하여상지와수부기능의재활을위해개발한가상현실시스템을소개하였다. Merians 등 9 은가상현실에로봇을결합하여상지와손가락의움직임을지지하면서힘을감지하는센서를통해피드백을제공하는시스템을개발하여소개하였다. 한편컴퓨터를이용하는가상현실치료를인터넷에연결하여치료사의감독을원격으로받으면서집에서치료를할수있는원격재활 (telerehabilitation) 시스템도소개되었다. 10 경미한상지운동기능장애가있는뇌졸중환자들을대상으로원격재활을고식적치료와비교하였을때두군다상지기능의유의한향상을보였고 Fugl-Meyer 점수는원격재활군에서유의하게향상되어가정에서의재활치료의잠재적가능성을시사하였다. 11 이외에도다양한가상현실시스템이뇌졸중환자의상지재활을목적으로개발되었으나그효과에대한근거를제공할만한연구는아직미흡한실정이다. Henderson 등 3 은뇌졸중상지재활을위한가상현실시스템을몰입형과비몰입형으로나누어체계적고찰을시도하였는데, 몰입형가상현실치료는아무런치료도하지않은대조군과비교시에는우세한상지기능의향상이있다는결론을무작위대조군연구를통해얻을수있었으나기존의치료를받는대조군과비교한연구는없었고, 비몰입형가상현실치료는기존의치료를받는대조군과비교시에는유의한차이가없는것으로나타났고아무런치료를받지않은대조군과의비교에서도상반된결과들이보고되어효과여부를결론내리기어려운것으로나타났다. (2) 가상현실과보행재활가상현실을하지및보행기능의개선을위한재활에적용한시스템과그치료효과들도다수소개되었다. 유등 12 은앞서소개한장등 5 의연구에서이용한것과같은 가상현실장비를만성뇌졸중환자의보행기능의개선을위해적용하여보행기능의개선및기능적자기공명영상에서도병변반대측의활성화가감소하는결과를보고하였다. 김등 13 도동일한가상현실치료를통해만성뇌졸중환자의동적균형과보속, 보장이유의하게향상된것을보고하였다. Jaffe 등 14 은 HMD를착용하고트레드밀상에서가상장애물을넘는보행훈련시스템을개발하여보행속도와보장등보행능력이개선된것을보고하였다. Deutsch 등 15 은발목의운동을위한로봇을가상현실과연결한시스템을개발하여뇌졸중환자에게적용한결과발목의힘과보행속도및지구력이향상된것을보고하였다. 같은장비를이용하여가상현실을제외하고로봇에의한힘피드백만제공하는것과가상현실에의한시각적, 청각적, 그리고햅틱에의한피드백을같이제공하는것을비교하였을때보행속도와거리등보행능력의개선이가상현실을제공한치료에서유의하게나은것으로나타났다. 16 Yang 등 17 은대형스크린을트레드밀에장착하여옥외보행의현실감을제공하는가상현실시스템을개발하였는데, 뇌졸중환자들의실제지역사회에서의보행능력이가상현실을이용하지않은군보다유의하게향상된것을보고하였다. (3) 가상현실과운전재활한편, 운전재활에있어서가상현실은운전적성의평가에있어서인지능력검사나가상현실을적용하지않은운전시뮬레이터등다른검사들보다정확도가뛰어나고실제도로에서의평가시에우려되는사고의위험성이없고안전하여좋은대안적방법이라고할수있다. 국립재활원에서는가상현실운전시뮬레이터를개발하여장애인의운전능력평가및재활에활용하고있으며, 뇌손상장애인에게가상현실시뮬레이터를이용한운전연습을시행한결과정상인운전자와동등한정도의운전능력을획득하는것을보고하였다 (Fig. 1). 18 Cox 등 19 도외상성 Fig. 1. Virtual reality driving simulator. 79

Brain& NeuroRehabilitation:2010; 3: 77~85 뇌손상을입은군인들에게가상현실운전시뮬레이터를이용한훈련을실시하여운전수행이향상된것을보고하였다. 가상현실운전시뮬레이터는신체적장애로자동차운전을위한보조도구를장착하여새로운방식의운전연습이필요한장애인에게실제도로로나가기전단계에서적응훈련으로유용하게활용될수있다. 가상현실은대상자에게중요하고의미있는과제를치료공간안으로들여옴으로써재활의동기와흥미를유발할수있는환경을제공하고, 다양하게변형된과제를구현할수있고, 과제수행에따른결과를증강된피드백으로제공하며, 결과적으로반복적인과제수행연습을가능하게한다는점에서운동학습의원리를재활치료에적용한치료방법이라고할수있다. 가상현실을이용하여운동학습효과를극대화하기위해서는현장감을구현하는것이가장중요한영향을줄것으로생각된다. 하지만몰입형가상현실이우수한현장감을제공하는반면어지럼증, 오심, 두통, 발한, 지남력장애, 눈의피로감등의소위사이버멀미 (cybersickness) 가부작용으로나타난다는것이제한점이다. 4 또한가상현실에서의훈련이실제환경에서의과제수행에도전이효과가있을지에대한논란의여지가있으며, 가상현실시스템만으로는운동수행에대한피드백은제공하지만근력이저하된환자들의운동수행을보조할수는없다는한계가있다. 2) 로봇과재활재활치료에서로봇의원형들은약화된근력을보조하거나강화시키기위한목적으로사용된부목이나팔지지대, 오버헤드슬링, 스케이트보드및등속성운동장비등 여러가지보조도구들에서찾아볼수있다. 기술이발달하고기능이발전된치료장비들이개발되면서로봇이라는이름으로등장하게되었는데, 치료사의손을대신할수있을가능성이나안전성에대해서는논란이있어왔다. 20 하지만점차다양한로봇들이개발되면서이제로봇은재활의중요한도구로떠오르고있다. 로봇은그구조에따라외골격형 (exoskeleton) 과말단장치형 (end-effector) 으로구분할수있다. 21 재활치료에있어서로봇시스템적용의목적은치료의양과강도를증가시키고, 지속적인치료를가능하게하며, 정밀하고반복적인힘을사용하여운동을돕기위함이다. 22 지금까지많은수의재활로봇들이개발되었으며그임상적효과를규명할수있는연구가요구된다 (Table 2). (1) 로봇과상지재활상지운동기능의재활을위한로봇시스템중가장잘알려진 MIT-Manus (InMotion2) 는어깨와팔꿈치관절의운동을위해개발되었는데, 수동운동, 능동보조운동, 그리고저항성운동을제공하며팔을목표지점까지뻗는운동을반복하게하는 2 자유도 (degree of freedom) 를가진로봇팔시스템이다. 이를만성뇌졸중환자들에게적용하였을때같은강도로치료사가제공하는치료와유사한정도의상지운동기능의호전을보였다. 23 다기관무작위대조군연구 24 에서 127명의만성뇌졸중환자들을대상으로 MIT-Manus 를이용한로봇치료를치료사가같은강도의고식적치료를제공하는고강도치료및통상적인치료와비교하였는데, 12주간의치료후로봇치료군이통상적치료군에비해나은효과를보였으나통계적으로유의하지는않았고삶의질에서는유의하게나은효과를보고 Table 2. Robotic Applications in Rehabilitation System Type of robot Characteristics References MIT-Manus ARM Guide GENTLE/s ARMin REHAROB MIME Bi-Manu-Track ADLER T-WREX VRROOM ARAMIS Myomo e100 Electromechanical gait trainer Lokomat KineAssist Shoulder, elbow, forearm Bilateral shoulder and elbow Bilateral forearm and wrist ADL training Whole arm Shoulder, elbow, wrist Elbow, EMG-controlled 23, 24, 25 26, 38 27 28 29 30 31 32 33 34, 40 35 36 41, 42, 50 43 48 51 80

박시운 : 운동학습을위한새로운치료적접근법 : 가상현실과로봇 하였으며, 36주후추적조사에서는로봇치료군이통상적치료군보다상지의운동기능이유의하게나은결과를보였으나고강도치료군과는유의한차이가없었다. 치료비용을분석결과에서는장기간치료비용이로봇치료군에서고강도치료군과유의한차이가없는것으로나타났다. 25 한편 InMotion3은전완과손목관절의운동을위해개발된시스템이다. 22 이외에어깨와팔꿈치관절의운동을돕는로봇시스템들로, ARM (Assisted Rehabilitation and Measurement) Guide는중력을완화하여팔운동을지지하고수동운동, 능동보조운동, 그리고저항성운동을제공하며, 26 GENTLE/s system은시각적피드백과햅틱피드백을제공한다. 27 또한 ARMin은중력을완화하고수동운동과능동보조운동및시청각적, 감각적피드백을제공하며, 28 REHAROB 은수동운동을제공하여경직을완화시키기위한목적으로개발된로봇시스템이다. 29 양측상지를이용하도록개발된로봇시스템으로 MIME (Mirror Image Motion Enabler) 은양측어깨와팔꿈치관절의대칭적운동을제공하며, 30 Bi-Manu-Track (Reha-Stim) 은전완과손목의대칭적운동을제공한다. 31 그외에기계적으로운동을제공하는것외에다른기능을추가하여개발된로봇시스템들도있다. ADLER (Activities of Daily Living Exercise Robot) 는실제일상생활동작훈련과로봇을이용한훈련을결합하여치료효과의 carryover를증진시키기위해개발된로봇시스템이다. 32 T-WREX (Therapy Wilmington Robotic ) 은중력을완화한상태에서기계적운동은제공하지않고환자가스스로컴퓨터를통해능동적으로운동을하도록고안된시스템인데, 이를만성기뇌졸중환자에적용시킨무작위대조군연구에서테이블에서로봇의보조없이유사한운동만시행한대조군에비해장기간지속되는상지운동기능향상의효과가있는것으로나타났다. 33 가상현실을로봇과결합한시스템으로 VRROOM (Virtual Reality Robotic and Optical Operation) 은상지로봇에몰입형디스플레이와햅틱, 자기트래커를결합하여개발되었고, 34 ARAMIS (Automatic Recovery Arm Motility Integrated System) 는외골격로봇과 HMD로구성되었다. 35 그외에기능적전기자극을이용한 H200과 22 근전도에의해제어되는 Myomo e100 등도개발되어있다. 36 로봇을뇌졸중환자의상지재활에적용한효과를조사한 Cochrane 그룹의연구 37 에서는총 11개의무작위대조군연구를메타분석하였는데, 급성기부터만성기까지다양한뇌졸중대상군에서시행한연구를분석한결과, 로봇상지재활치료를시행하였을때다른재활치료에비해일상생활동작수행능력의향상에는차이가없었으나상지 의운동기능과근력의향상에는로봇상지재활치료가우수한효과를보인것으로보고하고있다. 상지운동에있어로봇의주된기능은근력이약한환자의운동을보조하는것이라고볼수있다. 대부분의상지로봇들이수동운동, 능동보조운동및저항성운동을제공할수있는데, 어떠한운동을치료에적용할지적절한프로그램을선택하기위해서는운동학습에대한이해가필요하다. Kahn 등 38 은만성뇌졸중환자를대상으로 ARM Guide 를이용하여능동보조운동을실시한군과로봇의도움없이능동적운동만을실시한군을비교하였을때두군간에차이가없는것을보고하였다. 반면 Takahashi 등 39 은뇌졸중환자들의손운동 (grasp-release) 을돕는로봇시스템을개발하여능동보조운동과로봇의보조가없는능동운동의효과를비교하였는데, 능동보조운동의운동기능개선효과가더크고기능적자기공명영상에서의동일한동작을수행할때의대뇌피질활성도도증가하는것을보고하였다. 이러한차이는단순히기계적인보조를제공하는것과환자의동작을감지하여능동적운동이부족한부분에서만도움을제공하는치료방식의차이에서기인한것으로추정되며 39 따라서로봇의활용에있어서도운동학습의원리를잘적용하는것이중요함을보여주는예라하겠다. 로봇을이용해운동을보조하기보다는방해하는방향으로힘을적용하여치료후의잔존효과 (after-effect) 를유도하는방법이제안되었는데, VRROOM을이용하여로봇의보조를통해에러를감소시키기보다는에러를확대시켰을때치료효과가더나은것으로나타났다. 40 여기에서활용된 Whole Arm Manipulator (WAM) 는 7 자유도를가진기민성이뛰어난로봇으로재활분야에서응용할가능성이많을것으로보인다 (Fig. 2). Fig. 2. Whole arm manipulator (WAM). 81

Brain& NeuroRehabilitation:2010; 3: 77~85 (2) 로봇과보행재활하지기능과보행재활을위하여로봇시스템을적용한예로는전동식보행훈련기 (Electromechanical Gait Trainer) 와 Lokomat 이있다 (Fig. 3, 4). 전동식보행훈련기는부분체중부하와함께정상보행주기의궤적에맞게발목의운동을제공하는장비이다. 운동학습의원리에따라반복적보행훈련을자극하기위한치료방법으로부분체중부하트레드밀보행훈련이제안되었으나 2명의치료사의과도한노동력을요구하는문제를개선하기위해전동식보행훈련기가개발되었고, 부분체중부하트레드밀과비교하였을때보행훈련효과가더나은것으로보고되었다. 41 보행이불가능한급성기뇌졸중환자에게적용하였을때같은고강도의집중보행훈련을실시한대조군과는유사한결과를보였으나고식적치료보다는나은결과를보였다. 42 전동식보행훈련기는고관절과무릎의운동을위해서는치료사의보조와지도가필요하다. Lokomat 은부분체중부하와트레드밀에고관절과무릎관절을제어하는로봇시스템을결합시킨장비이다. 거기에다가모니터를통한피드백과가상현실이제공된다. Lokomat 의효과에대해서는하지의기능및보행능력을개선시킨다는보고 43 가있는반면, 보행능력자체는다른치료와유의한차이가없으나보행의대칭성의개선과유산소운동효과가있다는보고도있고, 44 치료사와함께하는기존의치료와비교해효과가차이가없거나 45 오히려못하다는엇갈리는보고들도있다. 46,47 국내에서도정등 48 은만성뇌졸중환자에서 Lokomat 을적용한보행훈련이고식적보행훈련에비해운동기능, 보행양상, 신체조직구성및우울감에더나은결과를보고하였다. 뇌졸중환자에서로봇시스템 을이용한보행훈련의효과에대한 Cochrane 그룹의메타분석 49 에서는기존의물리치료만시행했을때에비해로봇을이용한보행훈련을시행했을때독립적보행기능을회복할기회가 3배정도상승하는것으로나타났다. 이는독립적보행이불가능한뇌졸중환자 4명중 1명가량은로봇을이용한보행훈련을통해독립적보행의획득이가능하다는뜻으로해석된다. 보행의속도나지구력은유의한차이가없었다. 이메타분석에서는전동식보행훈련기와 Lokomat을모두포함하여분석하였으므로해석에유의할필요가있다. 한가지고려할점은대부분의연구가대조군에게동일한강도의치료를제공하도록설계되었으므로, 로봇의가장큰장점의하나가치료의양을증가시킬수있다는점임을생각할때더많은양의치료를로봇을통해제공했을때의효과와순응도, 비용등에대한연구가필요할것으로보인다. 이들로봇보행훈련기들은특히중증장애나동반질환등으로치료사에의한보행훈련이어려운경우에유용하게적용될수있을것으로생각된다. 50 이외에환자의이동을따라가면서몸통을지지하고자세를조절하며치료사의수기도동시에가능하게하는새로운로봇시스템으로 KineAssist가개발되어있다. 51 로봇시스템을재활에적용할때의이점은첫째, 치료의강도와시간을늘려서집중적인반복연습 (massed practice) 을가능하게한다는것과, 둘째, 치료사가제공하기어려운피드백을제공할수있다는점, 셋째, 치료세션을자동화할수있다는점, 넷째, 각환자에개별화된특이적치료제공및치료의진행이가능하다는점, 다섯째, 더욱정밀하고객관적이고신뢰성있는운동기능의평가가가능하다는것이다. 그러나실제생활환경과의괴리가있다는 Fig. 3. Electromechanical gait trainer Fig. 4. Lokomat. 82

박시운 : 운동학습을위한새로운치료적접근법 : 가상현실과로봇 점과시스템의비용이비싸다는점등은로봇시스템의적용하기위해극복해야할과제라고할수있다. 22 결론 이상에서살펴본바를요약하자면, 가상현실은상지기능과보행및운전재활에유용하게적용되어왔으며, 몰입형가상현실일수록효과적인것으로보인다. 로봇도상지기능과보행재활을위해적용되어왔으며, 로봇의종류에따라차이가있겠으나전반적으로상지기능의개선과보행기능의획득에긍정적인효과가있는것으로나타났다. 가상현실과로봇은서로보완적으로결합될때운동학습의측면에서보다나은재활치료장비로개발될수있을것으로보인다 (Fig. 5). 가상현실은학습에필수적인피드백을제공하고동기를유발하며실제생활환경에서적용이가능해지도록모의환경을제공할수있다. 로봇은집중적인반복훈련을가능하게하고정확한동작을수행할수있도록유도하는보조적힘을제공한다. 가상현실과로봇의특성을잘조합하여신체기능장애의정도에따라상이한치료프로토콜을적용할수도있을것이다. 또한대부분의로봇시스템은집중적반복훈련과명시적학습을제공하도록고안되었으나로봇시스템에가상현실을도입함으로써암시적학습을가능하게할수도있다. 가상현실이나로봇을재활치료에적용함에있어서, 과제를다양하게변형시키거나, 여러가지과제를무작위로배열하여연습하게하거나, 로봇의장점을잘살려서연습량을고식적인치료보다대폭늘리는등, 운동학습의원리를고려하여활용함으로써그효과를더높일수있을것이다. 가상현실과로봇은이미일상생활에밀접하게다가와있는기술이며, 앞으로신경재활의분야에서도널리활용 Fig. 5. Strengths of virtual reality and robotics as strategies to enhance motor learning. 될것은의심의여지가없다. 이러한기술을임상에서유용하게적용하기위해서는재활의학과재활공학간의학제간협력과연구가요구되며, 재활의학분야의전문가들이가상현실이나로봇을이용한재활시스템의개발에초기부터적극적으로참여하는것이중요하다. 또한개발된기술이임상현장에보급될수있으려면임상적효능검증과비용효과분석을위한임상연구와더불어건강보험측면에서의제도적, 정책적지원도있어야할것이다. 참고문헌 1) Shumway-Cook A, Woollacott MH. Motor control. Philadelphia: Lippincott Williams & Wilkins; 2007. 2) Krakauer JW. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84-90 3) Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14: 52-61 4) Crosbie JH, Lennon S, Basford JR, McDonough SM. Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil. 2007;29:1139-1146 5) Jang SH, You SH, Hallett M, Cho YW, Park CM, Cho SH, Lee HY, Kim TH. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005;86:2218-2223 6) Broeren J, Rydmark M, Sunnerhagen KS. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study. Arch Phys Med Rehabil. 2004;85: 1247-1250 7) Subramanian S, Knaut LA, Beaudoin C, McFadyen BJ, Feldman AG, Levin MF. Virtual reality environments for post-stroke arm rehabilitation. J Neuroeng Rehabil. 2007;4:20 8) Stewart JC, Yeh SC, Jung Y, Yoon H, Whitford M, Chen SY, Li L, McLaughlin M, Rizzo A, Winstein CJ. Intervention to enhance skilled arm and hand movements after stroke: a feasibility study using a new virtual reality system. J Neuroeng Rehabil. 2007;4:21 9) Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur J Phys Rehabil Med. 2009;45:123-133 10) Holden MK, Dyar TA, Dayan-Cimadoro L. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans Neural Syst Rehabil Eng. 2007;15:36-42 11) Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, Zannini M, Dam M, Ventura L, Battauz M, Tonin P. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41:1016-1102 12) You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, 83

Brain& NeuroRehabilitation:2010; 3: 77~85 Kim JH, Lee MY. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36: 1166-1171 13) Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil. 2009;88:693-701 14) Jaffe DL, Brown DA, Pierson-Carey CD, Buckley EL, Lew HL. Stepping over obstacles to improve walking in individuals with poststroke hemiplegia. J Rehabil Res Dev. 2004; 41:283-292 15) Deutsch JE, Merians AS, Adamovich S, Poizner H, Burdea GC. Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restor Neurol Neurosci. 2004;22:371-386 16) Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40: 169-174 17) Yang YR, Tsai MP, Chuang TY, Sung WH, Wang RY. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28:201-206 18) Yang H-C, Park S-W, Jang S-J, Kim K-M, Park CW, Kim JH, Kim HC, Yi SH, Lee YS. Rehabilitation of drivers with brain injury using virtual reality based driving simulator. J Korean Acad Rehab Med. 2009;33:271-275 19) Cox DJ, Davis M, Singh H, Barbour B, Nidiffer FD, Trudel T, Mourant R, Moncrief R. Driving rehabilitation for military personnel recovering from traumatic brain injury using virtual reality driving simulation: a feasibility study. Mil Med. 2010;175:411-416 20) Reinkensmeyer DJ. Robotic assistance for upper extremity training after stroke. Stud Health Technol Inform. 2009;145: 25-39 21) Pignolo L. Robotics in neuro-rehabilitation. J Rehabil Med. 2009;41:955-960 22) Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007;14:22-44 23) Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22:305-310 24) Lo AC, Guarino P, Krebs HI, Volpe BT, Bever CT, Duncan PW, Ringer RJ, Wagner TH, Richards LG, Bravata DM, Haselkorn JK, Wittenberg GF, Federman DG, Corn BH, Maffucci AD, Peduzzi P. Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for va robotics. Neurorehabil Neural Repair. 2009;23:775-783 25) Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772-1783 26) Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the arm guide. J Rehabil Res Dev. 2000;37:653-662 27) Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G. Multivariate analysis of the fuglmeyer outcome measures assessing the effectiveness of gentle/s robot-mediated stroke therapy. J Neuroeng Rehabil. 2007;4:4 28) Nef T, Mihelj M, Riener R. Armin: a robot for patientcooperative arm therapy. Med Biol Eng Comput. 2007;45: 887-900 29) Fazekas G, Horvath M, Troznai T, Toth A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. J Rehabil Med. 2007;39: 580-582 30) Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R. Mime robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43:631-642 31) Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a singleblinded randomized trial in two centers. Stroke. 2005;36: 1960-1966 32) Wisneski KJ, Johnson MJ. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robotassisted adl tasks. J Neuroeng Rehabil. 2007;4:7 33) Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23:505-514 34) Patton J, Dawe G, Scharver C, Mussa-Ivaldi F, Kenyon R. Robotics and virtual reality: a perfect marriage for motor control research and rehabilitation. Assist Technol. 2006;18: 181-195 35) Colizzi L, Lidonnici A, Pignolo L. The aramis project: a concept robot and technical design. J Rehabil Med. 2009; 41:1011-1101 36) Stein J, Narendran K, McBean J, Krebs K, Hughes R. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am J Phys Med Rehabil. 2007;86:255-261 37) Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008:CD006876 38) Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled 84

박시운 : 운동학습을위한새로운치료적접근법 : 가상현실과로봇 pilot study. J Neuroeng Rehabil. 2006;3:12 39) Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131:425-437 40) Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168:368-383 41) Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002;33:2895-2901 42) Peurala SH, Airaksinen O, Huuskonen P, Jakala P, Juhakoski M, Sandell K, Tarkka IM, Sivenius J. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med. 2009;41:166-173 43) Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21:307-314 44) Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38:349-354 45) Westlake KP, Patten C. Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6:18 46) Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapistversus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008; 39:1786-1792 47) Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5-13 48) Jung KH, Ha H-G, Shin HJ, Ohn SH, Sung DH, Lee PKW, Kim Y-H. Effects of robot-assisted gait therapy on locomotor recovery in stroke patients. J Korean Acad Rehab Med. 2008;32:258-266 49) Mehrholz J, Werner C, Kugler J, Pohl M. Electromechanicalassisted training for walking after stroke. Cochrane Database Syst Rev. 2007:CD006185 50) Park SW, Choi YN, Wee HM, Jang SJ, Kim HI, Kim YH. Electromechanical gait trainer for gait rehabilitation for patients with stroke. J Korean Acad Rehab Med. 2004;28: 182-183 51) Patton J, Brown DA, Peshkin M, Santos-Munne JJ, Makhlin A, Lewis E, Colgate EJ, Schwandt D. Kineassist: design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008;15:131-139 85