한수지 51(4), 420-425, 2018 Original Article Korean J Fish Aquat Sci 51(4),420-425,2018 Convict Cichlid Amatitlania nigrofasciata 의난발생 정효선 고민균 1 이효빈 1 노재구 김동수 2 * 국립수산과학원생명공학과, 1 부경대학교해양수산 LMO 위해성평가센터, 2 부경대학교해양바이오신소재학과 Embryonic Development of Convict Cichlid Amatitlania nigrofasciata Hyo Sun Jung, Min Gyun Ko 1, Hyo Bin Lee 1, Jae-Koo Noh and Dong Soo Kim 2 * Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea 1 Department of Fisheries Biology Center for Risk Assessment of Oceans and Fisheries Living Modified Organisms, Pukyong National University, Busan 48513, Korea 2 Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 48513, Korea We characterized egg development and investigated the effects of temperature on embryonic development time, in the convict cichlid Amatitlania nigrofasciata. Fertilized eggs of this species have an ovoid shape (horizontal axis, 1.56±0.02 mm; vertical axis, 1.26±0.04 mm) and smooth translucent chorion surrounded by a layer of mucous secretion. At 27±0.5, the first cleavage, blastula, gastrula and 16-somite stages of A. nigrofasciata eggs began at 1.5, 4.83, 14 and 40 hours after fertilization, respectively. We measured the development rate of embryos at 12-33 and found that the time period from fertilization to hatching was 94 hours at 24, 64 hours at 27 and 50 hours at 30. At temperatures of 12-21, all fertilized eggs died before hatching and those incubated at 33 died immediately after hatching. Key words: Amatitlania nigrofasciata, Embryonic development 서론 (Cichlidae) (Perciformes) 105 1300 (Salzburger and Meyer, 2004)., Oreochromis niloticus, O. mossambicus, Labeotropheus fuelleborni L. trewavasae (Meijide and Guerrero, 2000; Kratochwil et al., 2015). A. nigrofasciata 8-9, (leucistic strain) (Esmaeili et al., 2013; Chi et al., 2015). 12 cm, (monogamy) (substrate brooding) (Hopperdietzel et al., 2014). A. nigrofasciata,., (Chen, 1995; Hwang et al., 2004; Liu et al., 2004; Liu et al., 2007).,,, (Sin, 1997; Hwang et al., 2004). A. nigrofasciata. https://doi.org/10.5657/kfas.2018.0420 Korean J Fish Aquat Sci 51(4) 420-425, August 2018 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 19 May 2017; Revised 8 June 2017; Accepted 28 June 2018 *Corresponding author: Tel: +82. 51. 629. 5914 Fax: +82. 51. 629. 5908 E-mail address: dongskim@pknu.ac.kr Copyright 2018 The Korean Society of Fisheries and Aquatic Science 420 pissn:0374-8111, eissn:2287-8815
421 Amatitlania nigrofasciata의 난발생 재료 및 방법 친어관리 본 연구에 사용된 A. nigrofasciata는 leucistic strain으로 실험 실에서 생산한 F1 세대 7개월령 개체를 사용하였고 이들의 무 게, 체장 및 전장은 암컷의 경우 3.44±0.68 g, 4.44±0.20 cm 및 5.65±0.18 cm였고, 수컷은 4.75±2.12 g, 4.88±0.54 cm 및 6.27±0.72 cm였다. 사육수는 부산시 시수를 2일간 폭기한 후 5 μm의 미세필터로 여과하여 사용하였고, 매일 50%씩 환수 하였다. 본 종은 monogamy 특성을 가지므로 40 L의 투명 유리 수조 10개에 각각 암수 1쌍씩 수용하여 27±1, 14L:10D 광 주기 조건을 유지하여 자연산란을 유도하였다. 수정란 확보를 위해 수조 내에 부착 기질로 사용될 수 있는 화분을 1개씩 함께 넣어 사육하였고, 2% astaxanthin이 첨가된 부상 사료를 3회/일 공급하였다. 수정란의 수집 자연산란을 통해서 확보된 수정란은 산란한 직후 부착기질에 서 떼내어 항온 수조 안에 설치된 부화망(망목, 330 330 μm; 크기, 12 5 5 cm)으로 옮겨 발생을 유도하였다. 사육수는 친어 관리와 동일한 사육수를 사용하였으며, 환수는 50%씩 1 회/일 수행하였다. 난발생 관찰 A. nigrofasciata 수정란의 발생 및 부화 가능 수온을 확인하기 위해서 산란직후 부착기질에서 확보된 수정란을 12, 18, 21, 24, 27, 30 및 33 의 부화조에서 30알씩 발생을 유도하여 각 온도 별 부화 시간을 관찰하였다. 상기의 수온에 따른 수정란의 발생 및 부화 관찰을 통해 확인 된 본 종의 발생 수온인 27 을 대상으로 난발생 특징을 관찰하 였다. Kimmel et al. (1995) 및 Kratochwil et al. (2015)의 발생 단계를 기준으로 관찰하였고, 수정 직후인 Zygote stage (Fig. 1a)를 0시(time 0)로 하여 수정란의 90% 이상이 동일한 단계에 도달하는 시기를 기준으로 각 발생단계별 소요 시간과 형태학 적 특징을 기록하였으며, 해부현미경(AZ100; Nikon Co., Tokyo, Japan)과 이에 부착된 디지털 카메라(DS-Ril; Nikon Co., ps a b f g c d e h i j n o ez es k l m yp p Fig. 1. External morphology of the egg development stages (a-l) and post hatched larva (m) of Amatitlania nigrofasciata. a, zygote stage; b, early 1-cell stage; c, 1-cell stage; d, 2-cell stage; e, 4-cell stage; f, 8-cell stage; g, 32-cell stage; h, 64-cell stage; i, high stage; j, dome stage; k, embryonic shield; l, 40% epiboly; m, 95% epiboly; n, 16-somites stage; o, Pre-hatching stage; p, post hatching stage. es, embryonic shield; ez, evacuation zone; ps, perivitelline space; yp, yolk plug. Scale bar=500 μm.
422 정효선ㆍ고민균ㆍ이효빈ㆍ노재구ㆍ김동수 Tokyo, Japan). 169.6 71.5 ( 91.35 4.02%) 50 27 0.5 0.5-1, 7, 20. 30 24, 27 30 1-2, 2. 결과및고찰 A. nigrofasciata (chorion) (Fig. 1a). globule, (micropyle). Riehl and Patzner (1998),. Amphilophus xiloaensis Cichlasoma dimerus filament (Pandolfi et al., 2009; Kratochwil et al., 2015). 1.56 0.02 mm 1.26 0.04 mm. C. dimerus Pterophyllum scalare 1.65 0.05 mm, 1.25 0.05 mm 1.44 0.05 mm, 1.17 0.05 mm (Meijide and Guerrero, 2000; Korzelecka-Orkisz et al., 2012). Fleig (1993). Haplochromis xenognathus O. mossambicus 4.5 mm, 3.0 mm 3.04 0.20 mm, 2.19 0.16 mm 3 (Holden and Bruton, 1992; Kratochwil et al., 2015).. (Rana, 1990). A. nigrofasciata, 12 15, 18 21, 33 40. 24 94, 27 65, 30 50 24-30 (Table 2). Rana (1986) Ogira et al. (2014) O. niloticus 25-30, 20 34 6 3, Rana (1990) 17 39.5. Pterophyllum scalare 27-31 (Pérez et al., 2003; Abdolbaghian et al., 2010), Table 1. Stage of embryonic development in Amatitlania nigrofasciata Stages Zygote period Hours after fertilization at 27±0.5 Corresponding figure Zygote 0 Fig. 1a 1 cell 1.2 Fig. 1c Cleavage period 2 cells 1.5 Fig. 1d 4 cells 1.8 Fig. 1e 8 cells 2.3 Fig. 1f 16 cells 2.8-32 cells 3.3 Fig. 1g 64 cells 3.8 Fig. 1h Blastula period 128 cells 4.8 - high 6.8 Fig. 1i dome 12 Fig. 1j 15% epiboly 13 - Gastrula period Germ ring (30% epiboly) 14 - Embryonic shield (30% epiboly) 15 Fig. 1k 40-45% epiboly 17 Fig. 1l 70% epiboly 21-90-95% epiboly 26 Fig. 1m 100% epiboly 28 - Segmentation period 16 somites 40 Fig. 1n 20 somites 44 - Hatching period Hatching 65 Fig. 1o
Amatitlania nigrofasciata 의난발생 423, 25-31. A. nigrofasciata 27 0.5 Table 1 Fig 1. (perivitelline space), (cytoplasmic) (animal pole) 1 10 1 (1-cell stage) (Fig. 1c). 12%. 10-12%, 10%, 10% (Iwamatsu, 2004; Fujimoto et al., 2006; Pandolfi et al., 2009; Korzelecka-Orkisz et al., 2012), Danio rerio 17% (Kimmel et al., 1995). (cleavage) (meroblastic). 1 30 2 (blastomere) (2, Fig. 1d). 1 50 4 (Fig. 1e), 2 20 2 8 (Fig. 1f). 2 50 16, 3 20 32, 3 Table 2. Embryonic development of Amatitlania nigrofasciata at different water temperatures Development stages Zygote period Hours after fertilization 24 27 30 Zygote 0 h 0 h 0 h Cleavage period 4 cells 4 h 1.8 h 1 h Blastula period 128 cells 10 h 4.8 h 2 h Gastrula period 70% epiboly 31 h 21 h 14 h 100% epiboly 39 h 28 h 19 h Segmentation period 22 somites 57 h 44 h 28 h Hatching period Hatching 94 h 65 h 50 h 50 64 (Fig. 1g, 1h). 6, 5, 6 2. (Kimmel et al., 1995; Meijide and Guerrero, 2000; Desnitskiy, 2015) (blastula period),, 6 50 (blastoderm) (high stage, Fig. 1i). 15%, A. xiloaensis, C. dimerus O. niloticus 15% (Fujimura and Okada, 2007; Pandolfi et al., 2009; Kratochwil et al., 2015). 12 dome stage (Fig. 1j), 13 15% (epiploy). (gastrula period), (involution), (convergence) (extension) (morphogenetic cell movements) (germ ring), (embryonic shield) (embryonic body) (Jung et al., 2015). 30% 14, 15 (dorsal side) (Fig. 1k).., (Meijide and Guerrero, 2000; Iwamatsu, 2004; Jung et al., 2015), 50% (Kimmel et al., 1995; Fujimoto et al., 2004)., 21 45-50% evacuation zone (Fig. 1l). evacuation zone, (deep cell), (embryonic axis) Ballard (1981)
424 정효선ㆍ고민균ㆍ이효빈ㆍ노재구ㆍ김동수., 25 90-95% yolk plug (Fig. 1m), 28 100% (Table 1)., (Holden and Bruton, 1992; Fujimoto et al., 2006; Song et al., 2009; Jung et al., 2015). (segmentation period) (somite),, (otic vesicle) 40 16 (Fig. 1n), 44 20. 59, (Fig. 1o), 65 (Fig. 1p). (24, 27 30 ) Table 2. 128 24 10, 27 4.8, 30 2, 70% 100% 24 31 39, 27 21 28, 30 14 19. 22 24 57 94, 27 44 65, 30 28 50. A. nigrofasciata,. A. nigrofasciata,. References Abdolbaghian S, Jamili S and Matinfar A. 2010. The effect of temperature and diet on the degrees of pecific growth rate percentage (SGR %) and weight growth (WG %) of angel fish fry Pterophyllum scalare. J Fish Aquat Sci 5, 311-315. http://dx.doi.org/10.3923/jfas.2010.311.315. Ballard WW. 1981. Morphogenetic movements and fate maps of vertebrates. Am Zool 21, 391-399. Chen TT. 1995. Transgenic fish and aquaculture. In: Towards Sustainable Aquaculture in Southeast Asia and Japan: Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia. Bagarinao TU and Flores EEC, eds. SEAFDEC Aquaculture Department, Iloilo, Philippines, 81-89. Chi JR, Liao LS, Wang RG, Jhu CS, Wu JL and Hu SY. 2015. Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge. Fish Physiol Biochem 41, 449-461. http://dx.doi.org/10.1007/s10695-014-9996-6. Desnitskiy AG. 2015. On the Features of Embryonic Cleavage in Diverse Fish Species. Ontogenez 46, 385-392. http:// dx.doi.org/10.1134/s106236041506003x. Esmaeili HR, Gholamifard A, Sayyadzadeh G, Parsi B, Mirghiyasi S and Ghasemian S. 2013. New record of the convict cichlid, Amatitlania nigrofasciata (Günther, 1867), from the Middle East (Actinopterygii: Cichlidae). Aqua Int J Ichthyol 19, 225-229. Fleig R. 1993. Embryogenesis in mouth-breeding cichlids structure and fate of the enveloping layer. Roux. Arch Dev Biol 203, 124-130. http://dx.doi.org/10.1007/bf00365051. Fujimoto T, Kataoka T, Otani S, Saito T, Aita T, Yamaha E and Arai K. 2004. Embryonic stages from cleavage to gastrula in the loach Misgurnus anguillicaudatus. Zoolog Sci 21, 747-755. http://dx.doi.org/10.2108/zsj.21.747. Fujimoto T, Kataoka T, Sakao S, Saito T, Yamaha E and Arai K. 2006. Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zoolog Sci 23, 977-989. http://dx.doi.org/10.2108/zsj.23.977. Fujimura K and Okada N. 2007. Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system. Dev Growth Differ 49, 301-324. http://dx.doi.org/10.1111/ j.1440-169x.2007.00926.x. Holden KK and Bruton MN. 1992. A life-history approach to the early ontogeny of the Mozambique tilapia Oreochromis mossambicus (Pisces, Cichlidae). S Afr J Zool 27, 173-191. http://dx.doi.org/10.1080/02541858.1992.11448279. Hopperdietzel C, Hirschberg RM, Hünigen H, Wolter J, Richardson K and Plendl J. 2014. Gross morphology and histology of the alimentary tract of the convict cichlid Amatitlania nigrofasciata. J Fish Biol 85, 1707-1725. http://dx.doi. org/10.1111/jfb.12530. Hwang G, Müller F, Rahman MA, Williams DW, Murdock PJ, Pasi KJ, Goldspink G, Farahmand H and Maclean N. 2004. Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos. Mar Biotechnol 6, 485-492. http:// dx.doi.org/10.1007/s10126-004-3121-2. Iwamatsu T. 2004. Stages of normal development in the medaka Oryzias latipes. Mech Dev 121, 605-618. http://dx.doi. org/10.1016/j.mod.2004.03.012. Jung HS, Kim YK, Kim HC, Noh JK, Lee JH and Kim DS. 2015. Embryonic Development of Haploid Olive Flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 48, 696-
Amatitlania nigrofasciata 의난발생 425 703. http://dx.doi.org/10.5657/kfas.2015.0696. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B and Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. http://dx.doi.org/10.1002/ aja.1002030302. Korzelecka-Orkisz A, Szalast Z, Pawlos D, Smaruj I, Tañski A, Szulc J and Krzyszt F. 2012. Early ontogenesis of the angelfish, Pterophyllum scalare Schultze, 1823 (Cichlidae). Neotrop ichthyol 10, 567-576. http://dx.doi.org/10.1590/ S1679-62252012005000017. Kratochwil CF, Sefton MM and Meyer A. 2015. Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Dev Biol 15, 1-15. http://dx.doi.org/10.1186/s12861-015- 0061-1. Lin CH, John JA, Ou LW, Chen JC and Lin CH. 2004. Cloning and characterization of metallothionein gene in ayu Plecoglossus altivelis. Aquatic toxicology 66, 111-124. http:// dx.doi.org/10.1016/j.aquatox.2003.06.003. Liu WY, Wang Y, Qin Y, Wang YP and Zhu ZY. 2007. Sitedirected gene integration in transgenic zebrafish mediated by cre recombinase using a combination of mutant lox sites. Marine biotechnology 9, 420-428. http:// dx.doi.org/10.1007/ s10126-007-9000-x. Meijide FJ and Guerrero GA. 2000. Embryonic and larval development of a substrate-brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J Zool Lond 252, 481-493. http://dx.doi.org/10.1111/j.1469-7998.2000. tb01231.x. Ogira PG, Liti D and Wanga J. 2014. Effects of Temperature on Embryonic Development Time and Yolk Absorption Period of Oreochromis Niloticus. Internat J Sci Res 3, 321-323. Pandolfi M, Cánepa MM, Meijide FJ, Alonso F, Vázquez GR, Maggese MC and Vissio PG. 2009. Studies on the reproductive and developmental biology of Cichlasoma dimerus (Percifomes, Cichlidae). Biocell 33, 1-18. Pérez E, Díaz F and Espinac S. 2003. Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). J Therm Biol 28, 531-537. http://doi.org/10.1016/s0306-4565(03)00055-x. Rana HJ. 1986. Parental influences on egg quality, fry production and fry performance in Oreochromis niloticus (Linnaeus) and O. mossambicus (Peters). Ph. D. Thesis, University of Stirling, Scotland, U.K. Rana HJ. 1990. Influence of incubation temperature on Oreochromis niloticus egg and fry I. gross embryology, temperature tolerance and rates of embryonic development. Aquaculture 87, 165-181. https://doi.org/10.1016/0044-8486(90) 90273-P. Riehl R and Patzner RA. 1998. Minireview: The modes of egg attachment in teleost fishe. Behaviour, adaptation and morphology. Ital J zool 65, 415-420. Salzburger W and Meyer A. 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91, 277-290. https://doi.org/10.1007/s00114-004-0528-6. Sin FYT. 1997. Transgenic fish. Rev Fish Biol Fish 7, 417-441. https://doi.org/10.1023/a:1018452214763 Song HY, Nam YK, Bang IC and Kim DS. 2009. Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor J Ichthyol 21, 227-238.