42-2(20) fm

Similar documents
제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

14.531~539(08-037).fm

304.fm

Journal of Life Science 2011, Vol. 21. No μ μ

10(3)-12.fm

12.077~081(A12_이종국).fm

10(3)-09.fm

10(3)-10.fm

< DC1A4C3A5B5BFC7E22E666D>

05~14 â©âõÃßÃâ¹ýÀ¸·Î

DBPIA-NURIMEDIA

16(1)-3(국문)(p.40-45).fm

γ

10(1)-08.fm

82-01.fm

605.fm

416.fm

9(3)-4(p ).fm

139~144 ¿À°ø¾àħ

10(3)-02.fm

103.fm

fm

12(2)-04.fm

14.fm

50(1)-09.fm

untitled

8(2)-4(p ).fm

untitled

19(1) 02.fm

(2)-02(최경자).fm

hwp

51(2)-06.fm

fm

- 1 -

82.fm

개최요강

untitled

11(5)-12(09-10)p fm

16(2)-7(p ).fm

50(5)-07.fm

49(6)-06.fm

42.1(6) fm

DBPIA-NURIMEDIA

<30332DB9E8B0E6BCAE2E666D>

DBPIA-NURIMEDIA

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

Lumbar spine

69-1(p.1-27).fm

( )-94.fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Statistical Data of Dementia.

93.fm

fm

μ

03-서연옥.hwp

93-09.fm

12(4) 10.fm

02 (03-01-OK).hwp

31(3B)-07(7055).fm

84-07.fm

18211.fm

DBPIA-NURIMEDIA

41(6)-09(김창일).fm

04-46(1)-06(조현태).fm


15.101~109(174-하천방재).fm

50(4)-10.fm

21(4)-02.fm

???춍??숏

17.393~400(11-033).fm

16(5)-06(58).fm

07.051~058(345).fm

19(2)-02.fm

27(5A)-07(5806).fm

fm

82-02.fm

32(4B)-04(7455).fm

인문사회과학기술융합학회

83-07.fm

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

418.fm

10.063~070(B04_윤성식).fm

26(2)-04(손정국).fm

<312D303128C1B6BAB4BFC1292E666D>

歯5-2-13(전미희외).PDF

15.fm

012임수진

03-2ƯÁý -14š

14(4) 09.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>


84-01.fm

12(3) 10.fm

82-08.fm

16(5)-03(56).fm

untitled

38(6)-01.fm

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

DBPIA-NURIMEDIA

???? 1

Transcription:

KOREAN J. FOOD SCI. TECHNOL. Vol. 42, No. 2, pp. 250~255 (2010) p (Calystegia japonica) w y w Á y 1 Á Á Á½û * w w w w, ( ) w 1 The Korean Society of Food Science and Technology Analysis of the Contents and Physiological Activities of Calystegia japonica Leaf Extracts Bok-Dong Choi, Ho-Sung Jeon 1, Yang-Suk Lee, Eun-Young Joo, and Nam-Woo Kim* Department of Herbal Biotechnology, Daegu Haany University 1 Research Institute for Biomedical Resources, JungMon Abstract This study examined the physiological activities as well as the total polyphenol and flavonoid content of water extract (WE), ethanol extract (EE) and hot water extract of Calystegia japonica leaves under high pressure (HWE). The xanthine oxidase inhibitory rate of EE was the highest with a value of 98.89% at a concentration of 1.0 mg/ml, whereas the rate of WE and HWE was over 90% at a concentration of 0.3 mg/ml. The superoxide dismutase (SOD)-like activity of HWE was the highest at 18.88%. The nitrite scavenging abilities were 64.59-66.46% at conditions of ph 1.2 and 1.0 mg/ml, and 52.78-55.89% at ph 3.0. The electron donating ability of EE was the highest with a value of 84.80% at a concentration of 0.1 mg/ml. All extracts showed the highest degree of electron donating at the concentration of 0.1 mg/ ml, and this effect decreased as the extract concentration increased. The EE had the highest content of total polyphenol compound (173.89 mg/g) and flavonoid compounds (40.68 mg/g). Key words: Calystegia japonica, xanthine oxidase, SOD like activity, nitrite-scavenging ability, electron donating ability, polyphenol, flavonoid x yy y ql y w p ƒ w, y, y, šx ƒ ƒwš. w superoxide anion radical(o 2 ), hydroxyl radical(oh), singlet oxygen ( 1 O 2 ) hydrogen peroxide(h 2 O 2 ) y wš (1,2), w y y w w ƒ y š. Á ù y w, p w, z, w ¾ š (3). p w ƒw, e y y w e ƒ t ù t Á ƒ ƒwš (4). (Calystegia japonica) (Convolvulaceae) w,,, v *Corresponding author: Nam-Woo Kim, Department of Herbal Biotechnology, Daegu Haany University, Gyeongsan, Gyeongbuk 712-715, Korea Tel: 82-53-819-1438 Fax: 82-53-819-1440 E-mail: tree@dhu.ac.kr Received October 14, 2009; revised November 26, 2009; accepted December 7, 2009 z x w z šx e y w w. w y( ), ( ), š y( ž ) š w, wš,,,» wš( ), ü ( ), Á š x w, x w z š w (5,6). w w w p (7), xk p (8), w w (9) w š, { t (10) w. ù, tw z w y w. k w ƒ w xanthine oxidase w, SOD y,, œ š w s r v yw w d w y» t ƒ w š w. x x (Calystegia japonica) 2007 5 z w, w» wš t y»(dr-0160, Hankwang, Anyang, Korea) w 40 o C 12 w w w. 250

(Calystegia japonica Leaf) w y w 251 w y þƒ k v j 10 w w 70% k š ƒƒ 80 C o 60 C 3 wš o 3z w (WE; water extract) k (EE; ethanol extract). š (HWE; Hot water extract under high pressure) 30 w w š»(dm-701, Daehan median, Seoul, Korea) w 110 o C, 1.5» w 3 w. 3ƒ filter paper(whatman No 2, Maidstone, England) wš z (Eyela 400 series, Eyela, Saitawa, Japan)w z (FD 5510 SPT, Ilshin, Seoul, Korea)w w. 3 80% k w y d w» w w. w w y BHA(Butylated hydroxy anisole, Sigma Co., St. Louis, MO, USA) w y g (Sigma Co., USA) w ƒw y w. Xanthine oxidase w y Xanthine oxidase wy Stirpe Corte(11) w 0.1 ml 0.1 M potassium phosphate buffer(ph 7.5) 0.6 ml xanthine 2 mm» 0.2 ml ƒw.» 0.2 U/mL xanthine oxidase (Sigma Co., USA) 1 ml š 25 C 15 k z o 1N HCl 1 ml ƒw g. spectrophotometer (Shimadzu U-1201, Tokyo, Japan) w uric acid 292 nm Ÿ d w ƒ ƒ Ÿ (%) ùkü xanthine oxidase wy t w. SOD y (Superoxide dismutase-like activity) d SOD y Marklund Marklund(12) pyrogallol y d w SOD y sƒw. 0.2 ml ph 8.5 w tris-hcl buffer(50 mm tris amino-methane+10 mm EDTA) 2.6 ml 7.2 mm pyrogallol(sigma Co., USA) 0.2 ml ƒw 25 o C 10 z, 1 N HCl 0.1 ml ƒw g. y pyrogallol 420 nm Ÿ d w ƒ ƒ Ÿ (%) ùkü SOD y t w. (Nitrite-scavenging ability) d Kato (13) 1mM 2mL w 1mL ƒwš, 0.1 N HCI 0.2 M citrate buffer w ph ƒƒ 1.2, 3.0, 6.0 w, v 10 ml w 37 o C 1 g. 1mL wš 2% acetic acid 5 ml ƒw griess (A:B=1:1, A; 1% sulfanilic acid in 30% acetic acid, B; 1% napthyl-amine in 30% acetic acid) 0.4 ml ƒ, yww 15 z 520 nm Ÿ d, w w. griess 0.4 ml ƒw z, w d w ƒ ƒ Ÿ (%) ùkü. œ (Electron donating ability) d œ d Blois(14) DPPH(1,1-diphenyl -2-picryl hydrazyl) w œ z d w œ ùkü. 2mL 0.2 mm DPPH (dissolved in 99% Ethanol) 1 ml ƒw yw z, 37 o C 30 g. 517 nm Ÿ d w ƒ ƒ Ÿ (%) ùkü œ t w. s r w w s r w ƒ 10 mg/ml w Folin-Denis (15) d w. 0.2 ml Folin-ciocalteu s phenol reagent 0.2 ml ƒw z, yww 3 w, Na 2 CO 3 sy 0.4 ml ƒw ywwš 1.4 ml ƒ w. 1 k z 725 nm Ÿ d w. s r tannic acid(sigma Co., USA) w ƒ 0-1,000 µg/mlƒ w w d w l w s r w w. v w v w Nieva Moreno (16) xw 80% k 10 mg/ml wš 0.1 ml 10% aluminum nitrate 0.1 ml, 1 M potassium acetate 0.1 ml š 80% ethanol 4.7 ml ƒw 25 o C 40 k z 415 nm Ÿ d w. v quercetin(sigma Co., USA) w ƒ 0-500 µg/mlƒ w w d w l w w v w w. m ƒ w 3z w s³(mean) t r (standard deviation) t w. ƒ w» w SPSS 17.0 for windows program w ANOVA test w, p<0.05 Duncan s multiple range test z w. š w šx w d w Table 1. šx HWE (32.40%)>EE(29.20%)>WE(23.46%), š š HWE ƒ. Lee Hwang(17) ƒ, p 80 o C 100 o C ƒ w šx ƒw š w, k, w š w x ew. w Lee (18) š š ƒ w š šw z w ƒ ww š q.

252 w t wz 42 «2y (2010) Table 1. Comparison of the extraction yield by extraction methods and solvents from C. japonica leaf Extracts Yields (%, w/w) WE 1) 23.46 EE 2) 29.20 HWE 3) 32.40 1) WE: Water extract 2) EE: Ethanol extract 3) HWE: Hot water extract under high pressure Xanthine oxidase wy Xanthine oxidase xanthine hypoxanthine l uric acid x w w m w mt, e y w z (19) xanthine oxidase w y w w y, y w w w z š w. w xanthine oxidase w d w 1.0 mg/ml 96.97-98.89% EE ƒ w wz, 0.5 mg/ml 92.22-95.96% wz ƒ WE y še (Fig. 1). w WE HWE 0.3 mg/ml 90% xanthine oxidase w ùkü, p WE 0.1 mg/ml 87% w w. 1.0 mg/ml wz ƒ ùkû (p<0.05). Choi (20) 1.0 mg/ml y 98.67% xanthine oxidase wy ùkü š, y 78.7% 93.2% wz ùkü (21) w y w xanthine oxidase w, y w w ùkü. w w y g w y z ùkü, BHA w y ù kü ƒ. w w w ƒ š w. SOD y Superoxide dismutase(sod) ü superoxide radical y g y w y g w l yw ùkü z y y w ƒ (22) ù p ƒ nw e w w ù v y w y t ƒ š. ƒ 0.1-1.0 mg/ml Fig. 1. Xanthine oxidase inhibitory rates of various extracts from C. japonica leaf. WE, Water extract; EE, Ethanol extract; HWE, Hot water extract under high pressure; BHA, Butylated hydroxy anisole; AsA, Ascorbic acid. All values present the mean±sd of triplicate determinations. Bars with different letters are significantly different at p<0.05 by Duncan s multiple range test. SOD y d w HWE(6.99-18.88%)>EE(2.82-12.66%)>WE(1.57-5.19%), š HWE WE 3.6, EE 1.5 y ùkü (Table 2). p HWE 0.1 mg/ml 6.99% 1.0 mg/ml WE(5.19%) SOD y z ùkü. w SOD y d w Lim (23) w(15.00%), x (11.60%), (7.53%), (3.67%) w w w w û ù x, w ù. w y 17.28%, k 10.35% Choi (20) š w x SOD y. ü ü û nitrosamine ƒ ƒw, û ù z, Ÿ w ƒ k y š (24) phƒ w z d w ph 1.2 1.0 mg/ml 64.59-66.46%, ph 3.0 52.78-55.89% w WE z ƒ ƒ. ph 6.0 3.05-9.14% ƒ HWE ƒ (Table 3). x ƒ û Table 2. SOD-like activities of the various extracts from C. japonica leaf Concentration (mg/ml) Extracts (%) Controls (%) WE EE HWE BHA AsA 0.1-2.82±0.52 c 6.99±0.70 b 98.43±0.19 a 99.19±1.17 a 0.3 1.57±0.84 c 7.34±0.39 b 7.58±0.40 b 99.33±0.00 a 99.32±0.00 a 0.5 2.42±0.21 c 9.38±0.20 b 8.97±0.81 b 99.55±0.19 a 99.77±0.20 a 1.0 5.19±0.75 d 12.66±1.37 c 18.88±1.26 b 99.78±0.19 a 99.77±0.00 a All values present the mean±sd of triplicate determinations. Different letter within the same row are significantly different at p<0.05 by Duncan s multiple range test. The abbreviations of introductory remarks are shown in Fig. 1.

(Calystegia japonica Leaf) w y w 253 Table 3. Nitrite scavenging abilities of the various extracts from C. japonica leaf Concentration (mg/ml) Extracts (%) Controls (%) WE EE HWE BHA AsA ph 1.2 ph 3.0 ph 6.0 0.1 14.75±0.50 c 13.09±0.89 b 9.34±0.75 d 4.84±1.23 e 53.29±0.22 a 0.3 32.66±1.22 c 32.14±0.99 c 29.02±0.75 d 49.01±1.30 b 97.70±0.45 a 0.5 47.03±1.00 c 44.78±0.77 d 42.06±0.81 d 61.09±0.25 b 99.34±0.08 a 1.0 66.46±0.29 c 64.59±0.69 d 65.54±0.49 cd 72.16±1.07 b 99.34±0.16 a 0.1 14.84±0.50 b 13.74±0.50 b 10.93±0.59 c - 31.46±0.59 a 0.3 33.00±0.90 b 32.30±0.30 c 28.63±0.91 c 6.46±0.71 d 55.07±0.61 a 0.5 42.45±0.64 b 40.29±0.23 d 38.28±0.69 d 8.46±1.08 e 67.93±0.41 a 1.0 55.89±1.06 b 53.37±0.70 c 52.78±0.86 c 10.81±0.89 d 83.85±0.45 a 0.1 1.89±0.17 c 1.44±0.63 c 5.40±0.19 a - 3.12±0.32 b 0.3 3.67±0.42 c 2.16±0.19 d 8.12±0.65 b 0.64±0.27 e 13.32±0.64 a 0.5 4.95±0.48 c 2.66±0.25 d 8.87±0.42 b 3.25±0.36 c 26.89±0.72 a 1.0 7.79±0.68 c 3.05±0.50 d 9.14±0.67 b 6.97±0.63 c 47.82±0.57 a All values present the mean±sd of triplicate determinations. Different letters within the same row are significantly different at p<0.05 by Duncan s multiple range test. The abbreviations of introductory remarks are shown in Fig. 1. 0.1-0.3 mg/ml ph 1.2 3.0 w ƒ, w ph ùkù. ù 0.5 mg/ml phƒ û z ƒ ùkù ph 1.2 ƒ. w ph phƒ z ƒ Kytopoulos(25) ew. x ü y ph 1.2 1.0 mg/ml d w 23.97%- 50.74% Choi (20), 37% 65%, k 27% 53% z ùkü Park (26) w w ù z. w x g w z ƒ û š, ph 1.2 BHA û ù ph 3.0 BHA 4-5 z ùkü. Takashi (27) s r yw z ww nitrosoamine z w š w, Shenoy Choughuley(28) ƒ r p y(nitrosation) w w š šw. 0.1 mg/ml 60% y t ù w ƒœ t z ƒ ƒ ƒ š q. œ œ free radical œ w y j š ü free radical w y w, œ d DPPH free radical cystein, glutathione yw ascorbic acid, BHA w y w l w y y d w w (29). w radical y j ù w j w y y y w radical Fig. 2. Electron donating abilities of the various extracts from C. japonica leaf. All values present the mean±sd of triplicate determinations. Bars with different letters are significantly different at p<0.05 by Duncan s multiple range test. The abbreviations of introductory remarks are shown in Fig. 1. w» w. DPPH w radical d w WE 59.19-81.14%, EE 73.33-84.80% š HWE 65.05-76.97% y ùkü (Fig. 2). ƒ x ƒ 0.1 mg/ml ƒ w œ z, g û ù EE BHA w y ùkü. ƒ ƒw œ z (20) BHA g œ ƒw ù ƒ ƒw œ w ww w. x œ 1.0 mg/ml ƒ 52.2% 53.2% š šw Kim (30), Moon (31) w(26.27%), (68.90%) w œ ùkû.

254 w t wz 42 «2y (2010) Table 4. Contents of polyphenol and flavonoid compounds by extraction methods and solvents of C. japonica leaf Extracts Samples Total polyphenols (mg/g) Total flavonoids (mg/g) WE 156.02±0.90 b 35.73±1.88 b EE 173.89±0.90 a 40.68±2.45 a HWE 150.76±0.95 b 24.01±0.72 c All values present the mean±sd of triplicate determinations. Different superscripts within the same column are significantly different at p<0.05 by Duncan s multiple range test The abbreviations of introductory remarks are the same as in Fig. 1 s r w v w r yw s 2 wù phenolic hydroxy group w yw w ùkü, C 6 -C 3 -C 6» k flavnonoid ƒ w monocyclic phenol, phenyl propanoid. Flavonoid y, y y p w w y, y w ù j z ùkü t, t, y t y š, s r yw w y, w³, w y ù kü (32). w s r v w tannin acid quercetin» d w s r 150.76-173.89 mg/g, v 24.01-40.68 mg/g EE>WE>HWE w (Table 4). w s r w d w Moon (31), d, 4.41-8.55 mg/g s r w w w 17. š k v w w š 16.75 mg/g, 16.47 mg/g, i 13.30 mg/g Lee (33) w w v ƒ 1.5-2.5 w. Kang (34) œ phenolic acids flavonoids» k phenol w w y t, w y j œ š w, x s r v w EE ƒ w œ ùkü ew. w s r v yw ù z ww p w š šw Takashi (27) ew. v s r yw w š w y z ùkù w y ƒeƒ q. Á» w» w y (WE) k (EE) š (HWE) w xanthine oxidase w, SOD y,, œ š s r v w d w. ƒ 0.5 mg/ml 90% xanthine oxidase w ùkü, š w y BHAù g w xanthine oxidase wz ùkü. SOD y HWE 1.0 mg/ml 18% y ùkü. w d w 1.0 mg/ml ph 1.2 ƒ 65%, ph 3.0 50%, WEƒ ƒ ùkü. œ 0.1 mg/ml EEƒ 84.80% ƒ, ƒ ƒ w y ùkü š, ƒ ƒw œ w. š EE 179.89 mg/g s r 40.68 mg/g v yw w w. w y s r v w w w ù» ƒœ t, t w y» ƒ. x l ( w w w l) w. x 1. McCord JM. Oxygen derived radicals: A link between repercussion injury and inflammation. Fed. Proc. 46: 2402-2406 (1987) 2. Imalay IA, Limm S. DNA damage and oxygen radical toxicity. Science 240: 1302-1309 (1989) 3. Cho JS. Food Material Science. Moon Woon Dang, Seoul, Korea, p. 267 (1993) 4. Lee HS. Dietary fiver intake of Korea. J. Korean Soc. Food Sci. Nutr. 25: 540-548 (1997) 5. State Administration of Traditional Chinese Medicine. Chinese Materia Mmedica. Shanghai Scientific and Technical Publishers, Shanghai, China. pp. 495-496 (1999) 6. Park CH. Medicinal Plants of Korea. Shinil Books Co., Seoul, Korea. p. 1110 (2004) 7. Chun JC. Biological characteristics of Calystegia japonica. Korean J. Weed. Sci. 4: 149-153 (1984) 8. Kim YS, Choi BY. Chromosome number, morphological and anatomical study on Calystegia in Korea. Korean J. Plant Tax. 13: 89-107 (1983) 9. Oh YC, Lee CS, Park EJ. A chemotaxonomic study on the genus Calystegia (Convolvulaceae) in Korea. Korean J. Plant Tax. 25: 13-24 (1995) 10. Lee MS, Choi HS. Volatile flavor components in various edible portions of Calystegia japonica (T HUNB ) C HOIS. Korean J. Food Sci. Technol. 26: 359-364 (1994) 11. Stirpe F, Della Corte E. The regulation of rat liver xanthine oxidase. J. Biol. Chem. 244: 3855-3861 (1969) 12. Marklund S, Marklund G. Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 468-474 (1975) 13. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agr. Biol. Chem. 51: 1333-1338 (1987) 14. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200 (1958) 15. AOAC. Official Method of Analysis. 18 th ed. Method 965.31. Association of Official Analytical Chemists, Washington DC, USA (2005) 16. Nieva-Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) 17. Lee BY, Hwang JB. Physicochemical characteristics of Agastache rugosa O. Kuntze extracts by extraction conditions. Korean J. Food Sci. Technol. 32: 1-8 (2000) 18. Lee YS, Joo EY, Kim NW. Polyphenol contents and physiological activity of the Lespedeza bicolor extracts. Korean J. Food Preserv. 13: 616-622 (2006)

(Calystegia japonica Leaf) w y w 255 19. Storch I, Ferber E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide amino production by NADPH oxidase and xanthine oxidase. Anal. Biochem. 169: 262-267 (1988) 20. Choi BD, Park CS, Joo EY. Physiological activities of Korean and Chinese Viola mandshurica extracts. J. Korean Soc. Food. Sci. Nutr. 37: 1101-1108 (2008) 20. Yeo SG, Park YB, Kim IS, Kim SB, Park YH. Inhibition of xanthine oxidase by tea extracts from green tea, oolong tea, and black tea. J. Korea Soc. Food Sci. Nutr. 24: 154-159 (1995) 22. Gupta AS, Webb RP, Holaday AS, Allen RD. Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103: 1067-1073 (1993) 23. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. Comparison of SOD activity and phenolic compound contents in various korean medicinal plants. Korean J. Medicinal Crop Sci. 12: 191-202 (2004) 24. Peter FS. The toxicology of nitrate, nitrite and N-nitroso compounds. J. Sci. Food Agr. 52: 1761-1764 (1975) 25. Kytopoulos SA. Ascorbic acid and formation of N-nitroso compounds; possible role of ascorbic acid in cancer prevention. Am. J. Clin. Nutr. 45: 1344-1350 (1987) 26. Park CS, Kwon CJ, Choi MA, Park GS, Choi KH. Antioxidative and nitrite scavenging activities of mugwort and pine needle extracts. Korean J. Food Preserv. 9: 248-252 (2002) 27. Takashi Y, Yamamoto M, Tamura A. Studies on the formation of nitrosamines; The effects of some polyphenols on nitrosation of diethylamine. J. Food Hyg. Soc. 19: 224-229 (1978) 28. Shenoy NR, Choughuley ASU. Effect of certain phenolics on nitrosamine formation. J. Agr. Food Chem. 37: 721-725 (1989) 29. Isono R, Yomokazu T, Esumi K. Preparation of Au/TiO 2 nano composites and their catalytic activity for DPPH radical scavenging reaction. J. Colloid Interf. Sci. 288: 177-183 (2005) 30. Kim HK, Choi YJ, Jeong SW, Kim KH. Functional activities of microwave-assisted extracts from Lyophy ulmarium. Korean J. Food Preserv. 9: 385-390 (2002) 31. Moon JS, Kim SJ, Park YM, Hwang IS, Kim EH, Park JW, Park IB, Kim SW, Kang SG, Park YK, Jung ST. Activities of antioxidation and alcohol dehydrogenase inhibition of methanol extracts from some medicinal herbs. Korean J. Food Preserv. 11: 201-206 (2004) 32. Lim DK, Choi U, Shin DH. Antioxidant activity of ethanol extract from Korean medicinal plants. Korean J. Food Sci. Technol. 28: 83-89 (1996) 33. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidants activities of methanol extracts from vegetables produced in Ullung island. Korean J. Food Sci. Technol. 37: 233-240 (2005) 34. Kang YH, Park YK, Lee GD. The nitrite scavenging and electron donating ability of phenolic compounds. J. Korean Soc. Food Sci. Technol. 28: 232-236 (1996)