18110.fm

Similar documents
14.531~539(08-037).fm

10(3)-09.fm

69-1(p.1-27).fm

304.fm

07.045~051(D04_신상욱).fm

605.fm

10(3)-12.fm

< DC1A4C3A5B5BFC7E22E666D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

50(1)-09.fm

11(5)-12(09-10)p fm

16(2)-7(p ).fm

10(3)-10.fm

16(1)-3(국문)(p.40-45).fm

½½¶óÀ̵å Á¦¸ñ ¾øÀ½

416.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

9(3)-4(p ).fm

82.fm

12.077~081(A12_이종국).fm

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

49(6)-06.fm

untitled

07.051~058(345).fm

untitled

10(3)-02.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

10(1)-08.fm

<30332DB9E8B0E6BCAE2E666D>

17.393~400(11-033).fm

18103.fm

202.fm

14(2) 02.fm

50(5)-07.fm

15.101~109(174-하천방재).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

전자회로-07장

전자실습교육 프로그램

12(3) 10.fm

19(1) 02.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

43(5)-1.fm

26(3D)-17.fm

DBPIA-NURIMEDIA

( )-7.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

4.fm

12(2)-04.fm

DBPIA-NURIMEDIA

32(4B)-04(7455).fm

14(4) 09.fm

08 조영아.hwp

82-02.fm

14.fm

15(2)-07.fm

Microsoft PowerPoint - ICCAD_Analog_lec01.ppt [호환 모드]

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

歯AG-MX70P한글매뉴얼.PDF

31(3B)-07(7055).fm

415.fm

10.063~070(B04_윤성식).fm

18211.fm

11(1)-15.fm

<30312DC0CCC7E2B9FC2E666D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

Microsoft PowerPoint - Ch12

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

51(2)-09.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

17(2)-00(268).fm

04-46(1)-06(조현태).fm

82-01.fm

( )-113.fm

歯03-ICFamily.PDF

Microsoft Word - SRA-Series Manual.doc

3.fm

41(6)-09(김창일).fm

(4)-03(박상철).fm

fm

12(4) 10.fm

11 함범철.hwp

Microsoft PowerPoint - ch25ysk.pptx

(2)-02(최경자).fm

51(4)-13.fm

27(5A)-07(5806).fm

¼º¿øÁø Ãâ·Â-1

Microsoft PowerPoint - analogic_kimys_ch10.ppt

,,,,,, (41) ( e f f e c t ), ( c u r r e n t ) ( p o t e n t i a l difference),, ( r e s i s t a n c e ) 2,,,,,,,, (41), (42) (42) ( 41) (Ohm s law),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan 서론 PC PMIC(Power Management IC) [1]. PMIC DC-D

fm

DBPIA-NURIMEDIA

fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

Microsoft Word - KSR2013A320

26(2)-04(손정국).fm

Transcription:

J. of the Korean Sensors Society Vol. 18, No. 1 (2009) pp. 95 101» e z Potentiostat circuits for amperometric sensor Shin-Il Lim Abstract A simple and new CMOS potentiostat circuit for amperometric sensor is described. To maintain a constant potential between the reference and working electrodes, only one differential difference amplifier (DDA) is needed in proposed design, while conventional potentiosatat requires at least 2 operational amplifiers and 2 resistors, or more than 3 operational amplifiers and 4 resistors for low voltage CMOS integrated potentiostat. The DDA with rail-to-rail design not only enables the full range operation to supply voltage but also provides simple potentiostat system with small hardwares and low power consumption. Key Word : Amperometric sensor interface, DDA, CMOS potentiostat 1. yw, y, ƒwš k ü» (amperometric) e(potentiostat) w [1]. w» e» m. ù x l ù w» l š, z xwš d w» w, x y, yƒ ƒ w eƒ š. wr l ƒ y, y š p»» x w» w, d z e xw z, x x w ù, z CMOS» e ü j x x ƒwš. p x { w», w»»» w w x e x w fulœw (Dept. of Computer Engineering, Seokyeong University) Corresponding author: silim@skuniv.ac.kr (Received : October 13, 2008, Revised : December 23, 2008 Accepted : January 21, 2009) ƒ» w š, š, d z y, ƒ y, y š [2-4,10]. w w» w e CMOS» e z w. z wù s»(differential difference amplifier: DDA) w» z w w x ƒ w., s» w w t» z ƒ wù s», ƒ wš, w. wr CMOS e w w p l p ¼ j» w 3.3 V w w xw, s» w MOS p l l (threshold voltage) w w. NMOS s» 3.3 V œ z œm 1V y š w œm y w w. œ œ ƒ w w» w, s» NMOS PMOS 95

96 w œ ƒ w w. 2.» e z» e 2 (electrode) w [11] 3 w ƒ [2-4]. 2 w w w w y yw d ƒ. w w w» w w» e (auxiliary) (AE) ( (counter) ),» (reference) (RE) (working) (WE) 3 w [2-4].» 3 z Fig. 1(a) ù kù 2 s»(a1, A2) w», ƒ w ƒ xw [4]. Fig. 1(a) s» A3 w Rf y y ã - y s»(trans-impedance amplifier: TIA). wr, CMOS e 3.3 V w û w, Fig. 1(a) z w ƒwš d w, y, w y ƒ yw y w w. w w w» w Fig. 1(b) J. Zhang w x (fully differential) eƒ. [4] ù Fig. 1(b) ùkù (A4, A5, A6) ƒ s» w wš wš, s» w f š, w w w ƒ f ƒ, ƒ. w w» w ƒw» w E. Sackinger Hussain Alzaher w s» w, w e w. [5,6] w» s» ƒ w w š, s» j ƒw» w ƒ w. s» w w ü» w. Fig. 1. Conventional potentiostat circuits (a) single-ended implementation and (b) fully differential implementation [4]. 3. e 3.1. z Fig. 2 ùkù z s»(dda) w w e. s» wù w ƒw» ƒ w. s» Fig. 2 ùkù 4 (V PP, V PN, V NP, V NN ) ƒ, V PP -V PN + V NP -V NN w. s» p (1) w [5,6]. V o = A o [(V PP V PN ) (V NP V NN )] (1)» V PP V PN +, V NP V NN ùküš, A o s» v (open loop gain), š V o s» ùkü. s»ƒ Fig. 2 wz 18«1y, 2009 96

» e z 97 Fig. 2. Proposed potentiostat circuits. s» (V PP -V PN +, V NP -V NN ) w (Vcell= Vs) v A o ƒ j w. = = ----------------------- V Cell ( V S ) I out R FW (2)» V S w ƒ, R FW» w, Vcell R FW, Iout. R FW w, w ƒw R FW y y Ioutƒ. z y w» w - yw y y sw z A/D yw. w Fig. 2 - y s» TIA ƒ w. A/D y w. (2)ƒ w» w s» A o ƒ f w 97 db j w. z s» wù w ƒw ƒ w. s» w t v w ƒ š, w. w s» w f w w». w z k, DNA (array) x z w. wr s» œ ü ƒ w w e y w. 3.2. s» z s» e ü z ƒ Fig. 3 ùkù. ƒ w w» w,» E. Sackinger Hussain Alzaher w 2 s» NMOS PMOS w œ ü y k w.» s» v 60 db j œm x s» ù, s» 90 db j š œm (common mode rejection ratio: CMRR) 120 db j w» w jš w folded cascode s» w. s» folded cascode» [7]» w w. j e g (cascode)x, ƒ AB ƒ w, 100 Hz y v 97 db ƒ w. j w (2) Vcell = Vsƒ ƒ w. Fig. 3 ƒx A(V PP, V PN )(y B(V NP, V NN )) ƒƒ PMOS p l NMOS p l (rail-to-rail xk ) w, œ ü ƒ w. A, B e g» w. p l j» (W/L) j w w w ƒ œ w. p l ƒƒ œ ƒ w. wr s» œm x s»ƒ AB t t(push-pull) xk ƒ. p VBP, VBN ƒ p l w p lƒ É w. w w eq l Cc cascode w. eq l Cc Vout p l p w š, BIAS2ù BIAS3ƒ p p l ù w. w q p z ƒ. [8] s» 3.4 ua, w w 1mA¾ ƒ w. w w» w ( w 1mA w w» w 97 J. Kor. Sensors Soc., Vol. 18, No. 1, 2009

98 Fig. 3. Ciruits of differential difference amplifier (DDA). Fig. 4. Results of AC simulation for DDA (gain, phase, CMRR). ) j» j w. 4. x z 0.35 um CMOS t œ w w. e s» z x (circuits simulator) SPICE w x ww. AC x(simulation) œm x ƒ Fig. 4 ùkù. Fig. 4 ƒ q (Hz), v (db) ù kü 100 Hz ¾ 97 db š. Fig. 4 ƒ q (Hz), (phase margin) (degree, o ) š, w 4pF ƒ w 101 o š. Fig. 4 ƒ q (Hz), œm (db) ùkü, œm x wz 18«1y, 2009 98

전류법 기반 센서의 정전압 분극 장치 회로 99 Fig. 5. Results of transient simulation for proposed potentiostat; (a) input voltage signals, (b) current signal through RFW, (c) voltage signal at RE and (d) output voltage of TIA. 약 170 db로서 보통 120 db 이상이 요구되는 센서 시 스템에서 적용할 수 있도록 충분한 큰 값을 보여주고 있다. 만약 센서 부하 캐패시터 성분이 추가되어 더 커 진다 해도 현재 충분한 위상 여유를 가지고 있어, 회로 가 안정적으로 동작하게 된다. Fig. 2의 제안된 회로에서, 센서 저항 R 를 1 MΩ 이라고 가정하고, TIA의 Rf 저항도 1 MΩ을 사용했을 때, 10 KHz의 정현파 입력에 대한 입출력 특성을 Fig. FW 5에 보여 주고 있다. 공급 전원 3.3 V의 전원을 사용해 서 입력 단 V 에는 1.65 V의 공통 전압을 넣고, 또 다 른 입력 단 V 에는 공통전압 1.65 V에 10 KHz의 피 크치 50 mv 신호를 추가하여 Fig. 5(a)와 같이 입력으 로 인가하였다. Fig. 5(b)의 모의실험 결과에 보듯이 R (=1 MΩ)에 피크 값 전류 50 na(=50 mv/1 MΩ)가 흐르는 것을 확인할 수 있다. Fig. 5(c)에는 기준 전극 (WE)에 입력 전압과 동일한 전압이 나타난 것을 확인 99 PN PP FW J. Kor. Sensors Soc., Vol. 18, No. 1, 2009

100 Fig. 6. Results of DC sweep simulation for proposed potentiostat. w. w d w» w ƒw w ƒ ùkù y w, z ƒ» e w w x mw y w. z TIA ù Fig. 5(d) 180 o ëš ƒ y 10 KHz vje 50 mv yƒ ù z ƒ y w y w. w eq l, q x q 10 KHz { û 100 Hz w j w, ƒ š y ùkú. wr cyclic voltametric ƒ q xk w (û q ) qx [9]. ƒ y y w ƒq xk x w y w š, w ƒqxk x w. wr ƒ w y w» w DC (sweep) x ww. e z Fig. 2 TIAƒ k w, x ww. TIA Rf w 1MΩ w x w, Fig. 6 3.3 V w û œ w d w y w., V PP 1.65 V» ƒwš V PN 0V l 3.3 V¾ ƒw, Vout 3.3 V l 0V¾ w y w. 5. yw, y,» y d w» w,» e z w. z x mw w y w. z wù s» w» z w w x ƒ w. s» w w t» e ƒ z ƒ wù s», w š, w. p ƒ w, s» ƒ w w, œ ƒ w w. IT» y» Implantable System (A1100-0702-0117)», IDEC CAD n w». wz 18«1y, 2009 100

š x [1] A. Bard and L. Faulkner, Electrochemical Methods, New York: John Wiley & Sons, 1980. [2] Keith L. Kravera, Matthew R. Guthausa, Timothy D. Stronga,. Peter L. Birda, Geun Sig Chab, Wolfgang Hiild, and Richard B. Browna, A mixed-signal sensor interface microinstrument, Digest of Solid-State Sensor and Actuator Workshop, pp. 14-17, Hilton Head Island, SC, 2000. [3] J. Zhang, N. Trombly, and A. Mason, A low noise readout circuit for integrated electrochemical biosensor arrays, IEEE Int. Conf. on Sensors, pp. 36-39, Vienna, Austria, 2004. [4] Martin, S.M. Gebara, F.H. Strong, T.D. and Brown, R.B., A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat, IEEE Proceedings of the International Symposium on Circuits and Systems, 2004. (ISCAS '04.), vol. 4, pp. 892-895, Vancouver, Canada, 2004. [5] E. Sackinger and Walter Guggenbul, A versatile building block: CMOS differential difference amplifier, IEEE Jounal of Solid-State Circuits, vol, ss- 22, no. 2, pp. 287-294, April 1987. [6] Hussain Alzaher and Mohammed Ismail, A CMOS fully balanced differential difference amplifier and» e z 101 its applications, IEEE Tr. on Circuits and Systems II: Analog and Digital Signal processing, vol. 48, no. 6, pp. 614-620, June 2001. [7] Hogervorst, R., Tero, J.P., Eschauzier, R.G.H., and Huijsing, J.H., A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries, IEEE International Solid- State Circuits Conference, vol. 37, 1994. pp. 244-245, February 1994. [8] D. B. Ribner and M. A. Copeland, Design techniques for cascoded CMOS op amps with improved PSRR and common-mode input range, IEEE Journal of Solid-State Circuits, vol. 19, pp. 919-925, December 1984. [9] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation, IEEE International Solid-State Circuits Conference, vol. 37, pp. 162-163, February 1994. [10] w,, y, y y,, CMOSœ» NO j ƒ, wz, 17«, 1y, pp. 35-40, 2008. [11] y, s,», j Potentiostat I-V Converter z, wz, 3«, 3y, pp. 22-27, 1994. (ž ž, Shin-Il Lim) 1995 8 w w œw (œw ) 1982 2 ~1991 1 w m (ETRI) 1991 1 ~1995 2 t (KETI) 1995 3 ~x w fulœ w 2007 9 ~2008 8 UC Merced : ú IC z, CMOS e z, CMOS e z, y analog front-end e z 101 J. Kor. Sensors Soc., Vol. 18, No. 1, 2009