THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Jul.; 26(7), 656 665. http://dx.doi.org/10.5515/kjkiees.2015.26.7.656 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) - UWB ISAR Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform 장문광 조춘식 Moon-Kwang Jang Choon-Sik Cho 요약 - UWB Bistatic ISAR (Bistatic Inverse Synthetic Aperture Radar: B-ISAR). UWB -, B-ISAR, -. B-ISAR, UWB ISAR - STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), WVD(Wigner-Ville distribution). STFT, GWT WVD B-ISAR, WVD,. Abstract In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods. Key words: Bistatic ISAR, UWB Radar, WVD, Gabor Wavelet Transform, Radar Imaging. 서론 UWB Bistatic ISAR(Bistatic Inverse Synthetic Aperture Radar : B-ISAR). ( ) (Aerospace Research Center, Saedong Engineering Inc) * (School of Electronics and Information Engineering, Korea Aerospace University) Manuscript received March 16, 2015 ; July 14, 2015 ; Accepted July 20, 2015. (ID No. 20150316-020) Corresponding Author: Choon-Sik Cho (e-mail: cscho@kau.ac.kr) 656 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.
- UWB ISAR,. UWB UWB B-ISAR(Bistatic Inverse Synthetic Aperture Radar). B-ISAR ISAR. B-ISAR,.,. - STFT, GWT, WVD 3, B-ISAR. (rotational motion) -. (Translational Motion Compensation: TMC) Pitch, Yan Roll. PSF.. UWB 레이다를이용한 B-ISAR B-ISAR -, 1 B-ISAR. 1 40 4 m., Pitch, Yan Roll 그림 1. B-ISAR Fig. 1. B-ISAR configuration. 0.35 m. 2 B-ISAR, 1 UWB, CPI(Coherent Processing Interval) [1] [3]. A/D, M (cross range) N M N [19]. 2 CFAR [4]. 3 N 1 1-D IFT(Inverse Fourier Transform) [5],[6]. 4 - (Join Time-Frequency Transform). (1). cos (1) y,,,,. 5 - -. -. B-ISAR N - - -. B-ISAR 657
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 7, Jul. 2015. 그림 2. B-ISAR Fig. 2. B-ISAR imaging structure.. 3 B-ISAR,.,. d [2]., (2). (2) V, N,. (3) 그림 3. B-ISAR Fig. 3. B-ISAR geometry.. 658
- UWB ISAR (3) (4). (4) M. (5). cos sin sin cos., (6). (5) (6) (7). (7) (8) [2]. exp 기타. 시간 주파수변환 - (8), [11], [12] [8] [10]. STFT [13], WVD [14] GWT [15] [16],[17] B-ISAR -. B-ISAR., -. - STFT, GWT, WVD 3,. - ST- FT, GWT, WVD, B-ISAR - [18]. STFT (9). (9) STFT k. k,. k,. k. STFT,, -. Gabor wavelet transform, (10). (10) GWT STFT GWT. GWT sine, cosine. 659
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 7, Jul. 2015... WVD (11). (11) WVD Auto correlated,. WVD GWT,. 4 WVD GWT. FT STFT Gabor wavelet -, STFT, Gabor wavelet Linear, WVD Bilinear. STFT, GWT, WVD - (12). exp (12) exp 그림 4. WVD GWT Fig. 4. Comparison of WVD and GWT.. 제작및실험결과 B-ISAR 1 UWB Radar. B-ISAR 40 cm 35 cm.. 4 m, 40 (angular region) RCS. 1.5 m. 1.5 m 0.7 m 0.7 m. 1. STFT, GWT, WVD - B-ISAR. UWB. 5 B-ISAR. =4 m. 0.21 m/s. =0.6 rad/s, GHz, GHz... 표 1. Table 1. Radar design specification. Sample frequency Pulse duration 80 MHz 3.3 μs Pulse repetition frequency 3,000 Time bandwidth 10 Bandwidth Center frequency UWB 3.1 5.3 GHz 4.3 GHz 660
- UWB ISAR (a) (a) Top view 그림 8. Time-domain raw data Fig. 8. Raw data received of time-domain. (b) (b) Front view 그림 5. B-ISAR Fig. 5. Real test set up for B-ISAR. 6, 7. 2 2. 그림 6 Fig. 6. Gyro sensor with target. 표 2. 2 Roll, Pitch, Yaw Table 2. Roll, Pitch and Yaw during 2 cycles. Roll Pitch Yaw 1 359.1 3.9 19.2 2 358.8 3.6 71.8 3 358.9 3.3 123.0 4 359.5 3.4 174.7 5 0 2.8 227.7 6 358.6 3.4 280.8 7 359.3 2.4 333.0 8 358.4 2.2 24.7 9 359.9 3.5 76.7 10 356.7 4.2 74.6 11 0.7 2.8 130.0 12 0.6 3.3 181.1 13 359.9 3.6 233.0 14 358.9 2.9 284.2 15 359.2 3.1 334.8 그림 7. Fig. 7. Motion graph generated from the motor., 2 B-ISAR MATLAB. UWB 8 raw-data., 4 m. 32 Range cell samples, 64 Range cell 661
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 7, Jul. 2015. 의 샘플수와 회전속도 표 3. Cross range Table 3. Samples of cross range and rotation speed. 1회전 45 회전 순번 시간 (초) 시간(초) 속도 rad/s 샘플수 1 20 5 0.60 35 2 26 6.6 0.45 42 3 30 7.5 0.40 49 4 36 9 0.34 64 5 40 10 0.28 70 6 52 13 0.22 91 를 사용하여 B-ISAR 를 생성하였다. 여기 서 샘플의 기준은 1초에 7번의 거리 Profiles을 만들 수 있 기 때문에 45 내의 직선 거리에서 샘플을 만든 기준은 표 3에 나타냈다. STFT, GWT, WVD 변환은 시간축의 셀의 갯수는 600 개로 하였고, 한 의 셀은 32개, 64개 구분하였으며, Cross range 해상도는 32 거리 셀일 때 42, 49, 64이다. Cross range 해상도는 64 거리 셀일 때 64, 70, 91으로 하 였다. 그림 9는 (a) 42 Cross range, (b) 49 Cross range, (c) 64 Cross range의 Cross range 해상도의 를 시간-주 파수 변환 후 병진운동 요동보상 후 를 보였다. 그림 10은 (a) 64 Cross range, (b) 70 Cross range, (c) 91 Cross range의 교차범위 해상도의 를 시간-주파수 변환하고 병진운동 요동보상 후 를 보였다. (a) 64 Cross range (b) 70 Cross range (c) 91 Cross range 병진운동 요동보상 후 그림 10. 64 Fig. 10. After translation motion compensation for 64 range sell. samples 4-1 STFT 요동보상 첫째로 STFT 방식을 적용하여 실험하였으며, 그림 11 에서 32 거리셀의 STFT 를 구현하였다. (a) 42 Cross range, (b) 49 Cross range, (c) 64 Cross range의 교차 (a) 42 Cross range (b) 49 Cross range (c) 64 Cross range 그림 11. 32 STFT Fig. 11. Imaging of STFT for 32 range sell. (a) 64 Cross range (b) 70 Cross range (c) 91 Cross range 그림 12. 64 STFT Fig. 12. Imaging of STFT for 64 range sell. 범위 해상도의 를 STFT 시간-주파수 변환하여 병 진운동과 회전운동 요동보상 후 이다. 그림 12에서는 64 STFT 를 구현하였 다. (a) 64 Cross range, (b) 70 Cross range, (c) 91 Cross range의 교차범위 해상도의 를 STFT 시간-주파수 변환하여 병진운동과 회전운동 요동보상 후 이다. 4-2 GWT 요동보상 (a) 42 Cross range (b) 49 Cross range (c) 64 Cross range 병진운동 요동보상 후 그림 9. 32 Fig. 9. After translation motion compensation for 32 range sell. 662 두 번째로 GWT 방식으로 B-ISAR 알고리즘 절차를 적 용하여 실험하였으며, 그림 13에서 32 GWT 이 미지를 구현하였다. (a) 42 Cross range, (b) 49 Cross range, (c) 64 Cross range의 교차범위 해상도의 를 GWT 시간-주파수 변환하여 병진운동과 회전운동 요동보
시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징 (a) 42 Cross range (b) 49 Cross range (c) 64 Cross range 그림 13. 32 STFT Fig. 13. Imaging of GWT for 32 range sell. (a) 64 Cross range (b) 70 Cross range (c) 91 Cross range 그림 16. 64 WVD Fig. 16. Imaging of WVD for 64 range sell. 의 교차범위 해상도의 를 WVD 시간-주파수 변환하여 병진운동과 회전운동 요동보상 후 이다. 그림에서 병진운동 보상 후 는 조금 퍼짐 형태 를 볼 수 있으나, 병진운동과 회전운동 요동보상 후에 BISAR로 를 생성하면 선명하게 를 볼 수 있 다. 그림 17에서 시뮬레이션 결과를 비교하여 보면 STFT 는 선명하지 않고 퍼짐현상이 많이 발생함을 알 수 있다. 이에 비하여 WVD 방식은 대상물체인 모형 항공기 이미 지가 퍼짐 현상이 없고 선명하였다. GWT는 상대적으로 선명하지 못하고 산람점으로 존재하고 있음을 알 수 있 다. UWB 레이다를 사용하여 B-ISAR 환경에서 시간-주파 수 변환 요동보상 3가지 방법을 비교한 결과, WVD 방식 으로 처리한 것이 물체의 선명도가 가장 양호하고, 퍼짐 현상이 적음을 알 수 있다. B-ISAR 를 이용하여 이미징하 는 방법에서 병진운동 요동보상과 병진운동 회전운동 요동보상한 후의 는 STFT, WVD에서는 확연히 구 분된다. 병진운동 요동보상 후은 형태가 퍼진 형 상을 볼 수 있고, 병진운동 회전운동 요동보상 후에는 range (a) 64 Cross range (b) 70 Cross range (c) 91 Cross range 그림 14. 64 GWT Fig. 14. Imaging of GWT for 64 range sell. 상 후 이다. 그림 14에서는 64 거리셀의 GWT 를 구현하였 다. (a) 64 Cross range, (b) 70 Cross range, (c) 91 Cross range의 교차범위 해상도의 를 GWT 시간-주파수 변 환하여 병진운동과 회전운동 요동보상 후 이다. 4-3 WVD 요동보상 셋 번째로 WVD방식을 적용하여 실험하였다. 그림 15 에서 32 WVD 를 구현하였다. (a) 42 Cross range, (b) 49 Cross range, (c) 64 Cross range의 교차 범위 해상도의 를 WVD 시간-주파수 변환하여 병 진운동과 회전운동 요동보상 후 이다. 그림 16에서는 64 WVD 를 구현하였 다. (a) 64 Cross range, (b) 70 Cross range, (c) 91 Cross (a) 42 Cross range (b) 49 Cross range (c) 64 Cross range 그림 15. 32 WVD Fig. 15. Imaging of WVD for 32 range sell. (a) STFT (b) GWT 요동보상 비교 (c) WVD 그림 17. Fig. 17. Compared of motion compensation. 663
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 7, Jul. 2015... 결론 UWB Radar B-ISAR.. B-ISAR. STFT, GWT WVD. WVD, STFT. B-ISAR - 3, WVD,. WVD. WVD. UWB radar. UWB B-ISAR. References [1] Ben Allen, Mischa Dohler, Ernest E. Okon, Wasim Q. Malik, Anthony K. Brown, and David J. Edwords, Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging, John Wiley and Sons, Ltd., 2007. [2] Dimitrov Andon, Todor Lazarov, and Kostadinov Pavlov, Bistaic SAR/GISAR/FISAR Geometry, Signal Models and Imaging Algorithms, A John Wiley and Sons, Inc., 2014. [3] W. K. Lee, Y. K. Kwag, E. Cerrone, and C. J. Baker, "High resolution radar target recognition, international collaboration project between AERC", Korea Aerospace University, and Dept. of E and EE, University College London, UK, Aug. 2017. [4] M. K. Jang, C. S. Cho, "Target detection for marine radars using a data matrix bank filter", Journal of Electromagnetic Engineering and Science, vol. 13, no. 3, pp. 151-157, 2013. [5] Fred E. Nathanson, Radar Design Principles Signal Processing and the Environment, Second Edition, Scitech Publishing, Inc., pp. 267-349, 1991. [6] Mark A. Richards, Ph.D, Fundamentals of Radar Signal Processing, McGraw-Hill, pp. 347-383, 2005. [7] Caner Ozdemir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, A John Wiley and Sons, Inc, 2012. [8] A. Moghaddar, E. K. Walton, "Time-frequency distribution analysis of scattering from waveguide cavities", IEEE Transactions on Antennas and Propagation, vol. 41, pp. 677-680, 1993. [9] C. Ozdemir, Jont H. Ling, "Time-frequency interpretation of scattering phenomenology in dielectric-coated wires", IEEE Transactions on Antennas and Propagation, vol. 458, pp. 1259-1264, 1997. [10] L. C. Trintinalia, H. Ling, "Extraction of waveguide scattering features using jont time-frequency ISAR", IEEE Microwave and Guided Wave Letters, vol. 6, no. 1, pp. 10-12, 1996. [11] K. T. Kim, I. S. Choi, and H. T. Kim, "Efficient radar target classification using adaptive Jont Time-frequency processing", IEEE Transactions on Antennas and Propagation, vol. 48, no. 12, pp. 1789-1801, 2000. [12] H. Kim, H. Ling, "Wavelet analysis of radar echo from finite-sized targets", IEEE Transactions on Antennas and Propagation, vol. 41, pp. 200-207, 1993. [13] J. B. Allen, "Short term spectral analysis, synthesis, and modification by discrete Fourier transform", IEEE Trans Acoust, ASSP-25, pp. 235-238, 1977. [14] A. T. Nuttall, "Wigner distribution function: Relation to short-term spectral estimation, smoothing, and performance in noise", Technical Report 8225, Naval Underwater Systems Center, 1988. 664
- UWB ISAR [15] http://en.wikipedia.org/wiki/gaussian-blur [16] X. G. Xia, G. Wang, and V. C. Chen, "Quantitative SNR analysis for ISAR imaging using jont time-frequency analysis-short time Fourier tranform", IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 649-659, 2002. [17] V. C. Chen, S. Qian, "Jont time-frequency transform for radar range-doppler imaging", IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 486-499, 1998. [18] Raghuveer M. Rao, Ajit S. Bopardikar, Wavelet Transforms-Introduction to Theory and Applications, Addition Wesley Longman Inc, 1998. [19],,,, "ADC ",, 20(1), pp. 52-59, 2009 1. 1988 2 : ( ) 2009 2 : ( ) 2011 2 : 1998 5 : ( ) [ 주관심분야 ],,, FMS, 1987 2 : () 1995 12 : University of South Carolina, Electrical Eng. ( ) 1998 12 : University of Colorado at Boulder, Electrical Eng. ( ) 1987 1993 : LG 1999 2003 : 2004 3 : [ 주관심분야 ] Millimeter-Wave IC,, Analog IC, 665