14(3)-08.fm

Similar documents
605.fm

16(1)-3(국문)(p.40-45).fm

304.fm

14.531~539(08-037).fm

69-1(p.1-27).fm

< DC1A4C3A5B5BFC7E22E666D>

untitled

10(3)-09.fm

°ø±â¾Ð±â±â

9(3)-4(p ).fm

10(3)-12.fm

19(1) 02.fm

DBPIA-NURIMEDIA

82-01.fm

12(2)-04.fm

11(5)-12(09-10)p fm

12.077~081(A12_이종국).fm

82.fm

12(3) 10.fm

49(6)-06.fm

82-02.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv


fm

50(1)-09.fm

50(5)-07.fm

<30312DC0CCC7E2B9FC2E666D>

10(1)-08.fm

14.fm

17.393~400(11-033).fm

26(3D)-17.fm

10(3)-10.fm

01 Buffers & Gel Stain Buffers 3 Gel Stain SilverStar Staining Kit 6

12(4) 10.fm

Can032.hwp

16(2)-7(p ).fm


<30332DB9E8B0E6BCAE2E666D>

27(5A)-07(5806).fm

15.101~109(174-하천방재).fm

93.fm

이 발명을 지원한 국가연구개발사업 과제고유번호 G 부처명 한국환경산업기술원 연구사업명 토양지하수오염방지기술개발사업 연구과제명 시데로포아(Siderophore)의 대량생산을 통한 토양 및 지하수의 친환경 중금속 제거기술 개 발

<312D303128C1B6BAB4BFC1292E666D>

DBPIA-NURIMEDIA

항체 포털 서비스 Preparation Peptide 총 4주 소요 / 473,000 ~ 511,000 Free of charge 2~3 days 243,000 ~ 281,000 의뢰서 작성 Peptide epitope prediction 유전자 정보

51(2)-09.fm

8(2)-4(p ).fm

歯1.PDF

04김호걸(39~50)ok

Statistical Data of Dementia.

16(5)-06(58).fm

10(3)-02.fm

93-09.fm

07.045~051(D04_신상욱).fm

25(6)-21(김유곤).fm

석사논문.PDF

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

3.fm

32(4B)-04(7455).fm

416.fm

untitled

4.fm

10.063~070(B04_윤성식).fm

DBPIA-NURIMEDIA

07.051~058(345).fm

04-46(1)-06(조현태).fm

untitled

14(4) 09.fm

38(6)-01.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

11(1)-15.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

#Ȳ¿ë¼®

06.177~184(10-079).fm

untitled

32

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

202.fm

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

16-15(3)-07(최장경).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

γ

17(2)-00(268).fm

Microsoft Word - KSR2013A320

11(4)-03(김태림).fm

< FC7D1BEE7B4EB2DB9FDC7D0B3EDC3D132382D332E687770>

01-15(3)-12(최장경).fm

41(6)-09(김창일).fm

fm

fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

83.fm

50(6)-03.fm

15(2)-07.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

16(5)-03(56).fm

01.01~08(유왕진).fm

83-07.fm

3-15(3)-05(이주희).fm

Transcription:

w w m y wz Vol. 14(3), p. 57~67, 2009 œ 토양및퇴적토환경시료로부터 DNA 추출하는방법에대한고찰 Á Á y* w m y œw A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples Keunje YooÁJaejin LeeÁJoonhong Park* School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea ABSTRACT In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose. Keywords : Soil DNA extraction, Direct lysis extraction, Indirect lysis extraction, Soil microorganisms m m n m y w y w w š. w w m k m n m ky sƒw t w. yw w w m n m l v w DNA y w w. ¾ m n m DNA w w w» ƒ, y k wsƒ w» sƒ DNA w e w. x mw w m n m ü DNA p Á wš, x š DNA m n m y sƒù w m sƒ y w š w w» w w š w. mw wù p, y w» DNA w, m n m ww k w. : m DNA, w, w, m 1. *Corresponding author : parkj@yonsei.ac.kr š : 2009. 5. 8 : 2009. 5. 20 : 2009. 6. 24 m : 2009. 8. 31 ¾ 57

58 Á Á y m k m» w yw w p x y ¼ w š w (Sylvia et al., 2005). w m n ü š» ww m w. m m» 1% wš wš, z w» w» w w m n ü yw wš. m wá mw y y y» š j» m n m y sƒwš w t x š (, 2000). x w x s sww wš w (Martin-Laurent et al., 2001). x m ü m t l s wü» w m,»» m l s. x p w» w w ù w yw ww» w ³ k w zw (Lindahl and Bakken, 1995). ù x y w. k w w w y w 1% x xþ (Amann et al., 1995). w y w DNA/DNA hybridization, w kinetics š 16S rdna s w (Torsvik et al., 1990; Von Wintzingerode et al., 1997). y w l DNA w w, t w DNA z w (Wilson et al., 1997). w DNA š w w w w. x ¾ m n m DNA w» w» w y š t y. m n m ü ü, x» ù y kit wš x. w y m n m y DNA w Fig. 1. Schemes of two different approaches to nucleic acid extraction from soil sample. w w w e ù ƒ x w ƒ». m n m y ü k» w w x š w DNA w x wš p w m w» m DNA w ù š w w w š w. m n m l w w Fig. 1 j 2ƒ. w in situ s wwš m l w w z, w w (Ogram et al., 1987). w, m s wš w w z w wš, w (Holben et al., 1988; Courtois et al., 2001). ƒ DNA, DNA ƒƒ š (Roose-Amsaleg et al., 2001). m n m ü k tw z DNA w» w w w w Á w š, x mw ƒ p w š w. 2. w in situ s w ù 10. w in situ w š ƒ w w ü š DNA œw. Ogram et al.(1987)

m n m y l DNA w w š 59 Table 1. Characteristics of cell lysis methods Cell Lysis method yw z Class» 2ƒ w (Fig. 1). s sü w w. w w s, ü s e, š m y l w. w m l wš, w w w w. 2.1. s w x s w( ) Table 1 (i), (ii) yw, š (iii) z w, ƒ w š (Hurt et al., 2001). m q w m ü ¾ š s sww s w w. ƒ -w (freezing-thawing), - (freezing-boiling) bead w ³ y(bead-mill homogenization) (Steffan et al., 1988; More et al., 1994; Degrange et al., 1995; Miller et al., 1999; Maarit Niemi et al., 2001; Miller et al., 2001). Mortar mill Characteristics -w (freezing-thawing) ƒ w. - (freezing-boiling) ƒ w. bead w ³ y (bead-mill homogenization) ƒ w. Bead-beating, beating wš (extraction buffer) DNA ƒw, DNAƒ ƒ w yw w. w ù EDTA, Chelex 100, w s w j Tris bufferù sodium phosphate buffer k p (chelating agent) sodium dodecyl sulfate (SDS) w EDTA ƒ k w ƒ y ù, w û Cetyltrimethyl-ammonium boromide (humic compound). (CTAB) x ù, s qr w x w Polyvinylpolypyrrolidone (PVPP) (lysozyme treatment) achromopeptidase Proteinase K (humic compound). CTAB w DNA w PVPP s w z, w spin column w z z w ƒ. ƒ w DNA ƒ k. ƒ w Gram-positive ³ w j wƒ grinding, y, q, j q š (Picard et al., 1992; Tebbe et al., 1993; Zhou et al., 1996; Porteous et al., 1997; Orsini et al., 2001). Frostegard et al.(1999)» m w z w g w. xk(vegetative form), s s z ƒw DNA w w» w (Liesack et al., 1991; Simonet et al., 1991; Miller et al., 1999). w DNAƒ š DNAƒ v w (Fosmidù Cosmid metagenomic cloning š DNAƒ ù operon x w ) w ƒ. yw w» wš w» w. ƒ w s w j sodium dodecyl sulfate(sds) w. p Table 1». w Chelex 100 w ƒ DNA û z ü y w (Miller et al., 1999).

60 Á Á y Table 2. Nucleic acid purification methods Purification method ƒ» (agarose gel electrophoresis) Sephadex G200 G150, Sepharose 2B, 4B, 6B Biogel P100 P200»k (Promega, Amicon, Quigen ) w z yw» w w. Selenska Klingmüller (1991)ƒ šw w DNA 70 SDS-sodium phosphate buffer ü m xk» š. w s³ 25 kb j»ƒ j w. w» Cetyltrimethylammonium boromide(ctab) polyvinylpolypyrrolidone (PVPP) ƒ w š (Von Wintzingerode et al., 1997; Kresk et al., 1999; Nalin et al., 1999). x guanidine isothiocyanate m l mrna w m l DNA z x (Tsai et al., 1991; Miller et al., 1999; Orsini et al., 2001; Marrit Niemi et al., 2001). z w w (Bruce et al., 1992). (lysozyme treatment) s t ww ƒ (Rochelle et al., 1992; Tebbe et al., 1993). s wƒ Gram-positive ³ w w achromopeptidase w» wš, w w ƒ w proteinase K w.(table 1) z w, yw w w DNA ƒ wù, š g DNA w. 2.2. w m w wš w ƒ (Zhou et al., 1996). m (humic acid) DNA restriction enzyme digestion polymerase chain reaction(pcr) Characteristics DNA s» w l PVP(Polyvinylpyrrolidone) w» l DNA w Sepharose l DNA w Microspin Sepharcryl S-300 S-400 columns (Pharmacia Biotech)» DNA w» 97%ƒ y j m v (ion-exchange chromatography) mw ƒ ƒ w wwš hybridization signal û membrane hybridization x k (Tebbe et al., 1993; Alm et al., 2000). ü phenolic group amide ù y DNA œ w mw i (quinone) x wš, w k (Young et al., 1993). s w z DNA w ethanol, isopropanol polyethylene glycol w e» (phenol ù chloroform ) l (Steffan et al., 1988). w» (crude extracts) DNA, yw» w w (Ogram et al., 1987). w hydroxyapatite column l œ DNAƒ š, m n l DNA rrna ƒ (Steffan et al., 1988; Purdy et al., 1996). Cesium chloride(cscl) density gradient centrifugation w w ƒ z w w ƒ w (Ogram et al., 1987; Porteous et al., 1991)., Steffan et al. (1988) CsCl gradient centrifucation hydroxyapatite chromatography w DNA w š, w w. ³ w CsCl gradient š sw», DNA band wì š, w» w ƒ CsCl gradient centrifugation v w. ƒ š ww p Table 2 w (Harry et al., 2000). k, PCR» w» w w v w. w DNA ƒ DNA» d.

m n m y l DNA w w š 61 ù m œ ü ew s l DNAƒ z w (Ranjard et al., 1998). 3. w Fig. 2. MCH (Magnetic Capture Hybridization)-PCR Procedure (Jacobsen., 1995). Jacobsen et al.(1995) x magnetic capture hybridization(mch) w PCR ww w œ w. Fig 2 MCH DNA sww w l p DNA w. p(biotin) t p ù DNA(single-stranded DNA) probe» w m p w ww.» (magnetic extraction) mw p DNA-DNA w z z, PCR mw s w. Chandler et al.(2000) w p w PNA(peptide nucleic acids) clamp w (oligomer) w affinity magnetic capture ww. w affinity capture p m ù ƒ m p DNA» w z. m n m y ü ky tw w y w» w w w m l š w. w w š w, DNA mw w x k tw š w. w m (soil colloids) w z DNA wwš w w (Fig. 1) Faegri et al.(1977) š Torsvik and Goksoyr(1978) w š. w w w m n m w. Hattori(1988) ƒ w Gram-positive s m œ wš, Gram-positive s œ w x. ƒ ƒ. w s DNA DNA w. w w ü DNA w s DNA w w. w w ü w DNA w w w j»ƒ j DNA w v ƒ ww. w m, n, ƒ w m l s, s w š DNA» š (Bakken et al., 1995). 3.1. m m ü e m w, w w yw w m w. x m j yw w š š, q w w w, š z š (Faegri et al., 1977; Ramsay et al., 1984; Turpin et al., 1993; Lindahl et al., 1995; Bakken et al., 1995). w w, yw z ƒ ƒƒ m m ƒ z q (Lindahl et al., 1995). yw» wì

62 Á Á y (Lindahl et al., 1995). y (Chelex 100) m z ù, Bakken(1995) m hexametaphosphate j w w (Bakken et al., 1985; Jacobsen et al., 1992). y (Chelex 100)ƒ yw w. s (lipopolysaccharides) y j (sodium cholate sodium deoxycholate), w j polyethylene glycol(peg) SDS, w PVPP yw. ù yw k (McDonald et al., 1986; Steffan et al., 1988)., SDS Chelex yw yw, s adenosine triphosphate e m w e (Bakken et al., 1995). 3.2.» s m Faegri(1977) w x. š ƒ. s Pelleting Nuclei, Chloroplast s. 6,000 rpm(6,000 g) w 2~15 w, sù w e. w w. m n m ü m 3,000 rpm 15~20 w s w. Holben et al.(1988) m ü 15 (1000 g) w fungal biomass soil debris e jš, 20 š (23,000 g)w s w. z š w 1 round w xw ƒ round m w s 10% š š w. w, w round z m s round e s tw j s w š w. w s z š w w m ƒ v w. l s ù w sw. Jacobsen(1992) y (Cation-Exchange Resin Method) m s CaCl 2 (0.1,1, or 10 mm) w s qr m (clay) ƒ s z w. w w» w (density gradient centrifugation)» š s w w» w (Bakken et al., 1985). š m 10,000-25,000 rpm(60,000 g)»» w s, w, sü». ƒ plasmic DNA» w, CsCl density gradient š w l. ù 40 š w ƒ w. š» 16» w ù šƒ CsCl w š» ù w š ( 1998). 1990 chromatography w z» CsCl š w ew, chromatography w DNA CsCl š w DNA w w DNA w š 3~4 ü ƒ j š x kit wš. ù kit w DNA 500 µg š, w m n m DNAƒ v w ƒ. DNA k m n m s w» w Percoll, metrizamide, Ficoll 400, Nycodenz, stractan ƒ gradient material w, sƒ v p t w w, š z w v w s w (Alpini et al., 1994). ù ¾ wš w s w ƒ, wš wš, s û. x ¾ s w w š, e ù x

m n m y l DNA w w š 63 Table 3. Comparison of direct and indirect extraction methods Method of extraction Direct extraction Indirect extraction DNA ƒ x w v w Application Advantage Drawback m d y tw v w DNA w w DNA z w x û w s w DNA sww w š DNA ƒ j š DNAƒ v w w û ( w w j DNA x ww ) j DNA z ƒ v w z ƒ ƒ w» w m v w. 3.3. w m DNA Table 1, yw, z mw s l w. Cesium chloride ethidium bromide equilibrium density centrifugation f j»( 48 kb) w DNA œ z w (Tiedje et al., 1988; Jacobsen et al., 1992; Courtois et al., 2003). Torsvik (1990) s w ƒ hydroxyapatite column m w w. š (urea) DNA (humic acid) w w. Steffan(1988) PVPP w (humic acid) ƒ DNA j w j, DNA z w (Steffan et al., 1988). CsCl (density centrifugation) hydroxyapatite column chromatographic purification spectrophotometer A 260/280 A 260/230 mw d DNA DNA k (Steffan et al., 1988). s w ww» agarose gel electrophoresis» w ƒ kb DNA z w. (Methanosarcina thermophila, Bacillus cereus, Mycobacterium tuberculosis, Pseudomonas aeruginosa) j DNA swwš BAC clone library w (Brosch et al., 1998; Dewar et al., 1998; Diaz-Perez et al., 1997; Rondon et al., 1999). 4. m ƒ w, w DNA w š,, w ü š (Table 3). w DNA ƒ x w v w, y wsƒ m d, š y tw v w. w w y p» z w. Leff et al.(1993) Ogram et al.(1987) w bead-beating-sds ƒ DNA ü, Tsai and Olson(1991) -w (gentle freezing-thawing lysozyme) w DNA ƒw w. w x ùš (humic acid) w. ƒ, s w DNA sww. w w w» w û DNA ü DNA ƒ ƒ DNA w š (Jacobsen and Rasmussen, 1992). w w w ù, sƒ w w š DNAƒ v w x š j DNA z ƒ v w. w ƒ j» w û.» w z x ¾ š w

64 Á Á y œw w w w. Steffan et al.(1988) z DNA w z (restriction endonuclease digestion) v w ƒ w z. CsCl z PvuII ƒ hydroxyapatite v w, EcoRI w DNA w z CsCl-hydroxyapatite m w s w DNA z w. SalI w w z qw.» w Denaturing gradient gel electrophoresis (DGGE) w (Heuer et al., 1997; Krsek et al., 1999; Maarit Niemi et al., 2001). Krsek et al.(1999) DGGE band ƒ ü. w, m w ribosomal intergenic spacer analysis(risa) mw s w w x (Martin-Laurent et al., 2001). ƒ w e w. ww kw v w š ü. w DNA w w x w xsƒ mw DNA e w w ƒ ƒ v w m. y w y» (Ecotechnopia 21 project) (051-081- 031). š x, ½ z, y, 2000, m Biomass w m sƒ, w», 2(7)135-148., w, 1998, Superscale Plasmid DNA Preparation Using Wizard Plus Maxipreps Kit, MEDLIS, 17, 136-140. Alm, E.W., Zheng, D., and Raskin, L., 2000, The presence of humic substances and DNA in RNA extracts affects hybridization results, Appl. Environ. Microbiol, 66, 4547-4554. Alpini, G., Phillips, J.O., Vroman, B., and Larusso, N.F., 1994, Recent advances in the isolation of liver cells, Hepatology, 20, 494-514. Amann, R.I., Ludwig, W., and Schleifer, K.H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev, 59, 143-169. Bakkern, L.R., 1985, Separation and purification of bacteria from soil, Appl. Environ. Microbiol. 49, 1482-1487. Bakken, L.R. and Lindahl, V., 1995, Recovery of bacterial cells from soil, Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, Heidelberg, Germany, 9-27. Brosch, R., Gordon, S.V., Billault, A., Garnier, T., Eiglmeier, K., Soravito, C., Barrell, B.G., and Cole, S.T., 1998, Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing and comparative genomics, Infect. Immun, 66, 2221-2229. Bruce, K.D., Hiorns, W.D., Hobman, J.L., Osborn, A.M., Strike, P., and Ritchie, D.A., 1992, Amplication of DNA from native populations of soil bacteria by using the polymerase chain reaction, Appl. Environ. Microbiol, 58, 3413-3416. Burgmann, H., Pesaro, M., Widmer, F., and Zeyer, J., 2001, A strategy for optimizing quality and quality of DNA extracted from soil, J. Microbiol. Methods, 45, 7-20. Chandler, D.P., Stults, J.R., Cebula, S., Schuck, B.L., Weaver, D. W., Anderson, K.K., Egholm, M., and Brockman, F.J., 2000, Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps, Appl. Environ. Microtiol, 66, 3438-3445. Courtois, S., Frostegard, A., Goransson, P., Depret, G., Jeanin, P., and Simonet, P., 2001, Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation, Environ. Microbiol, 3, 431-439. Courtois, S., Cappellano, C.M., Ball, M., Francou, F.X., Normand, P., Helynck, G., Martinez, A., Kolvek, S.J., Hopke, J., Osburne, M.S., August, P.R., Nalin, R., Guerineau, M., Jeannin, P., Simonet, P., and Pernodet, J.L., 2003, Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products, Appl. Environ. Microbiol, 69, 49-55. Curtis, T.P., Sloan, W.T., and Scannell, J.W., 2002, Estimating prokaryotic diversity and its limits, Proc. Natl. Acad. Sci. USA 99, 10494-10499. Diaz-Perez, S.V., Alatriste-Mondtagon, F., Hernandez, R., Birren, B., and Gunsalus, R.P., 1997, Bacterial artificial chromosome (BAC) library as a tool for physical mapping of the archaeon Methanosarcina thermophila TM-1, Microb. Comp. Genomics, 2, 275-286.

m n m y l DNA w w š 65 Degrange, V. and Bardin, R., 1995, Detection and counting of nitrobacter populations in soil by PCR, Appl. Environ. Microbiol. 61, 2093-2098. Dewar, K., Sabbagh, L., Cardinal, G., Veilleux, F., Sanschagrin, F., Birren, B., and Levesque, R.C., 1998, Pseudomonas aeruginosa PAO1 bacterial artificial chromosomes: strategies for mapping, screening, and sequencing 100kb loci of the 5.9 Mb genome, Microb. Comp. Genomics, 3, 105-117. Edhcomb, V.P., McDonald, J.H., Devereux, R., and Smith, D.W., 1999, Estimation of bacterial cell numbers in humic acidrich salt marsh sediments with probes directed to 16S ribosomal DNA, Appl. Environ. Microbiol, 65, 1516-1523. Faegri, V., Torsvik, V.L., and Goksoyr, J., 1977, Bacterial and fungal activities in soil: separation of bacteria and fugi by a rapid fractionated centrifugation technique, Soil Biol. Biochem, 9, 105-112. Frostegard, A., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Le Gall, F., Jeannin, P., Nesme, X., and Simonet, P., 1999, Quantification of bias related to the extraction of DNA directly from soils, Appl. Environ. Microbiol, 65, 5409-5420. Hary, M., Gambier, B., and Garnier Sillam, E., 2000, Soil conservation for DNA preservation for bacterial molecular studies, Eur. J. Soil Biol, 36, 51-55. Hattori, T., 1988, aggregates as microhabitats of microorganisms, Biol. Fertil. Soils 6, 189-203. Henne, A., Daniel, R., Schmitz, R.A., and Gottschalk, G., 1999, Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate, Appl. Environ. Microbiol, 65, 3901-3907. Herron, P.R. and Wellington, E.M.H., 1990, New method for extraction of Streptomycete spores from soil and application to the study of lysogeny in sterile amended and non sterile soil, Appl. Environ. Microbiol, 56, 1406-1412. Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E.M., 1997, Analysis of actinomycete communities by specific amplification of genes encoding 16S rrna and gel-electrophoretic separation in denaturing gradients, APPl. Environ. Microbiol, 63, 3233-3241. Holben, W.E., Jansson, J.K., Chelm, B.K., and Tiedje, J.M., 1988, DNA probe method for the detection of specific microorganisms in the soil bacterial community, Appl. Environ. Microbial, 54, 703-711. Hugenholtz, P., Goebel, B.M., and Pace, N.R., 1998, Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity, J. Bacteriol, 180, 4765-4774. Hurt, R., Qiu, X., Wu, L., Roh, Y., Palumbo, A.V., Tiedje, J.M., and Zhou, Z., 2001, Simultaneous Recovery of RNA and DNA from Soils and Sediments, Appl. Environ. Microbiol, 67, 4495-4503. Jackson, C.R., Harper, J.P., Willoughby, D., Roden, E.E., and Churchill, P.F., 1997, A simple efficient method for the separation of humic substances and DNA from environmental samples, Appl. Environ. Microbiol, 63, 4993-4995. Jacobsen, C.S. and Rasmussen, O.F., 1992, Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin, Appl. Environ. Microbiol, 58, 2458-2462. Jacobsen, C.S., 1995, Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplication assay, Appl. Environ. Microbiol, 61, 3347-3352. Krsek, M. and Wellington, E.M., 1999, Comparison of different methods for the isolation and purification of total community DNA from soil (In Process Citation), J. Microbiol. Methods, 39, 1-16. Kuske, C.R., Banton, K.L., Adorada, D.L., Stark, P.C., Hill, K. K., and Jackson, P.J., 1998, Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil, Appl. Environ. Microbiol, 64, 2463-2472. Lamontagne, M.G., Michel, F.C., Holden, P.A., and Reddy, C.A., 2002, Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis, J. Microbiol. Methods, 49, 255-264. Leff, L.G., Dana, J.R., McArthur, J.V., and Shimkets, L.J., 1995, Comparison of methods of DNA extraction from stream sediments, Appl. Environ. Microbiol, 61, 1141-1143. Liesack, W., Weyland H., and Stackebrandt, E., 1991, Potential risks of gene amplification by PCR as determined by 16S rdna analysis of a mixed-culture of strict barophilic bacteria, Microb. Ecol, 21, 191-198. Liesack, W. and Stackebrandt, E., 1992, Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment, J. Bacteriol, 174, 5072-5078. Lindahl, V. and Bakken, L.R., 1995, Evaluation of methods for extraction of bacterial from soil, FEMS Microbiol. Ecol, 16, 135-142. Lee, Y.S., Bollinger, J., Bezdicek, D., and Ogram, A., 1996, Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method, Appl. Environ. Microbiol, 62, 3787-3793. Maarit Niemi, R., Heiskanen, I., Wallenius, K., and Lindstrom, K., 2001, Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia, J. Microbiol. Methods, 45, 155-165. Martin-Laurent, F., philippot, L., Hallet, S., Chaussod, R., Ger-

66 Á Á y mon, J.C., Soulas, G., and Catroux, G., 2001, DNA extraction from soils: old bias for new microbial diversity analysis methods, Appl. Environ. Microbiol, 67, 2354-2359. Mayr, C., Winding, A., and Hendriksen, N. B., 1999, Community level physiological profile of soil bacteria unaffected by extraction method, J. Microbiol. Methods, 36, 29-33. McDonalds, R.M., 1986, Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific microorganisms from suspension by elutriation, Soil Biol. Biochem, 18, 399-406. Miller, D.N., Bryant, J.E., Madsen, E.L., Ghiorse, W.C., and Madsen, E.L., 1994, Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment, Appl. Environ. Microbiol, 60, 1572-1580. Miller, D.N., 2001, Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments, J. Microbiol. Methods, 44, 49-58. More, M.I., Herrick, J.B., Silva, M.C., Ghiorse, W.C., and Madsen, E.L., 1994, Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment, Appl. Envriron. Microbiol, 60, 1572-1580. Nalin, R., Normand, P., Simonet, P., and Domenach, A.M., 1999, Polymerase chain reaction and hybridization on DNA extracted from soil as a tool for Frankia spp. Population distribution studies in soil, Can. J. Bot. 77, 1239-1247. Ogram, A., Sayler, G.S., and Barkay, T., 1987, The extraction and purification of microbialdna from sediments, J. Microbiol. Metholds, 7, 57-66. Orsini, M. and Romano-Spica, V., 2001, A microwave-based method for nucleic acid isolation from environmental samples, Lett. Appl. Microbiol, 33, 17-20. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P., 1992, Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl. Environ. Microbiol, 58, 2717-2722. Pillai, S.D., Josephson, K.L., Bailey, R.L., Gerba, C.P., and Pepper, I. L., 1991, Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences, Appl. Environ. Microbiol, 57, 2283-2286. Porteous, L.A. and Armstrong, J.L., 1991, Recovery of bulk DNA from soil by a rapid, small-scale extraction method, Curr. Microbiol, 22, 345-348. Porteous, L.A., Sidler, R.J., and Watrud, L.S., 1997, An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications, Mol. Ecol, 6, 787-791. Purdy, K.J., Embley, T.M., Takii, S., and Nedwell, D.B., 1996, Rapid extraction of DNA and rdna from sediments by a novel hydroxyapatite spin-column method, Appl. Environ. Microbiol, 62, 3905-3907. Ramsay, A.J., 1984, Extraction of bacteria from soil: efficiency of shaking or ultrasonication as indicated by direct counts and autoradiography, Soil Biol. Biochem, 16, 457-481. Ranjard, L., Poly, F., Combrisson, J., Richaume, A., and Nazaret, S., 1998, A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities, Eur. J. Soil Biol, 34, 89-97. Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J., 1992, DNA extraction for 16S rrna gene analysis to determine genetic diversity in deep sediment communities, Fems. Microbiol. Lett, 79, 59-65. Rondon, M.R., Raffel, S.J., Goodman, R.M., and Handelsman, R., 1999, Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus, Proc. Natl. Acad. Sci. USA 96, 6451-6455. Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J., and Goodman, R.M., 2000, Cloning the soil metagenome: a strategy for accessing he genetic and fuctional diversity of uncultured microorganisms, Appl. Eviron. Microbiol, 66, 2541-2547. Roose-Amsaleg, C.L., Garnier-Sillam, E., and Harry, M., 2001, Extraction and purification of microbial DNA from soil and sediment samples, Appl. Soil Ecol, 18, 47-60. Saano, A., Tas, E., Pippola, S., Lindstrom, K., and Van Elsas, J.D., 1995, Extraction and analysis of microbial DNA from soil, in: Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, Heidelberg, Germany, 49-67. Selenska, S. and Klingmuller, W., 1991, DNA recovery and direct detection of Tn5 sequences from soil, Lett. Appl. Microbiol, 13, 21-24. Simonet, P., Capellano, A., Navarro, E., Bardin, R., and Moiroud, A., 1984, An improved method for lysis of Frankia with achromopeptidase allows detection of new plasmids, Can. J. Microbiol, 30, 1292-1295. Simonet, P., Grosjean, M.C., Misra, A.K., Nazaret, S., Cournoyer, B., and Normand, P., 1991, Frankia genus-specific characterization by polymerase chain reaction, Apple. Environ. Microbiol, 57, 3278-3286. Steffan, R.J., Goksoyr, J., Bej, A.K., and Atlas, R.M., 1988, Recovery of DNA from soils and sediments, Appl. Environ. Microbiol, 54, 2908-2915.

m n m y l DNA w w š 67 Sylvia, D.M, Fuhrmann, J.J, Hartel, P.G, and Zuberer, D.A, 2005, Principles and Applications of Soil Microbiology, y»,», p. 26-38, p. 54-69, p. 85-98. Tebbe, C.C. and Vahjen, W., 1993, Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast, Appl. Environ. Microbiol, 59, 2657-2665. Tien, C.C., Chao, C.C., and Chao, W.L., 1999, Methods for DNA extraction from various soils: a comparison, Appl. Environ. Microbiol, 59, 2657-2665. Tien, C.C., Chao, C.C., and Chao, W.L., 1999, Methods for DNA extraction from various soils: a comparison, J. Appl. Microbiol, 86, 937-943. Torsvik, V.L. and Goksoyr, J., 1978, Determination of bacterial DNA in soil, Soil Biol. Biochem, 10, 7-12. Torsvik, V.L., 1980, Isolation of bacterial DNA form soil, Soil Biol. Biochem. 10, 15-21. Torsvik, V., Goksoyr, J., and Daae, F.L., 1990, High diversity in DNA of soil bacteria, Appl. Environ. Microbiol, 56, 782-787. Torsvik, V.L., Daae, F.L., and Goksoyr, J., 1995, Extraction, purification, and analysis of DNA from soil bacteria, in: Nucleic Acids in the Environment: Metholds and Applicationos, Springer-Verlag, Heidelberg, Germany, 29-48. Tsai, Y.L. and Olson, B.H., 1991, Rapid method for direct extraction of DNA from soil and sediments, Appl. Environ. Microbiol, 57, 1070-1074. Tsai, Y.L., Park, M.J., and Olson, B.H., 1991, Rapid method for direct extraction of mrna from seeded soils, Appl. Environ. Microbiol, 57, 765-768. Turpin, P.E., Maycroft, K.A., Rowlands, C.L., and Wellington, E.M., 1993, An ion-exchange based extraction method for the detection of salmonellas in soil, J. Appl. Bacteriol, 74, 181-190. Von Wintzingerode, F., Gobel, U.B., and Stackebrandt, E., 1997, Determination of microbial diversity in environmental samples: pitfalls of PCR-based rrna analysis, Fems. Microbiol. Rev, 21, 213-229. Von Wintzingerode, F., Gobel, U.B., and Stackebrandt, E., 1997, Determmination of microbial diversiry in environmental samples: pitfalls of PCR-based rrna analysis, Fems. Microbiol. Rev, 21, 213-229. Wilson, I.G., 1997, Inhibition and facilitation of nucleic acid amplification, Appl. Environ. Microbiol, 63, 3741-3751. Young, C.C., Burghoff, R.L., Keim, J.G., Minak-Berbero, V., Lute, J.R., and Hinton, S.M., 1993, Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction amplifiable DNA from soils, Appl. Environ. Microbiol, 59, 1972-1974. Zhou, J., Bruns, M.A., and Tiedje, J.M., 1996, DNA recovery from soils of diverse composition, Appl. Environ. Microbiol, 62, 316-322.