: 31 2 2004 Kor. J. Fertil. Steril., Vol. 31, No. 2, 2004, 6 GnRH-agonist PBR 1, 2, 3 1 2 1 1 3 1 2 1 Apoptosis and Peripheral Benzodiazepin Receptor (PBR) Expression in Human Granulosa-Luteal Cells by GnRH-agonist Sei Kwang Kim 1, Yun-Hee Youm 2, Jeong-Mi Yoon 1, Sang Wook Bai 1, Hyunwon Yang 3, Dong Jae Cho 1, Yong-Dal Yoon 2, Chan Ho Song 1 1 Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, 2 Department of Life Sciences, College of Natural Sciences, Hanyang University Life Science Institute, 3 Eulji University School of Medicine Objective: To investigate whether GnRH-agonist (GnRH-Ag) using in IVF-ET affects apoptosis of human granulosa-luteal cells and expression of peripheral benzodiazepine receptor (PBR) protein involved in the apoptosis of the cells. Methods: Granulosa-luteal cells obtained during oocyte retrieval were cultured and treated with 10 5 M GnRH-Ag. Apoptosis of the cells by the treatment was confirmed using DNA fragmentation analysis 24 h after culture. The presence of PBR protein within the cells was examined by immunofluorescence staining and the expression of the protein was analyzed by Western blotting. In addition, it was measured for progesterone and nitric oxide (NO) produced by granulosa-luteal cells after GnRH-Ag treatment. To evaluate the relationship between NO production and PBR expression, sodium nitroprusside (SNP) as a NO donor was added in media and investigated the expression of PBR protein by Western blotting. Results: Apoptosis increased in the granulosa-luteal cells 24 h after GnRH-Ag treatment, whereas the expression of PBR protein significantly decreased. Furthermore, the production of progesterone and nitric oxide (NO) by the cells significantly fell from 12 h after the treatment. In the results of Western blotting after SNP treatment, the expression of PBR protein increased in the treatment with SNP alone to the granulosa-luteal cells, but was suppressed in the treatment with GnRH-Ag and SNP. Additionally, the staining result of PBR protein in the cells showed the even distribution of it through the cell. Conclusion: These results demonstrate that GnRH-Ag treatment induces apoptosis, decreasing expression of PBR protein and NO production in human granulosa-luteal cells. The present study suggests that one of the apoptosis mechanism of human granulosa-luteal cells by GnRH-Ag might be a :, ) 120-752 134, Tel: (02) 361-5499, Fax: (02) 313-8357, e-mail: skkim@yumc.yonsei.ac.kr * 2002. - 83 -
signal transduction pathway via NO and PBR. Key Words: Apoptosis, GnRH-agonist, Granulosa-luteal cells, Nitric Oxide (NO), Peripheral benzodiazepine receptor (PBR) (GnRH). 11 GnRH-Ag 10 peripheral benzodiazepine receptor (PBR) steroidogenic acute FSH LH,. 1 GnRH GnRH GnRH. 4. 15 NO nitric oxide synthase GnRH (NOS), 16, 17 18,, 19, 20., GnRH cyclic nucleotide 21 LH prolactin FSH, LH, IGF-1 estradiol progesterone progesterone, androgen estro-. 19,22 gen. 5 NO GnRH, 6 inhibin. 7 GnRH GnRH regulatory (StAR). 12 PBR StAR. 13 PBR. 2 GnRH, PBR GnRH GnRH. 3. 14 Nitric oxide (NO). NO. 23 NO, NO. 24 NO. 8,9 GnRH IGFBP-4 GnRH, (atresia) GnRH-Ag,. 10. GnRH Bax GnRH-Ag NO NO Bcl-xL, PBR - 84 -
GnRH. 70%. 1 ml 100,000. 24-well culture plate (Nunc, Denmark) 1 well ( 1 ml) (IVF-ET) 100,000, 37 95%. 5% CO 2 100% hmg (Meri-. Dulbecco's Modified onal; IBSA, Swiss) hfsh (Metrodin; Serono, Swiss) Eagle Medium (dmem; GIBCO BRL) 10% fetal bo-. vine serum (FBS; GIBCO BRL) 2 mm L-glutamine (step-down fashion) (GIBCO BRL), 100 U/ml penicillin (GIBCO BRL),, hmg hfsh 4 100 µg/ml streptomycin (GIBCO BRL) (Medison 128; Medison Co., Korea), hmg. 18 mm 17 mm 2 hcg (Profasi; Serono, Swiss) 10,000 IU. hcg 35 36.. NO PBR. St. Louis, MO) GnRH-Ag Hemonglobin (Sigma, St. Louis, MO). 24 PBR NO. 1 ml 40% percoll 3 ml 300 xg 20. 0.2 ml.. 3 0.1% collagenase (Sigma, St. Louis, MO). 37 30 26 G heamocytometer. trypan blue, chloroform: isoamyl alco- hol (24:1, V:V). 1.5 ml - 85 -. 24-well culture plate 24 plate. 10 6 M GnRH-Ag (Sigma, St. Louis, MO) NO SNP (Sigma, 12.5 µl 10% SDS 65 30. 35 µl 8 M potassium acetate 60 4, 5000 xg 10. 1.5 ml phenol: chloroform: iso- amyl alcohol (25:24:1, V:V:V) DNA
, 0 2.5 20, protease inhibitors (0.1 mm phenyl methyl-sulfonyl- 100% ethanol, -70 fluoride, 5 g/ml aprotinin, and 5 g/ml leupeptin) 1. 4 homogenization buffer 12,000 xg 14,000 xg 30 DNA 30. DC 50 µl 1X TE buffer (10 mm Tris-HCl, 1 protein assay kit (Bio-Rad Laboratories, Inc., Hercules, mm EDTA, ph 8.0) 1 µl DNasefree RNase (500 µg/ml; Boehringer-Mannheim, IN) 60 37. DNA phenol : chloroform : isoamyl alcohol, chloroform: isoamyl alcohol. 0.1 3 M sodium acetate 0 2.5 100% ethanol DNA -70 60. 4 14,000 xg 30, 0 0.2 ml 80% ethanol. 25 µl, 260 nm DNA -20. DNA lane 5 µg 1.5% agarose logy, Santa Cruz, CA) TTBS 1:1,000 gel loading, running buffer TBE 40., 50 V 3 membrane chemiluminescence (ECL kit; ethidium bromide tran- Amersham Life Science, Buckinghamshire, U.K.) silluminator. Science, Buckinghamshire, U.K.). NO nitrate/nitrite colorimetric assay kit (Alexis PBR Biochemicals, San Diego, CA), 1%. 10 kda molecular mass cut-off filter (Amicon, Millipore Co., Bedford, MA). goat nor-, nitrate reductase enzyme cofactor 3. sulfanila- rabbit polyclonal mide N-[1-naphthyl] ethylenediamine 1. PBS 10 microplate reader (Spectra Max 250, Molecular Devices, Sunnyvale, CA) anti-rabbit IgG (Jackson Immuno Research laboratories, 540 nm.. Propidium Iodide. 50 mm Tris-base PBR (Ni- (ph 7.4), 150 mm NaCl, 10 mm EDTA, 0.1% Tween- kon, Tokyo, Japan). - 86 - CA, U.S.A.) 10% SDS-PAGE. blotting nitro-cellulose membrane, 5% non-fat dry milk Tris-buffered saline (TTBS; 10 mm Tris (ph 7.6), 150 mm NaCl, 0.1% Tween-20) 1 blocking. Blocking membrane rabbit polyclonal anti-human PBR (Trevigen, Gai- thersbug, MD) 1:1,000 TTBS 1. TTBS 1 3 anti-rabbit horseradish peroxidase-conjugated antibody (Santa Cruz Biotechno- X-ray film (Hyperfilm, Amersham Life paraformaldehyde PBS mal serum 30. anti-human PBR, 1:100 fluorescein isothiocyanate (FITC) West Grove, PA) 30
one-way ANOVA stu- 4h 24 h Marker Saline GnRH Saline GnRH dent's t-test p 0.05. GnRH-Ag DNA. 4 GnRH-Ag DNA. 24 DNA GnRH-Ag (Figure 1). A 4 h 12 h 24 h Saline GnRH Saline GnRH Saline GnRH PBR Figure 1. Effects of GnRH-Ag treatment on DNA fragmentation in the cultured human granulosa-luteal cells. The cells cultured for 24 h showed an increase in DNA fragmentation in GnRH-Ag treatment compared with those in the saline. β-actin B Figure 2. Nitric oxide levels in the medium (mean EM; n = 5) at points timed after initiation of the treatment. *p<0.05 compared with corresponding saline controls. Figure 3. Western blot analysis (mean EM; n = 5) of PBR proteins in the granulosa-luteal cells at points timed after the commencement of treatment. *p<0.05 compared with corresponding saline controls. - 87 -
12 GnRH-Ag 3.33 0.66 µm/ml 6.21 1.52 µm/ml Figure 2 GnRH-Ag NO. NO (p<0.05), 24 2.35 0.91 µg/ml 4.04 1.23 µg/ml A SNP (mm) Saline 0.01 0.1 1 A Saline SNP SNP+ SNP Hb GnRH Hb +GnRH PBR PBR β-actin β-actin B B C C Figure 4. Western blot analysis (mean EM; n = 5) of PBR protein in the granulosa-luteal cells (A & B) and nitric oxide levels (mean EM; n = 5) in the medium 24 h after sodium nitroprusside (SNP) treatment in a dose-dependent manner. *p<0.05 compared with corresponding saline controls. Figure 5. Western blot analysis (mean EM; n = 5) of PBR protein in the granulosa-luteal cells (A & B) and nitric oxide levels (mean EM; n = 5) in the medium 24 h after treatment with GnRH-Ag, sodium nitroprusside (SNP), or hemoglobin (Hb). *p<0.05 compared with corresponding saline controls. - 88 -
(p<0.05). PBR SNP (239.11 23.12) Hb (178.56 13.32) PBR. GnRH-Ag, 4 (123.98 21.87) SNP PBR, 12 GnRH-Ag (71.34 10.21) (48.67 6.98) (p<0.05). 24 GnRH- Ag (72.78 12.32) (43.34 5.22) (p<0.05) (Figure 3). Hb (8.95 1.93 µg/ml). GnRH-Ag NO SNP PBR, PBR 0.01 mm SNP (62.48 Hb (2.10 1.09 µg/ml) GnRH-Ag (1.97 0.91 µg/ml) 9.20) 0.1 mm SNP (121.09 11.11) PBR 1 mm SNP (48.76 4.23) (5.66± 1.24 µg/ml) (Figure 4B). NO (Figure 5C). SNP (Figure 4C). Figure 5 0.1 mm SNP, Hb GnRH- Ag PBR PBR NO.. Hb (72.13 17.09) GnRH-Ag (81.98 19.09) PBR (113.60 13.54) (Figure 5B). NO SNP (23.21 2.12 µg/ml), NO SNP 19.78 2.67 µg/ml. A B Figure 6. Localization of PBR protein in the cultured human granulosa-luteal cells. Green spots displaying PBR expression localize on mitochondria in even throughout the cell. A; Fluorescent and B; Light microphotographs. Original magnification X400. - 89 -
, Bax Bcl-xL (Figure 6).. 11,14 GnRH GnRH-Ag. 28 GnRH, GnRH. GnRH-Ag NO. 25 FSH GnRH-Ag. 29, GnRH-Ag. 26 GnRH, GnRH-Ag. GnRH-Ag GnRH-Ag NO PBR. GnRH- GnRH-Ag. GnRH-Ag GnRH-Ag DNA. 24 DNA GnRH-Ag. GnRH-Ag DNA,,, GnRH-Ag. GnRH-Ag, 27 GnRH-Ag. NO PBR - 90 - GnRH-Ag NO. 30 NO,. 31 NO. GnRH-Ag NO Ag NO. GnRH-Ag NO NOS, GnRH-Ag NO NOS. 32 NO S-nitroso-N-acetyl-DL-penicillamine, 33 SNP FSH. 34 GnRH-Ag NO PBR
NO potential SNP PBR (proapoptotic). PBR, NO PBR. 1 MPT mm SNP NO, PBR potential. NO. NO PBR NO SNP NO Hb PBR. SNP 4864 PK 11195 PBR, Hb. 40 PBR. GnRH-Ag SNP PBR. SNP NO Hb. NO. GnRH-Ag - PBR 18 kda. 35 PBR Ro5-4864 isoquinoline carboxamide benzodiazepine voltagedependent anion channels 1. Barbieri RL, Hornstein MD. Assisted reproduction-in. 36 oxidative pho- vitro fertilization success is improved by ovarian sphorylation, stimulation with exogenous gonadotropins and pi- tuitary suppression with gonadotropin-releasing hor-. 13 mone analogues. Endocr Rev 1999; 20: 249-52. PBR 2. Beckers NG, Macklon NS, Eijkemans MJ, Ludwig. 32 M, Felberbaum RE, Diedrich K, et al. Nonsupple- mented luteal phase characteristics after the admi-. 38 PBR nistration of recombinant human chorionic gonado- tropin, recombinant luteinizing hormone, or gona-. dotropin-releasing hormone (GnRH) agonist to in- (mitochondrial permeability transition pore; MPT) duce final oocyte maturation in in vitro fertilization - 91 -. PBR ligand., leukae- mic cells (HL 60) PBR ligand PK 11195, Ro5-4864, pyrrolo-1,5-benzoxazepines. 39 Ro5- NO. GnRH-Ag PBR. NO GnRH-Ag PBR PBR NO SNP. NO GnRH, NO PBR
patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab 2003; 88: 4186-92. 3. Peng C, Fan NC, Ligier M, Vaananen J, Leung PC. Expression and regulation of gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acids in human granulosa-luteal cells. Endocrinology 1994; 135: 1740-6. 4. Minaretzis D, Jakubowski M, Mortola JF, Pavlou SN. Gonadotropin-releasing hormone receptor gene expression in human ovary and granulosa-lutein cells. J Clin Endocrinol Metab 1995; 80: 430-4. 5. Erickson GF, Magoffin DA, Dyer CA, Hofeditz C. The ovarian androgen producing cells: a review of structure function relationships. Endocr Rev 1985; 6: 371-99. 6. Rippel RH, Johnson ES. Inhibition of hcg-induced ovarian and uterine weight augmentation in the immature rat by analogs of GnRH. Proc Soc Exp Biol Med 1976; 152: 432-6. 7. Bicsak TA, Tucker EM, Cappel S, Vaugham V, Rivier J, Vale W, et al. Hormonal regulation of granulosa cell inhibin biosyuthesis. Endocrinology 1986; 114: 2711-9. 8. Parborell F, Dain L, Tesone M. Gonadotropin-releasing hormone agonist affects rat ovarian follicle development by interfering with FSH and growth factors on the prevention of apoptosis. Mol Reprod Dev 2001; 60: 241-7. 9. Takekida S, Matsuo H, Maruo T. GnRH agonist action on granulosa cells at varying follicular stages. Mol Cell Endocrinol 2003; 202: 155-64. 10. Erickson GF, Li D, Sadrkhanloo R, Liu XJ, Shimasaki S, Ling N. Extrapituitary actions of gonadotropin-releasing hormone: stimulation of insulin-like growth factor-binding protein-4 and aterisa. Endocrinology 1994; 134: 1365-72. 11. Sridaran R, Hisheh S, Dharmarajan AM. Induction of apoptosis by a gonadotropin-releasing hormone agonist during early pregnancy in the rat. Apoptosis 1998; 3: 51-7. 12. Sridaran R, Lee MA, Haynes L, Srivastava RK, Ghose M, Sridaran G, et al. GnRH action on luteal steroidogenesis during pregnancy. Steroids 1999; 64: 618-23. 13. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 1997; 62: 21-8. 14. Papadopoulos V, Dharmarajan AM, Li H, Culty M, Lemay M, Sridaran R. Mitochondrial peripheral-type benzodiazepine receptor expression: correlation with gonadotropin-releasing hormone (GnRH) agonistinduced apoptosis in the corpus luteum. Biochem Pharmacol 1999; 58: 1389-93. 15. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-42. 16. Hesla JS, Preutthipan S, Maguire MP, Chang TS, Wallach EE, Dharmarajan AM. Nitric oxide modulates human chorionic gonadotropin-induced ovulation in the rabbit. Fertil Steril 1997; 67: 548-52. 17. Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 1998; 139: 2944-54. 18. Van Voorhis BJ, Dunn MS, Snyder GD, Weiner CP. Nitric oxide: an autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 1994; 135: 1799-806. 19. Dixit VD, Parvizi N. Nitiric oxide and the control of reproduction. Anim Reprod Sci 2001; 65: 1-16. 20. Shukovski L, Tsafriri A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 1994; 135: 2287-90. 21. Jablonka A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 1998; 139: 2944-54. - 92 -
22. Olson LM, Jones-Burton CM, Jablonka-Shariff A. Nitric oxide decreases estradiol synthesis in rat luteal cells in vitro: possible role for nitric oxide in functional luteal regression. Endocrinology 1996; 137: 3531-39. 23. Smith CJ, Richards JS, Yasin K, Sangster JN, Sridaran R. Changes in rat luteal ultrastructure and P450scc mrna and protein content after in vivo treatment with a gonadotropin-releasing hormone agonist. Biol Reprod 1991; 44: 382-91. 24. Nelson SE, McLean MP, Jayatilak PG, Gibori G. Isolation, characterization, and culture of cell subpopulations forming the pregnant rat corpus luteum. Endocrinology 1992; 130: 954-66. 25. Pellicer A, Tarin JJ, Miro F, Sampaio M, De los Santos MJ, Remohi J. The use of gonadotrophin releasing-hormone analogues (GnRHa), in in-vitro fertilization: some clinical and experimental investigations of a direct effect on the human ovary. Hum Reprod 1992; 7 Suppl 1: 39-47.32. 26. Herman A, Ron-El R, Golan A, Raziel A, Soffer Y, Caspi E. Pregnancy rate and ovarian hyperstimulation after luteal human chorionic gonadotropin in in vitro fertilization stimulated with gonadotropinreleasing hormone analog and menotropins. Fertil Steril 1990; 53: 92-6. 27. Billig H, Furuta I, Hsueh AJW. Gonadotropin-releasing hormone (GnRH) directly induces apoptotic cell death in the rat ovary: biochemical and in situ detection of deoxyribonucleic acid fragmentation in granulosa cells. Endocrinology 1994; 134: 245-52. 28. Peng C, Fan NC, Ligier M, Vaananen J, Leung PCK Expression and regulation of gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acids in human granulosa luteal cells. Endocrinology 1994; 135: 1740-6. 29. Chun SY, Eisenhauer KM, Kubo M, Hsueh AJW. Interleukin-1β suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 1995; 136: 3120-7. 30. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999; 84: 253-6. 31. Basini G, Baratta M, Ponderato N, Bussolati S, Tamanini C. Is nitric oxide an autocrine modulator of bovine granulosa cell function? Reprod Fertil Dev 1998; 10: 471-8. 32. Yang H, Bhat GK, Wadley R, Wright KL, Chung BM, Whittaker JA, et al. Gonadotropin-releasing hormone-agonist inhibits synthesis of nitric oxide and steroidogenesis by luteal cells in the pregnant rat. Biol Reprod 2003; 68: 2222-31. 33. Matsumi H, Koji T, Yano T, Yano N, Tsutsumi O, Momoeda M, et al. Evidence for an inverse relationship between apoptosis and inducible nitric oxide synthesis expression in rat granulosa cells: a possible role of nitric oxide in ovarian follicle atresia. Endocr J 1998; 45: 745-51. 34. Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJW. Hormonal regulation of apoptosis in early antral follicle: follicle-stimulating hormone as a major survival factor. Endocrinology 1996; 137: 1447-56. 35. Gavish M, Bachmann I, Shoukrun R, Katz Y, Veenman L, Weisinger G, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 1999; 51: 629-50. 36. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine dinucleotide carrier. Proc Natl Acad Sci USA 1992; 89: 3170-4. 37. Bono F, Lamarche I, Prabonnaud V, Le Fur G, Herbert JM, Peripheral benzodiazepine receptor agonists exhibit potent anti-apoptotic activities. Biochem Biophys Res Commun 1999; 265: 457-61. 38. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1998; 1366: 151-65. 39. Fennell DA, Corbo M, Pallaska A, Cotter FE. Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK 11195 involves de - 93 -
novo generation of reactive oxygen species. Br J Cancer 2001; 84: 1397-404. 40. Xia W, Spector S, Hardy L, Zhao S, Saluk A, Alemane L, et al. Tumor selective G2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22 a benzazepine. Proc Natl Acad Sci USA 2000; 97: 7494-9. - 94 -