( )-123.fm

Similar documents
12.077~081(A12_이종국).fm

14.fm

10(3)-09.fm

75.fm

untitled

10(3)-10.fm

16(5)-03(56).fm

19(1) 02.fm

3.fm

14.531~539(08-037).fm

82-01.fm

10(3)-02.fm

82.fm

18(3)-10(33).fm

10(3)-12.fm

93.fm

( )-84.fm

16(5)-04(61).fm

83.fm

< DC1A4C3A5B5BFC7E22E666D>

304.fm

( )-83.fm

fm

41(6)-09(김창일).fm

( )-122.fm

9(3)-4(p ).fm

( )-113.fm

(163번 이희수).fm

12(3) 10.fm

( )-101.fm

57.fm

( )-40.fm

16(6)-06(08(77)).fm

50(4)-10.fm

4.fm

50(1)-09.fm

605.fm

12(2)-04.fm

416.fm

( )-94.fm

144.fm

( )-47.fm

(159번 어혜진).fm

10.063~070(B04_윤성식).fm

16(1)-3(국문)(p.40-45).fm

13.fm

14(4) 09.fm

17.393~400(11-033).fm

( )-103.fm

15.101~109(174-하천방재).fm

( )45.fm

50(5)-07.fm

DBPIA-NURIMEDIA

한 fm

( )34.fm

( )-71.fm

( )-36.fm

12(4) 10.fm

64.fm

10(1)-08.fm

fm

106.fm

62.fm

15.fm

87.fm

07.045~051(D04_신상욱).fm

DBPIA-NURIMEDIA

16(5)-06(58).fm

17.fm

16(4)-05.fm

85.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<30332DB9E8B0E6BCAE2E666D>

49(6)-06.fm

69-1(p.1-27).fm

105.fm

83-07.fm

48.fm

fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

11(5)-12(09-10)p fm

15(2)-07.fm

31(3B)-07(7055).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

(1)-01(정용식).fm

( )-77.fm

( )-85.fm

7(4)-07.fm

untitled

89.fm

14(2) 02.fm

27(5A)-07(5806).fm

51(4)-13.fm

fm

07.051~058(345).fm

129.fm

18211.fm

<30312DC0CCC7E2B9FC2E666D>

DBPIA-NURIMEDIA

04-46(1)-06(조현태).fm

Transcription:

Journal of the Korean Ceramic Society Vol. 48, No. 1, pp. 63~68, 2011. DOI:10.4191/KCERS.2011.48.1.063 Effects of Substituting B 2 O 3 for P 2 O 5 on the Structure and Properties of SnO-P 2 O 5 Glass Systems Dong-Hwan Kim, Cha-Won Hwang, Nam-Jin Kim, Sang-Hyeok Im, Dong-Gun Gwoo, Tae-Hee Kim, Jae-Min Cha*, and Bong-Ki Ryu Division of Materials Science and Engineering, Pusan National University, Pusan 609-735, Korea *Departmet of Materials Science and Engineering, Kyushu University, Fukuoka 816-8580, Japan (Received November 11, 2010; Revised November 26, December 7, 2010; Accepted December 20, 2010) SnO-P 2 O 5 P 2 O 5 B 2 O 3 ey e w ½ yáy Á½û Á xá Á½k Á *Á» w œw *j w œw (2010 11 11 ; 2010 11 26, 12 7 ; 2010 12 20 ) ABSTRACT The investigation is directed to lead free (Pb-free) frits that can be used for organic light emitting diode, plasma display screen devices and other sealing materials. P 2 O 5 -SnO system glasses have been prepared for Pb-free low temperature glass frit. Structure and properties of the glasses with the composition SnO-xB 2 O 3 -(60-x)P 2 O 5 (x=0, 5, 10, 15, 20, 25, 30, 35, 40 mol%) were characterized by infrared spectra (IR), X-ray diffraction(xrd), Density, Molar volume, Thermo mechanical analysis(tma) and weight loss after immersion test. Glass transition temperature(t g ), dilatometric softening temperature(t d ) and chemical durability increased, and coefficient of thermal expansion(α) decrease with the substitution of B 2 O 3 for P 2 O 5 in the range of 0~25 mol%. Key words : Glass, Pb-free, P 2 O 5 -SnO, Sealing materials 1. Glass frit v ƒÿ š OLED (organic light emitting diode) seal, PDP(plasma display panel), LCD(liquid crystal display) VFD (vacuum fluorescent display) seal w š,» t paste š. 1) w Glass frit p k» w û y (T d ) ƒ, PbO ƒ š. w û w y w w 2,3) w, PbO w» w w ƒ w š, t Bi 2 O 3, P 2 O 5, 4-6) 7) BaO-B 2 O 3. P 2 O 5 p Corresponding author : Bong-Ki Ryu E-mail : bkryu@pusan.ac.kr Tel : +82-51-510-3200 Fax : +82-51-571-8838 y ƒ š ƒ w, SiO 2» ¾ yƒ ƒ w. w p P 2 O 5 y (T d ) û» w. p SnO P 2 O 5 ƒ y y w y ù x w w. 8) w SnO-P 2 O 5 PbO w ƒ ƒ š, û yw w w š. 9) SnO-P 2 O 5 üyw j» w, P 2 O 5 B 2 O 3 eyw, eyz mw. y p, üyw, mw, y, FT-IR spectroscopy w mw. 2. x 2.1. xsno-(100-x)p 2 O 5 63

64 ½ yáy Á½û Á xá Á½k Á Á» Table 1. Compositions of Glasses Composition Batch (mol%) SnO B 2 O 3 P 2 O 5 SP-1 20 80 SP-2 30 70 SP-3 40 60 SP-4 50 50 SP-5 60 40 SP-6 70 30 SBP-1 40 5 55 SBP-2 40 10 50 SBP-3 40 15 45 SBP-4 40 20 40 SBP-5 40 25 35 SBP-6 40 30 30 SBP-7 40 35 25 SBP-8 40 40 20 SnO 40 mol% š jš B 2 O 3 w 0~40 mol% ¾ P 2 O 5 ey g. Junsei Chemical Co., LTD Extra Pure NH 4 H 2 PO 4, SnO, B 2 O 3 w, Sn 2+ Sn y v 4+ w» w Sucrose 1wt% ƒw. 10) ww z ù 10 yww Batch, Table 1 ùkü. B 2 O 3 ƒw SnO-P 2 O 5 SP series wš B 2 O 3 ƒw SnO-B 2 O 3 -P 2 O 5 ƒ SBP series š t w. yw Batch ù ƒ» 200 C o 2h w wš, 1100~1200 C o 1h z l q œ» w. (T g )+ 20 o C þ w. r, š yw ü x v ƒx m cutting z, t SiC paper(#220-1000) w., XRD, FT-IR x z 325 mesh m w w. 2.2. d 2.2.1. & y y v w y y w. X-Ray Fluorescence spectroscopy(xrf, PHILIPS PW2400) w d w. r n y n (Transparent), + (crystal+glass), (crystalline) w, XRD(Rigaku Corporation /Cu/30 Kv/15 ma) Pattern mw y w. 2.2.2. Ì 3 mm w sww v (T g : glass transition temperature) y (T d : dilatometric softening temperature) š q (CTE: The Coefficient of Thermal Expansion) Simadzu(Japan) TA-60H TMA(Thermal Mechanical Analyzer) w 10 o C/min, w 50 g d w. 2.2.3. & v Archimedes method AND GH-200 w d w. w d (Molar Volume, Vm) (1) w. 11) V M M = ----» M = = s³ = x i n i i = i = R m O n y 2.2.4. üyw v üyw sƒ ƒƒ v 50 o C 12 w k z (2) w DR(Dissolution rate) w. 11)» ρ 1 ----------- ρ x i x i n i M i n i w DR = ------- S t w = Weight loss (g) S = Sample area (cm 2 ) before the dissolution test t = Dissolution time (min) 2.2.5. FT-IR spectroscopy y mw» w Ÿ FT-IR spectroscopy d w. d KBr glass powder Kbr powder 1:200 yww z» 100 o C w w. d»» Spectrum GX w š, d 400~1500 cm -1 w z 20 z, w 2cm -1. 3. š 3.1. 3.1.1. & y y v ù ƒ e y y w» w w (1) (2) w wz

SnO-P 2 O 5 P 2 O 5 B 2 O 3 ey e w 65 Table 2. Componential Analysis of Glasses Composition Analyzed (mol%) SnO B 2 O 3 P 2 O 5 SP-3 40.2 59.8 SP-4 50.1 49.9 SP-5 60.3 39.7 SBP-2 40 10.1 49.9 SBP-4 39.8 19.9 40.3 SBP-6 39.9 29.9 30.2 Fig. 3. Tg, Td and CTE of the xsno-(100-x)p 2 O 5 glass Fig. 1. Glass formation region of the SnO-B 2 O 3 -P 2 O 5 glass Fig. 4. Tg, Td and CTE of the 40SnO-xB 2 O 3 -(60-x)P 2 O 5 glass Fig. 2. XRD patterns of the 40SnO-xB 2 O 3 -(60-x)P 2 O 5 glass, Table 2 ùkü. SnO-P 2 O 5, SnO- B 2 O 3 -P 2 O 5 Al 2 O 3. ù ƒ e w, w r y w. Fig. 1 SnO-B 2 O 3 -P 2 O 5 x ù kü. xsno-(100-x)p 2 O 5 SnO 30~60 mol% n w ƒ x. w SnO 30 mol% x ù ü û y w. SnO-P 2 O 5 y ƒ û SP-3(40SnO-60P 2 O 5 ) w P 2 O 5 B 2 O 3 eyw. Fig. 2 SnO 40 mol% š w SP-3 P 2 O 5 B 2 O 3 eyw XRD Pattern ùkü. B 2 O 3 0~30 mol%¾ ey k Pattern, 35 mol% vjƒ ùkû. 3.1.2. Fig. 3 xsno-(100-x)p 2 O 5 SnOƒ 40, 50, 60 mol%, y š q ùkü. SnO w ƒw y w ƒw, q w w. d ƒ û 48«1y(2011)

66 ½ yáy Á½û Á xá Á½k Á Á» Fig. 5. Density and Molar volume of 40SnO-xB 2 O 3 -(60-x)P 2 O 5 glass Fig. 6. Dissolution rate of 40SnO-xB 2 O 3 -(60-x)P 2 O 5 glass x=40mol% üyw P 2 O 5 B 2 O 3 eyw. 40SnO-xB 2 O 3 -(60-x)P 2 O 5 (x=0~30 mol%) p Fig. 4 ùkþ. B 2 O 3 ey ƒw y ƒw š 25 mol% ùkü q w ùkü. 3.1.3. & 40SnO-xB 2 O 3 -(60-x)P 2 O 5 (x=0~30 mol%) w v Fig. 5 ùkü. P 2 O 5 B 2 O 3 eyw w w, P2 O 5 (141.94 g/mol) B 2 O 3 (69.62 g/mol)» w q. w j, y dw w p eƒ w, v w. P 2 O 5 ey B 2 O 3 w ƒw v w. x SnO-P 2 O 5 ü x w w B 2 O 3 ƒw ƒ ƒ ƒw, ƒ š ƒ š yw Close structure x w. 3.1.4. üyw DR(Dissolution rate) ƒ w, 12) B 2 O 3 ƒ yw ü j š š. 9,13) Fig. 6 40SnO-xB 2 O 3 -(60-x) P 2 O 5 (x=0~30 mol%) t ù kþ. yw ü p ƒ B 2 O 3 w w ƒ š, y B 2 O 3 w 25 mol%¾ yƒ ù q. Fig. 7. Infrared spectra of 40SnO-xB 2 O 3 -(60-x)P 2 O 5 (x=0-15 mol%) glass 3.1.5. FT-IR spectroscopy Figs. 7, 8 40SnO-xB 2 O 3 -(60-x)P 2 O 5 P 2 O 5 B 2 O 3 ey g B 2 O 3 w y FT-IR spectra. 40SnO-60P 2 O 5 ùkù 1200 ~1300 cm -1 Phosphate chain ƒ e v as (PO 2 )» wš, 890 cm -1 P-O-P w ƒ e v as (P- O-P)» w. š 720~800 cm -1 ƒ e v s (P-O-P)» w. B 2 O 3 e y ƒw q y w p v as (PO 2 ) ùkü 1200~1300 cm -1 ( ƒ e ) v as (P-O-P) ùkü 890 cm -1 (ƒ e ) r ù w. w x=0~15 ¾ v s (P-O-P) ùkü 720~800 cm -1 (ƒ e ) q q shift y w. B 2 O 3 w ƒ w wz

SnO-P 2 O 5 P 2 O 5 B 2 O 3 ey e w 67 Fig. 8. Infrared spectra of 40SnO-xB 2 O 3 -(60-x)P 2 O 5 (x=20-30 mol%) glass w e ƒ w w. w ƒ P 2 O 5 ƒ B 2 O 3 ƒ w ƒ x w e y w». w Fig. 8 x=20mol% l ƒ e v s (P-O-P) ùkü 720~800 cm q š -1 BO 4» e v s (O-B-O) ùkü 680 cm q -1 ùkù. phosphate ü borate ƒ, P-O-P P-O-B yw d. x=30mol% BO 3» e (B-O) as ùkü 1450 cm q -1 ƒ š. 4 BO 4 3 BO 3 w, ƒ ƒ w. SnO- P 2 O 5 P 2 O 5 B 2 O 3 ey yƒ w x ù kù y w. 3.2. š 40SnO-xB 2 O 3 -(60-x)P 2 O 5 x=0 40SnO-60P 2 O 5 e e ƒ ùkù. w, B 2 O 3 ey ƒ ƒw(x=0~25) e ùkü wš e ùkü ƒw. w phosphate ùkü peak intensity w ù r borate ùkü peak w. B 2 O 3 ey ƒ ƒw phosphate borate ƒ x d w. w borate x x=20mol% BO 4» e v s (O-B-O) ùkü peak m Fig. 9. Predictive model for 40SnO-xB 2 O 3 -(60-x)P 2 O 5 glass structure. w y ƒ w. B 2 O 3 ey ƒ w ƒ ƒ ƒw e, 4 boron w borate networkƒ, phosphate network, borate networkƒ y boro-phophate networks x w q. Fig. 9. w, x=30mol% BO 3» e (B-O) as ùkü peakƒ ùkù. 4 BO 4 3 BO 3 y x ù. w y y ùkü. 40SnO-xB 2 O 3 -(60-x)P 2 O 5 x=0 25 mol%¾ w phosphate networkƒ wš borate networkƒ. ƒ ƒ ƒw, w w w Highly cross-linked structure x w, üyw ƒ q. ù x=30mol% B 2 O 3 ƒ 4 3 yw x w ƒ ƒ x, ƒ y ü yw w q. 4. SnO-P 2 O 5 w p üy w x ww. x SnO-P 2 O 5 y x p q w š ƒ û ƒ 40SnO-60P 2 O 5 P 2 O 5 B 2 O 3 ey ey y mw š. (1) xsno-(100-x)p 2 O 5 2 SnO w 30~60 mol% ƒ x ù 30 mol% w x w. 48«1y(2011)

68 ½ yáy Á½û Á xá Á½k Á Á» š SnO w ƒw (T g ) y (T d ) w wš q (CTE) w w. (2) 40SnO-xB 2 O 3 -(60-x)P 2 O 5 B 2 O 3 w 0~40 mol%¾ eyw 30 mol%¾ ƒ x. ey 25 mol%¾ eyw phosphate networks e w š, BO 4 ƒ x borate, boro-phophate networksƒ x. cross-linkage yƒ w (T g ) y (T d ) wš q (CTE),, DR w. (3) B 2 O 3 ey 30 mol% BO 4 ƒ BO 3 y x ù» ƒ ƒ x ƒ y. (T g ) y (T d ) wš q (CTE), DR ƒw. (4) SnO-P 2 O 5 B 2 O 3 ey w y g üyw j ƒ yƒ ù üyw w. Acknowledgment w w (2 ) w. REFERENCE 1. Y. T. An, B. H. Choi, M. J Ji, W. S. Chang, H. Bae, and H. J. Hwang, Structure and Thermal Properties of SnO 2 -(1- X)P 2 O 5 -XB 2 O 3 Glasses(in Korean), J. Kor. Ceram. Soc., 47 [2] 117-21 (2010). 2. C. J. Hudecek, Engineered Materials Handbook, Vol. 4, pp. 1069, ASM International, 1991. 3. R. Morena, Phosphate Glasses as Alternatives to Pb-based Sealing Frits, J. Noncryst. Solids, 263-64 382-87 (2000). 4. M. Busio and O. Steigelmann, New Frit Glasses for Display, GLASTECH. Ber. Glass Sci. Tehch., 73 [10] 319-25 (2000). 5. B. H. Choi, Technical Development Trend for PDP Device Material, Information Display, 8 [1] 10-1 (2007). 6. R. K. Brow, and D. R. Tallant, Structural Design of Sealing Glasses, J. Noncryst. Solids, 222 396-406 (1997). 7. E. S. Lim, B. S. Kim, J. H. Lee, and J. J. Kim, Characterization of the Low Temperature Firing BaO B 2 O 3 SiO 2 Glass : The Effect of BaO Content, J. Eur. Ceram. Soc., 27 825-29 (2007). 8. C. Gejke and E. Zanghellini, Microscopic Structure of Tinborate Phosphate Glasses, J. Power Sources, 119-21 576-80 (2003). 9. M. Kenji and F. Shigeru, Preparation and Properties of SnO-SnCl 2 -P 2 O 5 Glass, J. Noncryst. Solids, 282 118-24 (2001). 10. J. Hong, D. Zhao, J. Gao, M. He, H. Li, and G. He, Leadfree Low-melting Point Sealing Glass in SnO CaO P 2 O 5 System, J. Noncryst. Solids, 1400-3 (2010). 11. N. J. Kim, S. H. Im, D. H. Kim, D. K. Yoon, and B. K. Ryu, Structure and Properties of Borophosphate Glasses, Electronic Mater. Lett., 6 [3] 103-6 (2010). 12. V. S. Molchanov and N. E. Prikhid'ko, Corrosion of Silicate Glasses by Alkaline Solutions, Russian Chem. Bull, 8 [6] 942-47 (1996). 13. B. C. Lee, S. W. Lee, C. W. Hwang, J. S. Lee, and B. K. Ryu, The Study on Chemical Durable Zinc-phosphate Glasses with B 2 O 3 Addition(in Korean), J. Kor. Ceram. Soc., 38 [6] 593-95 (2001). w wz