w» wz, 13«3y(2011) Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 3, (2011), pp. 115~122 DOI: 10.5532/KJAFM.2011.13.3.115 Author(s) 2011. CC Attribution 3.0 Licee. ƒ ù ù, Ÿw Ÿ w y w Á½ xá½¼ûá w (2011 8 15 ; 2011 9 14 ; 2011 9 20 ) Changes on Growth, Photosynthesis and Pigment contents of the Maackia amureis and Viburnum opulus var. calvesce under Enhanced Temperature and Concentration Sim-Hee Han, Du-Hyun Kim, Gil Nam Kim and Jae-Cheon Lee Department of Forest Genetic Resources, Korea Forest Research Ititute, Suwon 441-847, Korea (Received August 15, 2011; Revised September 14, 2011; Accepted September 20, 2011) ABSTRACT The impacts of elevated temperature and were studied on the seedlings of Maackia amureis and Viburnum opulus var. calvesce. The seedlings were grown in controlled-environment growth chambers with four combinatio of temperature and treatments: o C + ambient (400 ppm), o C + elevated (800 ppm), o C + ambient (400 ppm), and o C + elevated (800 ppm). Under elevated temperature and concentration, the dry weight decreased in seedlings of M. amureis, but increased in seedlings of V. opulus var. calvesce. In addition, the shoot to root (S/R) ratio in M. amureis reduced but that of V. opulus var. calvesce increased under elevated concentration. The S/R ratios of two tree species increased under higher temperature. M. amureis represented lower carboxylation efficiency under higher temperature and concentration and that of V. opulus var. calvesce showed lower values under the only higher temperature. Photosynthetic pigment content of in the leaves of M. amureis was lower under higher concentration and higher under the increase of temperature, but that of V. V. opulus var. calvesce decreased according to the increase of temperature. Chlorophyll a/b ratios of M. amureis and V. V. opulus var. calvesce decreased obviously with the increase of concentration and temperature, respectively. In conclusion, the growth and physiological respoes under the environmental changes such as temperature and concentration depend on the tree species. Therefore, more studies are needed to predict the respoe of each tree species agait the climate changes. Key words : Maackia amureis, Viburnum opulus var. calvesce, Elevated temperature, Concentration, growth, Photosynthesis I. ùy ƒƒ ƒ j š,» ƒ s³ w, w x k ü k y ³x w e (Luomala et al., 2003). 19» l Corresponding Author : Sim-Hee Han (simhee02@forest.go.kr)
116 Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 3 y w w,» ƒ 280ppm x 389ppm 110ppm ƒw (Ghannoum et al., 2010). 21»» 550ppm w dwš, s³ t ƒ 1.9~ 4.4 o C ƒw dwš (IPCC, 2007). w 1990 z» ƒ ƒw, 2008 370.7~391.4ppm, 1912 l 2009 s³ 1.7 o C ƒw. s³ 0.75 o C 2 w e (Kim and You, 2010).» ƒ Ÿw w e, w w (Stirling et al., 1998; Morison and Lawlor, 1999; Lewis et al., 2001). ¾» ƒƒ k w e w ƒ (Tjoelker et al., 1998; Norby and Luo, 2004)., ƒ Ÿw y w š (Eamus and Berryman, 1995; Morison and Lawlor, 1999). ù ƒƒ Ÿw ƒ k (Koike et al., 1996; Teskey, 1997). š»z y w, ù» ƒ s³ y dwš. w ù ù sw, y y w ù š swš wz» y y w ù ƒ p y w. II. 2.1. œ y œ ù wù, p š ù (Maackia amureis) ù š swš ù (Viburnum opulus var. calvesce) w. ù ù 2 q w. 1 ³ wš y 20 w y œÿ ü g. œÿ s³ Ÿ 400µmol m 2 s 1, Û1/day, RH 68Û10%». ŸŸ 1 k 20 5. w (» «44-3) y œ Ÿ w. ù» IPCC(2007) š ù w, x» s³ o C 100 z o C w, x ù» s³ 400ppm 100 z 800ppm w. x» œ Ÿ ü d Ÿ s³ 400µmol m 2 s 1, (RH) 68Û10%. ù» 4 l 9 ¾ 6 w. 2.2. p ƒ óù z,,», ƒƒ w d w, w w (S/R) w. d d w s³e w. 2.3. Ÿw p d Ÿw LI-6400 { Ÿw d»(li- COR Inc., USA) w d w. Ÿw d o C, 60% w,» ó 4~6 d w. w Ÿw (A-CI) ü y Ÿw y w d w. Ÿ 1,100µmol m 2 s 1 œ œ» 0, 50, 100, 200, 0, 360, 400, 500µmol mol air w Ÿ 1 w d w, ü Caemmerer and Farquhar(1981) w w. Ÿw d» œ
Han et al.: Changes on Growth, Photosynthesis and Pigment contents of the Maackia amureis... 117 y g d w Ÿw w, ü (C i ) Ÿw (A) ù kü A-C i curve wš, k š z (carboxylation efficiency), Ÿy w. k š z Ci Ÿw ƒƒ 1 w Ci 150µmol mmol z (y=a+bx)»»(b). Ÿw k š y, rubisco y w wš (Farquhar et al., 1980). w z y r a, Ci 0Pa k y Ÿy (photorespiration) w. Ÿ y w Ÿw LED light source Ÿ 0, 20, 50, 100, 200, 500, 1000, 1500µmol m 2 s 1 w ƒ Ÿ Ÿw d wš, Ÿ Ÿw ƒ 1 ƒw PPFD 100µmol m 2 s w w z (y=a+bx) w (Kim and Lee, 2001). z y r a y, x r -a/b Ÿ (light compeation point).»» b w Ÿ Ÿw ùkü, (apparent quantum yield). Ÿw d d w, s³e w. 2.4. Ÿ w d ü Ÿ w d dimethyl sulphoxide (DMSO) w w Hiscox and Israelstam (1979) w. 0.1g DMSO 10ml ƒwš 70 C w 2 o w w. Ÿ 470, 645, 663nm d w. Ÿ w 5 d z s³e w. 3.1. p III. š ƒƒ e w» w, ƒ,», w,» S/R w., ù ƒ w, ù ƒ ƒw w, ùkþ. w, ù 400ppm ƒ w ù, 800ppm ƒ ƒw, ù Table 1. Changes in dry weight and shoot: root ratio (S/R) of two tree species at different temperatures and concentratio Species Maackia amureis Viburnum opulus var. calvesce Temperature ( o C) Species (S) Temperature (T) S T S T S T (ppm) Dry weight(g) Leaf Stem Root Total S/R ratio 400 4.7 Û 1.7 4.5 Û 2.1 2.2 Û 1.5 11.4 Û 5.3 4.8 Û 1.5 800 3.1 Û 0.9 2.2 Û 0.8 1.8 Û 0.9 7.0 Û 2.6 3.4 Û 1.4 400 4.1 Û 1.5 3.3 Û 1.0 1.2 Û 0.4 8.7 Û 2.6 6.3 Û 2.0 800 2.9 Û 1.8 3.2 Û 2.1 1.5 Û 0.6 7.6 Û 4.3 3.9 Û 1.5 400 1.0 Û 0.3 0.5 Û 0.2 3.6 Û 1.6 5.1 Û 2.1 0.4 Û 0.0 800 1.1 Û 0.2 0.4 Û 0.1 4.4 Û 1.0 5.9 Û 1.3 0.4 Û 0.0 400 5.4 Û 2.7 2.4 Û 1.2 5.0 Û 2.6 12.8 Û 6.2 1.6 Û 0.6 800 5.6 Û 2.8 3.3 Û 1.9 4.5 Û 2.2 13.4 Û 6.2 2.1 Û 1.1 All the values are mea of five replicatesûsd; p 0.05, p 0.01, p 0.001, and n.s: non-significance.
118 Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 3 Table 2. Changes in photosynthetic of two tree species at different temperatures and concentratio Species Maackia amureis Viburnum opulus var. calvesce Temperature ( o C) Species (S) Temperature (T) S T S T S T Carboxylation Photo Apparent Dark Light Compeation efficiency respiration rate quantum yield Respiration rate point (ppm) (mmol mol 1 ) (µmol m 2 s 1 ) (mmol mol 1 )(µmol m 2 s 1 ) (µmol m 2 s 1 ) 400 0.065 Û 0.004 2.38 Û 1.65 0.046 Û 0.006 1.28 Û 1.46 26.0 Û 28.6 800 0.016 Û 0.014 1.41 Û 1.66 0.023 Û 0.010 2.18 Û 1.21 91.8 Û 13.1 400 0.057 Û 0.010 2.31 Û 1.27 0.041 Û 0.016 1.91 Û 0.78 46.2 Û 1.6 800 0.021 Û 0.003 1.28 Û 1.06 0.034 Û 0.006 1.46 Û 1.14 40.6 Û 26.7 400 0.027 Û 0.015 1.52 Û 0.17 0.042 Û 0.001 2.44 Û 2.74 57.2 Û 63.6 800 0.028 Û 0.011 1.08 Û 1.39 0.045 Û 0.001 1.12 Û 1.26 24.4 Û 27.2 400 0.021 Û 0.009 1.00 Û 0.37 0.029 Û 0.000 1.04 Û 0.66 36.4 Û 23.4 800 0.020 Û 0.003 1.31 Û 0.08 0.032 Û 0.004 0.24 Û 0.15 7.4 Û 3.9 All the values are mea of three replicatesûsd; p 0.05, p 0.01, p 0.001, and n.s: non-significance. ƒ (Table 1). w (S/R), ù ƒ û, ù ƒ, S/R ù ù ùkþ. ù ƒ ƒ S/R ùkþ. ƒ ƒw ù ƒ ƒw, ƒw š (Ceulema and Mousseau, 1994; Eamus and Berryman, 1995; Morison and Lawlor, 1999), ù, ƒ» w. s ù w z w, o C-350ppm o C-650ppm (Callaway et al., 1994), ƒ w Ÿw ƒ ƒw» š (Mooney et al., 1991). ƒ ù Ÿw ƒ y., ƒ y ƒ j w (Table 2), ù ƒ y w» q. ù ù ƒ w w ùkþ. w ù ù, ƒ ƒw, y w (Koike et al., 1996). ƒ, w ƒw, w ƒw S/R ƒw šwš (O Neill et al., 1987). ƒ ù ù S/R ƒ g ù, ƒ ù S/R gš, ù S/R w ù ƒ g. wr, ù, ƒ w S/R ƒw w f», ƒ w ù S/R ƒw» ƒƒ w ƒ f» (O Neill et al., 1987). k y w, k y k y y, w k y y w w
Han et al.: Changes on Growth, Photosynthesis and Pigment contents of the Maackia amureis... 119 (Eamus and Berryman, 1995). w y y p, y w» w w f ùkü (Mooney et al., 1988), w w w wù (Callaway et al., 1994). 3.2. Ÿw p ù ù d w Ÿw y w w., k š z, w, y w. ù k š z ƒ w w w, ù, ƒ k š z k, ƒ w z ù kü. k š z, w ùkü x y w ƒ j» q, Table 2 Ÿw t r ƒ j. Ÿ w k š z,», y y w wš» q (Lee et al., 2006; Han and Kim, 2009). ƒ ƒw Ÿw ƒw (Lewis et al., 2001; Eamus and Berryman, 1995; Ceulema and Mousseau, 1994),» ƒ ƒw, Ÿw y ƒw (Eamus and Jarvis, 1989; Long, 1991). w, ù ƒ w k š z w ùkû, w ù ù (Koike et al., 1996). Ÿw ƒ w ü rubisco w rubisco y w» q (Tissue et al., 1993). w 70% Ÿw ù z wš» Ÿ w w w (Hikosaka and Terashima, 1995). 3.3. Ÿ w y ù ù ü Ÿ w Table 3 ùkþ. Ÿw Ÿ w,, Table 3. Changes in photosynthetic pigment contents of two tree species at different temperatures and concentratio Species Maackia amureis Viburnum opulus var. calvesce Temperature ( o C) Species (S) Temperature (T) S T S T S T (ppm) Chl a Chl b Chl a+b Car mg g 1 Chl a/b Chl/Car 400 23.92 Û 5.73 9. Û 1.47 33.16 Û 7.20 4.87 Û 1.05 2.56 Û 0.20 6.83 Û 0.51 800 11.66 Û 1.68 7.34 Û 0.66 18.99 Û 2.20 3.15 Û 0.95 1.59 Û 0.16 6.42 Û 1.73 400 27.72 Û 3.37 9.99 Û 0.82 37.71 Û 4.15 5.21 Û 0.81 2.77 Û 0.15 7.29 Û 0.65 800 18.06 Û 4.39 9.44 Û 1. 27.49 Û 5.58 4.84 Û 1.08 1.89 Û 0.28 5.72 Û 0.66 400 35.34 Û 4.72 13.55 Û 1.97 48.89 Û 6.58 7.94 Û 1.35 2.62 Û 0.18 6.20 Û 0.34 800 33.11 Û 8.52 13.40 Û 2.41 46.49 Û 10.90 7.78 Û 1.76 2.44 Û 0.22 5.97 Û 0.16 400 20.58 Û 3.16 9.80 Û 0.87.37 Û 4.00 5.18 Û 0.76 2.09 Û 0.15 5.87 Û 0.21 800 21.15 Û 7.06 9.92 Û 1.89 31.06 Û 8.95 5.00 Û 1.41 2.08 Û 0.35 6.19 Û 0.28 All the values are mea of five replicatesûsd; p 0.05, p 0.01, p 0.001, and n.s: non-significance.
120 Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 3 w ùkþ. ù, ƒ ƒw a, b w e l w w. ù ù w w w. wr ƒ ù ü Ÿ w j ƒ g ù, ù ƒ w Ÿ w w. a/b ù w y, p ƒ a/b w g, ù ƒ a/b ƒ w. Ÿ w p w p ƒ š (Iglesias et al., 2006; Han et al., 2007), p sƒ t š, x, j ùkù (Han et al., 2009; Kim et al., 2008). ƒƒ w g (Hamid et al., 2009; Kim and You, 2010), w ƒ j ùkù. wr, ƒ ü w w š (Kim and You, 2010), ù w ƒ w w w w ƒ. p, w x y ƒ w y ùkù, ƒ ƒw m ƒ š œ w, x (Long et al., 2004). y y w w, œ w. š»z y w, ù» ƒ s³ y dwš. ƒ w ù w ù, ù ƒw. w, ƒ ù w (S/R) k, ù w ƒ g, ùkþ. ù ƒ w S/R ƒw. k š z ù, ƒ w w w ù, ù ƒ k š z w, ƒ w z ùkü. Ÿ w ù, ƒ ƒw Ÿ w w. ù ù w yƒ. wr ƒ ù ü Ÿ w j ƒ g ù, ù Ÿ w w. ù a/b ƒ w w, ù ƒ a/b ƒ w. y» j ùkü, œ j w. 1» y w w,» y y w p dw».»z y w yw d w» y y w ƒ ƒ w. w y y j ùkü,»z y dw» w ù»z y w ƒ w. REFERENCES Callaway, R. M., E. H. Delucia, E. M. Thomas, and W. H. Schlesinger, 1994: Compeatory respoes of exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different and temperature regimes. Oecologia 98, 159-166. Caemmerer, S. von and G. D. Farquhar, 1981: Some relatiohips between the biochemistry of photosynthesis and the gas exchanges of leaves. Planta 153, 376-387. Ceulema, R. and M. Mousseau, 1994: Effects of elevated atmospheric on woody plants. New Phytologist 127, 4-446. Eamus, D. and P. G. Jarvis, 1989: The direct effects of increase in the global atmospheric concentration on
Han et al.: Changes on Growth, Photosynthesis and Pigment contents of the Maackia amureis... 121 natural and commercial temperate trees and forests. Advances in Ecological Research 19, 1-55. Eamus, G. A. and C. A. Berryman, 1995: Photosynthetic respoes to temperature, light flux-deity, concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under enrichment. Environmental Pollution 90, 41-49. Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic assimilation in leaves of C 3 species. Planta 149, 78-90. Ghannoum, O., N. G. Phillips, J. P. Conroy, R. A. Smith, R. D. Attard, R. Woodfield, B. A. Logan, J. D. Lewis, and D. T. Tissue, 2010: Exposure to preindustrial, current and future atmospheric and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16, 3-319. Hamid, N., F. Jawaid, and D. Amin, 2009: Effect of short-term exposure to two different carbon dioxide concentratio on growth and some biochemical parameters of edible bea (Vigna radiate and Vigna unguiculata). Pakistan Journal of Botany 41, 1831-1836. Han, S. H. and D. H. Kim, 2009: Determination of ozone tolerance on environmental tree species using standard index. Korean Journal of Agricultural and Forest Meteorology 11, 3-12. Han, S. H., D. H. Kim, J. C. Lee, and P. G. Kim, 2009: Effects of fertilization on physiological parameters in American sycamore (Platanus occidentalis) during ozone stress and recovery phase. Journal of Ecology and Field Biology 32, 149-158. Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560. Hikosaka, K. and I. Terashima, 1995: A model of the acclimation of photosynthesis in the leaves of C3 plant to sun and shade with respect to nitrogen use. Plant, Cell & Environment 18, 605-618. Hiscox, J. D. and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334. Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Respoes of citurs plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 1-131. IPCC, 2007: Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. Kim, D. H., S. H. Han, J. J. Ku, K. Y. Lee, and P. G. Kim, 2008: Physiological and biochemical respoes to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10, 47-57. Kim, H. R. and Y. H. You, 2010: Effects of elevated concentration and increased temperature on leaf relatedphysiological respoes of Phytolacca iularis (native species) and Phytolacca Americana (invasive species). Journal of Ecology and Field Biology 33, 195-204. Kim, P. G. and E. J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light inteity and intercellular pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. Koike, T., T. T. Lei, T. C. Maximov, R. Tabuchi, K. Takahashi, and B. I. Ivanov, 1996: Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated and temperature. Tree Physiology 16, 381-385. Lee, J. C., C. Y, Oh, S. H. Han, and P. G. Kim. 2006: Photosynthetic inhibition in leaves of Ailanthus altissima under O 3 fumigation. Journal of Ecology and Field Biology 29, 41-47. Lewis, J. D., M. Lucash, D. Olszyk, and D. T. Tingey, 2001: Seasonal patter of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated and temperature. Plant Cell & Environment 24, 539-548. Long, S. P., 1991: Modification of the respoe of photosynthetic productivity to rising temperature by atmospheric concentratio: Has its importance been underestimated? Plant Cell & Environment 14, 729-739. Long, S. P., E. A. Aiworth, A. Rogers, and D. R. Ort, 2004: Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591-628. Luomala, E. M., K. Laitinen, S. Kellomaki, and E. Vapaavuori, 2003: Variable photosynthetic acclimation in coecutive cohorts of Scots pine needles during 3 years of growth at elevated and elevated temperature. Plant Cell & Environment 26, 645-660. Mooney, H. A., M. Kiippers, G. Koch, J. Gorham, C. Chu, and W. E. Winner, 1988: Compeating effects to growth of carbon partitioning changes in respoe to SO 2 -induced photosynthetic reduction in radish. Oecologia 75, 502-506. Mooney, H. A., B. G. Drake, R. J. Luxmoore, W. C. Oechel, and L. F. Pitelka, 1991: Prediction ecosystem respoes to elevated concentratio. Bioscience 41, 96-104. Morison, J. I. L. and D. W. Lawlor, 1999: Interactio between increasing concentration and temperature on plant growth. Plant Cell & Environment 22, 659-682. Norby, R. and Y. Luo, 2004: Evaluating ecosystem respoes to rising atmospheric and global warming in a multi-factor world. New Phytologist 162, 281-293. O neill, E. G., R. J. Luxmoore, and R. J. Norby, 1987: Elevated atmospheric effects on seedling growth, nutrient uptake, and rhizosphere bacterial populatio of Liriodendron tulipifera L. Plant and Soil 104, 3-11.
122 Korean Journal of Agricultural and Forest Meteorology, Vol. 13, No. 3 Stirling, C. M., M. Heddell_Cowie, M. L. Jones, T. W. Ashenden, and T. H. Sparks, 1998: Effects of elevated and temperature on growth and allometry of five native fast-growing annual species. New Phytologist 140, 343-354. Teskey, R. O., 1997: Combined effects of elevated and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell & Environment 20, 373-380. Tissue, D. T., R. B. Thomas, and B. R. Strain, 1993: Longterm effects of elevated and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell & Environment 16, 859-865. Tjoelker, M. G., J. Oleksyn, and P. B. Reich, 1998: Temperature and ontogeny mediate growth respoe to elevated in seedlings of five boreal tree species. New Phytologist 140, 197-210.