THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2017 Sep.; 28(9, 698 706. http://dx.doi.org/10.5515/kjkiees.2017.28.9.698 ISSN 1226-3133 (Print ISSN 2288-226X (Online Vulnerability Case Analysis of the High Power Electromagnetic Pulse on Digital Control System 우정민 주문노 이홍식 강성만 최승규 이재복 Jeong Min Woo Mun-No Ju Hong-Sik Lee Sung-Man Kang Seung-Kyu Choi Jae-Bok Lee 요약 PLC(Programmable Logic Controller HPEM(High Power Electromagnetic. HPEM HPEM., HPEM. HPEM,, UTP(Unshielded Twisted Pair. FTP(Foiled Twisted Pair HPEM. HPEM. Abstract The risk of high power electromagnetic(hpem pulse exposure to the devices used in digital control system such as PLC(programmable logic controller and communication cable is increasing. In this paper, two different frequency ranges HPEMs were exposed to those control systems to assess the each vulnerability. The vulnerability of the EUTs exposed from HPEM were analyzed and compared with a variation of distances and source power. As the EUTs were exposed to higher level of HPEM, the and communication waveform of the control system had shown a distorted response. And the unshielded twisted pair(utp cable connected to the EUTs showed operation failures with induced. However, the foiled twisted pair(ftp cable shielded the connected device efficiently from the HPEM exposure. Therefore, the necessity of the protection measures against the vulnerability of HPEM exposure for the digital control system used in power facilities and industrial site were verified. Key words: High Power Electromagnetic Pulse, Digital Control System, Shield, Conduction, Vulnerability. 서론,, /, /,,., 2017 ( (No. 17-12-N0101-08. (Korea Electrotechnology Research Institute Manuscript received March, 21, 2017 ; Revised April, 26, 2017 ; Accepted September, 13, 2017. (ID No. 20170321-025 Corresponding Author: Jeong Min Woo (e-mail: woojm@keri.re.kr 698 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.
, (EMP: Electromagnetic Pulse. (LEMP: Lightning Electromagnetic Pulse [1],[2]. ICT,, (HPEM: High Power Electromagnetic,.,. HPEM,,,,., (front-door coupling, (back-door coupling., back door coupling,. 1. PIN, LC,,,. PLC(Programmable Logic Controller. IEC 61000-4-36 HPEM., HPEM,.. 고출력전자기펄스발생기 2-1 펄스생성 (Marx generator (Tesla transformer,. DC, [3],[4].. EMP, S1, S2. 2-2 S1 EMP 발생기 (250 500 MHz 그림 1. HPEM Fig. 1. Schematic diagram of HPEM pathways and protections. S1 EMP EMP-MGP-120 250 500 MHz, 1. EMP 2,, fat dipole. 699
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep. 2017. 표 1. S1 EMP (EMP-MGP-120 Table 1. Specification of S1 EMP generator(emp-mgp-120. Power supply High generator Antenna System Contents Value Others Input Output PRF Output 25.9 V Battery operation 50 kv <10 Hz >400 kv <5 %@max. Battery operation <30 min. <10 %@max. Type Marx generator - re/v 0.5 - Type Fat dipole antenna - Size (L W H 46 34 17 cm - Weight 20 kg Case included re >200 kv - 500 MHz 2.75 GHz,, 2. EMP 그림 3. S1 EMP (100 Fig. 3. S1 EMP generator far-field waveform(avg. of 100 shot. 표 2. S2 EMP (EMP-TGP-250 Table 2. Specification of S2 EMP generator(emp-tgp-250. 그림 2. S1 EMP (EMP-MGP-120 Fig. 2. S1 EMP generator(emp-mgp-120. 0.5 ns S1 EMP 5 m 100 3. 4 m, 5 m, 7 m, 10 m 50 kv/m, 40 kv/m, 28 kv/m, 20 kv/m 10 %. 2-3 S2 EMP 발생기 (500 MHz 2.75 GHz S2 EMP EMP-TGP-250, Power supply High generator Pulse generation Antenna System Contents Value Others Output PRF Output 700 V <10 Hz >350 kv <5 %@max. Battery operation <30 min. <10 %@max. Type Tesla transformer - Waveform Unipolar Bipolar Peak Pulse width 340 kvp 500 kvp-p Unipolar/Bipolar pulse convertible <20 %@max. 700 ps 800 ps FWHM re/v 0.82 0.62 - Type TEM horn - Size (L W H Weight 90 23 20 cm - 27 kg Gas controller not included re >280 kv >300 kv - 700
그림 4. S2 EMP (EMP-TGP-250 Fig. 4. S2 EMP generator(emp-tgp-250. 그림 6. Fig. 6. Frequency spectrum. (a (a Monopolar wave 그림 5. S2 EMP Fig. 5. Waveform of S2 EMP generator. (b (b Bipolar wave 4,, TEM horn. S2 EMP,. 5(a transmission line. 5(b transmission line. 4 m, 5 m, 10 m, 15 m, 20 m 75 kv/m, 60 kv/m, 30 kv/m, 20 kv/m, 15 kv/m, 10 %. 0.1 ns, 6 500 MHz 2.75 GHz. S1 S2 EMP EMP [5]., 100 240 VAC/24 VDC, 24 VDC, / 16, CPU 200 ns/step, RS485 Channels. RS 485 TWISTED OVERALL SHIELD CABLE 2P 24 AWG, 19.2 kbps. 7 PLC CPU, A/D converter PLC A/D converter 10. LED. LED,,,.. 시험대상기기 (EUT 3-1 PLC(Programmable Logic Controller PLC PLC-CPU-CM2-BP32M 그림 7. : PLC Fig. 7. EUT : PLC. 701
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep. 2017. 3-2 Lan 케이블 30 m FTP(Foiled Twisted Pair Cat.5E UTP(Unshielded Twisted Pair Cat.5E. FTP (braid, UTP.. 디지털제어장치의취약성분석, S1 S2 EMP EUT.. 4-1 PLC 영향 PLC 8, 9 EMP, PLC PC LED. PLC, HPEM 그림 9. PLC EMP Fig. 9. Photograph of PLC s EMP exposure experiment. PLC. 8 V1, V2, V3, V4 PLC RS 485 RX-, RX+, TX-, TX+. S2 EMP PLC 3.. 20 kv/m, LED 10 10 3 V, 11. 30 kv/m, LED,, RX-. 60 kv/m LED, 그림 8. PLC EMP ( : 5 m, 10 m, 15 m, 20 m Fig. 8. Schematic view of PLC s EMP exposure experiment (distance: 5 m, 10 m, 15 m, 20 m. 그림 10. HPEM 20 kv/m PLC (S2 Fig. 10. PLC operation characteristics in case of HPEM 20 kv/m exposure(s2. 702
그림 11. HPEM 20 kv/m PLC (S2 Fig. 11. PLC s signal cable waveform in case of HPEM 20 kv/m exposure(s2. 그림 13. HPEM 60 kv/m PLC (S2 Fig. 13. PLC s signal cable waveform in case of HPEM 60 kv/m exposure(s2. 표 3. S2 EMP PLC Table 3. PLC operation characteristics in case of S2 EMP generator exposure. 그림 12. HPEM 60 kv/m PLC (S2 Fig. 12. PLC operation characteristics in case of HPEM 60 kv/m exposure(s2. 10 12. 13,, 3. 12 V, PLC [6]. S1 EMP, 4 PLC 40 kv/m, LED LED, 20 kv/m 14. 15 Power[kV/m] / distance[m] LED flicker circuit Charge/ discharge circuit RS485 cable induced [V] 15 / 20 Normal Normal 15.2 20 / 15 Normal Normal 19.2 30 / 10 Normal 60 / 5 Normal After malfunction, automatic return (Temporary upset After malfunction, no automatic return (Permanent upset 23.4 58.3 S2 EMP. PLC 250 500 MHz 500 MHz 2.75 GHz 13. 4-2 LAN 케이블의영향 LAN UTP(Unshielded Twisted Pair FTP(Foiled Twisted Pair, JPerf 2.0.2, 703
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep. 2017. 그림 14. HPEM 20 kv/m PLC (S1 Fig. 14. PLC operation characteristics in case of HPEM 20 kv/m exposure(s1. 16, 17 LAN EMP PC. FTP, UTP S1 S2 EMP 5. FTP S1 S2. UTP S1 S2 EMP 18 Fail, 19. 표 4. S1 EMP PLC Table 4. PLC operation characteristics of S1 EMP generator exposure Power[kV/m] /Distance[m] LED flicker circuit Charge/discharge circuit RS485 cable induced [V] 20 / 10 Normal After malfunction, automatic return (Temporary upset 68.8 40 / 5 Off After malfunction, automatic return (Temporary upset 86.2 그림 16. LAN EMP ( : 4 m, 7 m, Fig. 16. Schematic view of LAN cable s EMP exposure experiment(distance: 4 m, 7 m. 그림 15. HPEM 20 kv/m PLC (S1 Fig. 15. PLC s signal cable waveform in case of HPEM 20 kv/m exposure(s1. 그림 17. LAN EMP Fig. 17. Photograph of LAN cable s EMP exposure experiment. 704
표 5. EMP LAN Table 5. LAN cable operation characteristics in case of EMP generator exposure. Type FTP UTP EMP generator Power[kV/m] /Distance[m] S1 Communication state Results Cable induced [V] 28 / 7 Normal 14.5 50 / 4 Normal 56.8 S2 75 / 4 Normal 52.0 S1 50 / 4 Speed down 92.7 S2 75 / 4 Failed Failed 그림 18. HPEM 50 kv/m UTP Fig. 18. UTP cable communication speed in case of HPEM 50 kv/m exposure. UTP S1 S2 EMP, FTP. UTP FTP.. 결론 PLC S1 S2 EMP. 1 PLC, S2 EMP EMP LED, 30 kv/m,. S1 EMP 20 kv/m, 40 kv/m PLC LED. PLC S1 (250 500 MHz EMP S2 (500 MHz 2.75 GHz. 2 LAN, FTP EMP, UTP EMP. CH A : 1 V/div Normal signal CH B : 20 V/div After EMP exposure 그림 19. HPEM 50 kv/m UTP TX+ TX- Fig. 19. UTP cable waveform in case of HPEM 50 kv/m exposure. References [1] F. Napolitano, F. Tossani, C. A. Nucci, and F. Rachidi, "On the transmission-line approach for the evaluation of LEMP coupling to multiconductor lines", IEEE Trans. Power Del., vol. 30, no. 2, pp. 861-869, 2015. [2] J.-E. Baek, Y.-M. Cho, and K.-C. Ko, "Damage modeling of a low-noise amplifier in an RF front-end induced by a high power electromagnetic pulse", IEEE Trans. Plasma Sci., vol. 45, no. 5, pp. 798-804, 2017. [3] A. A. Elserougi, I. Abdelsalam, A. M. Massoud, and S. Ahmed, "A full-bridge submodule-based modular unipo- 705
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep. 2017. lar/bipolar high- pulse generator with sequential charging of capacitors", IEEE Trans. Plasma Sci., vol. 45, no. 1, pp. 91-99, 2016. [4] A. A. Elserougi, M. Faiter, A. M. Massoud, and S. Ahmed, "A transformer-less bipolar.unipolar high- pulse generator with low- components for water treatment applications", IEEE Transactions on Industry Applica- tions, vol. 53, issue 3, pp. 2307-2319, 2017. [5] http://highpower.co.kr/%ea%b3%a0%ec%a0%84%ec%95% 95-%eb%b0%9c%ec%83%9d-%ec%9e%a5%e c%b9%98 [6] S. Yi, Z. Du, "The influence of microwave pulse width on the thermal burnout effect of a PIN diode limitingamplifying system", Microelectron. Reliab., MR-12442, pp. 1-8, 2017. 우정 민 강성 만 년 월 경북대학교 전자공학부 (공학 년 월 광주과학기술원 정보통신공학 부 공학석 년 월 광주과학기술원 전기전자컴 퓨터공학부 (공학박 2016년 7월~현재: 한국전기연구원 차세대 전력망연구본부 전기환경연구센터 선임연구원 [주 관심분야] EMC대책기술, 초고주파공학, 메타물질, 화합물 반도체 2011 2 : 2013 8 : ( 2016 8 : 주문 노 년 월 인하대학교 환경공학과 (공학 년 월 인하대학교 전기공학과 (공학 석 년 월 한국해양대학교 전기공학과 공학박 년 현재 한국전기연구원 차세대전 력망연구본부 전기환경연구센터 책임연구원 [주 관심분야] 초고압 전력설비의 친환경설계기술 1994 2 : 1996 2 : 2007 2 : ( 1996 : 이홍 식 년 월 서울대학교 전기공학과 (공학 년 월 서울대학교 전기공학과 (공학 석 년 월 서울대학교 전기공학과 (공학 박 년 월 현재: 한국전기연구원 차세 대전력망연구본부 전기환경연구센터 책임연구원 [주 관심분야] 고전압 대전류 펄스전력발생, 플라즈마 발생 1975 2 : 1983 2 : 1990 2 :. 1990 9 706 년 월 인하대학교 전기공학과 (공학 년 월 인하대학교 전기공학과 (공학 박 년 월 현재: 한국전기연구원 차세 대전력망연구본부 전기환경연구센터 책 임연구원 [주 관심분야] EMP(LEMP, NEMP, HPEMP 방호기술, 낙뢰 및 EMC 대책기술 1998 2 : 2004 2 : 2010 12 ~ 최승 규 년 2월: 부경대학교 신소재공학부 (공 학 2014년 2월: 한양대학교 신소재공학과 (공 학석 2014년 1월 현재: 한국전기연구원 차세대 전력망연구본부 전기환경연구센터 연구 원 [주 관심분야] MOV(Metal Oxide Varistor, Arrestor, 세라믹 공 정 및 소결 2012 이재 복 년 월 인하대공대 전기공학과 (공학 년 월 인하대공대 전기공학과 (공학 석 년 월 인하대학교 전기공학과 (공학 박 년 월 현재: 한국전기연구원 차세 대전력망연구본부 전기환경연구센터 책임연구원 [주 관심분야] EMP 대책 설계, 전기전자 통신설비의 서지 대책 1985 2 : 1987 2 : 1999 2 : 1987 2