Korean Chem. Eng. Res., Vol. 44, No. 4, August, 2006, pp. 393-398 은이온이담지된메조포러스 MCM-41 을이용한 n- 부탄과 1- 부텐의흡착특성연구 m m l i y * p * s 440-746, oe qk }} 300 * l v l o r 305-343, re o q 72-1 (2006 7o 4p r, 2006 7o 12p }ˆ) Adsorption Characteristics of n-butane and 1-Butene on Mesoporous MCM-41 Containing Silver Ions Min Kang, Hyung Ik Lee, Dal Young Yoon, Chang Hyun Ko*, Jong-Nam Kim* and Ji Man Kim Department of Chemistry, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea *Separation Processes Research Center, Korea Institute of Energy Research, 71-2, Jand-dong, Yusung-gu, Daejeon 305-343, Korea (Received 4 July 2006; accepted 12 July 2006) k p 1- Šp o l rp p rp, l l s d e p p MCM-41p vv~ l AgNO 3 e r rs, 1- Š n- ˆp p l m., l} s l Ag + pmp p 1- Šp p kk k. MCM-41 rp n, 13X rm p l l n p p ltlp, pp v lp, n- ˆp p l 1- Šp p v p f 1- Š n- ˆp l n sp p pp p pl., v o l 373 K l} Ag/MCM-41p n q p 1- Š/n- ˆ mp, rkl n p ltl. h Abstract There have been a lot of works in order to develop an excellent adsorbent for separation of olefin and paraffin. In the present work, the adsorption characteristics of mesoporous MCM-41 containing silver ion for 1-butene and n-butane were studied. The adsorption ability for the 1-butene depending on thermal treatment were also investigated. MCM-41 exhibits much higher adsorption amounts for 1-butene as well as n-butane, compared to those of Ag/13X zeolite. In case of MCM-41 containing silver ion, the adsorption amount of 1-butene dramatically increased due to the π-complexation, whereas the adsorption amount of n-butane decrease. The Ag/MCM-41 after the thermal treatment at 373 K under evacuation exhibit the highest 1-butene/n-butane adsorption ratio, expecially at low pressure (100 Torr). Key words: Mesoporous MCM-41, π-complexation, n-butane, 1-butene, Adsorption 1. q p s l k, } l v q n kl r l n tn p. np p q, p r p e v rs rl pl p rr l evrp p t p [1]. lp o tp p m p t ˆ To whom correspondence should be addressed. E-mail: jimankim@skku.edu }l d ˆ(cracking) l llv, p rl rp o Ž ˆ l e r r rp ~k. m Ž p p t rm v l p l pp q p l v p n l p ~ o p rl v p rp t p [2-4]. Ž m p o k r p pn p,, p k p p r rp p m p o p p rp pn π-complexation p p l p [5-7]. π-complexationl 393
394 p p o m } s v p qrp π-complexationl p p van der Waals š q~l p l l ˆ p. p p m de ˆ k p keˆ p rp sql p p pl working capacity ov p. p π-complexation p pn p l Honing p + + Ag Cu nkp pn e lr [8]. l l v n r π-complexationl l m p ˆrp o l rs l [9]. p p p pm v[10, 11], CuCl/-Al 2 O 3 [10], AgNO 3 /SiO 2 [10, 12, 13] vl AgNO 3 [9, 11], } clay[14, 15]. r tl AgNO 3 q sp lt p. p π-complexationp pn e p Ag +p + Cu ~ lk rp tl r lp, p k l m /Ž p ˆ n q p rp p l, Ag +p + Cu ~ l p p r l p r ov p vp ˆp tn., MCM-41 p r s p q~ n rp p. s d vp 1992 l Mobil l }p p e q~ rm p m p r k e p l l p j (20~100Å) rp l l pp, p r l n r p v p l o l C 2 ~C 3 m /Ž p o r p pnp p [16, 17]. l l C 4 lp m /Ž l m ps p 1- Šp o l π-complexation o rn p n m. p s d q~p MCM-41 l Ag pmp ~ + n m, l} s l Ag p + mp p 1- Šp p kk k. 2. 2-1. yom oo 1- Š/n- ˆ n r rs o s d e MCM-41 vv~ n m. s d e MCM-41p p l rp cethyltrimethylammonium bromide (CTABr, Aldrich) e op 20Í SiO 2 (Na/Si=0.5) nkp n l m. n, Ludox HS-40(Colloid silica, Aldrich) sodium hydroxide(sanchun) pn l 20Í SiO 2 (Na/Si=0.5) nk p rs m. rp n 2 v l rp CTABr(cethyltrimethylammonium bromide, Aldrich) p p, o l rs 20Í SiO 2 nkp }} ~. ml 1e k 373 Kp m l 24e, m v 50Í acetic acid (Aldrich) pn l ph=10p v rr. p r p e 373 Kp m l 48e k, qrr rp rs ~ p } rp o44 o4 2006 8k ~, 373 Kl s m. s p p s NaSiO 2 : CTABr : H 2 O=1.0 : 0.5 : 150p. p lp e r r o lˆm-m nkp } l l 373 Kl seˆ 823 Kl m. ol rs MCM-41p 433 Kl s rp MCM-41 : AgNO 3 =10:1(16.67wtÍ) l silver nitrate(aldrich) nkp eˆ mp v l s l r rs m. TriStar 3000(Micromertics Co.) pn l 77 Kl v ˆ m p ll e p r, p llp. e p r} m n- ˆ/1- Š e p r } s p m., sr o l X- r (Rigaku) pn l X- rž p s m. 2-2. on rp r rp p r o l rnr (constant-volume method)p pn m. e rl e 373, 423 473 K m l v p o r } m. e l n n- ˆ 1- Šp 99.5 99.0Íp d n m. ~ n l vr r, p k pn l m sl pr m ov p r pr p n- ˆ 1- Šp p l p v. k p r l p. p k p p e p r} m l 24e r v l r q m. 3. e l n AgNO 3 /MCM-41p l} m s l p s s ˆm AgNO 3p ˆ o X- r (XRD) e p mp, Fig. 1 Fig. 2l ˆ l. Fig. 1p r XRD l p p, pp v l } m v l p, e l 2-D hexagonal spn ˆ n (100), (110) (200)p pl. p e l n MCM-41p AgNO 3p v l} l s ov ppp p m. Fig. 2l k p p, 373 K 423 Kp m l v o l l} n AgNO 3m l l llp, 473 Kl l} n ˆp Ag ˆ p pl. p, Ag + p π-complexationp pn p pn l n- ˆ 1- Šp o 423 K p p m l l} lk p k pl., o l 473 Kp m l} e n ˆp Ag p pl p, p v o l l} p o l l} l l l p rp r l o Ž. e l n s d MCM-41 vl l Fig. 3p v m p r, Table 1 l ˆ l. MCM-41l r p pv p kp AgNO 3 v lpl lr
ppmp v s d MCM-41p pn n- ˆ 1- Šp l 395 Fig. 2. High angle X-ray diffraction patterns for MCM-41 and Ag/ MCM-41 adsorbents. Fig. 1. X-ray diffraction patterns for MCM-41 and Ag/MCM-41 adsorbents. n r ov p., Ag/MCM-41 vp n ~ o r np Ž. Ag/MCM-41p v l 373, 423 473 Kp l} m l p o r ˆ l., MCM-41 Ag/MCM-41p Fig. 4l ˆ l. AgNO 3p v p, e l k 2.7 nmp ˆ l. rr e l llv r rn m ep r q v ˆp e p m. l v m ep n pp p n p m el p r Langmuir isotherm k p v Fig. 3. N 2 adsorption and desorption isotherms for MCM-41 and Ag/ MCM-41 adsorbents. l p v v ˆ Freundlich isothermp. b q max P Langmuir isotherm: q = ---------------------- (1) 1+ b P Korean Chem. Eng. Res., Vol. 44, No. 4, August, 2006
396 p p o m } s v Table 1. Physical properties of the adsorbents Adsorbents S BET (m 2 /g) V P (cc/g) D P (nm) MCM-41 949.6 0.85 2.60 Ag/MCM-41(100V) 639.3 0.54 2.55 Ag/MCM-41(150V) 623.7 0.52 2.56 Ag/MCM-41(200V) 629.2 0.54 2.57 Ag/MCM-41(200A) 700.0 0.59 2.58 Ag/13X 263.4 0.22 - Fig. 4. Pore size distribution curves for MCM-41 and Ag/MCM-41 adsorbents. 1 -- n Freundlich isotherm: q = k P (2) o vp m e tl e p l q rn e p ˆ Fig. 5l ˆ l. Fig. 5l ˆ } n- ˆ 1- Šp m e l k p p l p v rp v v ˆ p l Langmuir isothermp rn n kp m p. pl, Freundlich isothermp n e k p r~ ol 98Í p p r e l r dp lt. Table 2l 1- Š n- ˆp, 600 Torr l p 1- Š n- ˆp, rr e l v km np ˆ l. Fig. 5l n rp 13X(UOP ) rm p l Ag pm l 1- Š n- ˆp e ˆ l. 1- Š n- ˆp p 1.265 mmol/g 1.901 mmol/gp ˆ p, 600 torrl p 1- Š n- ˆ p 1.55 m. rkml(50 Torr p )l 1- Š n- ˆp ˆ n qp p ˆ l. pp v v kp MCM-41p n 1- Šp p 3.986 mmol/gp AgX p p mp, n- ˆp 4.078 mmol/g p kp p l 1- Š/n- ˆp 1.02 p p kp l., MCM-41 q~p n 1- Šp p p, 1- Š n- ˆ o ˆ r. MCM-41l AgNO 3 l e p, l} m s 1- Šp p v m p, n- ˆp p m. p l ps n- ˆp n AgNO 3 p f r l n- ˆp p rp, 1- Šp Ag pm p-complexationp + l AgNO 3p l p rp l p kp p ˆ l. Fig. 5 pp eˆ v l 373 Kp m r} nl lt, 1- Š n- ˆp p 7.234 mmol/g 1.973 mmol/gp, 1- Š/n- ˆp 3.77 n p p. p ol m p AgNO 3p l p π-complexatinl p p. Ag + pmp m l m p p o l r} m e e p m. r} m v l 1- Šp p m, n- ˆp p v srp 1- Š/n- ˆp m. p r} m v l p-complexation p Ag + pmp Ag p p. Fig. 6p Fig. 5p p k l 1- Š/n- ˆ pp lt. Fig. 6l p p pp v 13X rm p p n k l v k k 1.6p ltlp, p p v v kp MCM-41p n, pp 100 Torrl k 1.6pl, k p v l 1 v m. pl l pp v MCM-41 rp n, rkl n p ˆ ltlp, v l 373 K } e p n 100 Torrl 13.7p kt p pp lt l. Table 2. Adsorption characteristics of the adsorbents Sample k (mmol/gtorr) at 278 K o44 o4 2006 8k n-butane n at 298 K q (mmol/g) at 600 Torr k (mmol/gtorr) at 278 K 1-butene n at 298 K q (mmol/g) at 600 Torr C 4 H 8 /C 4 H 10 ratio at 600 Torr Ag/13X (373V) 0.3534 5.2029 1.265 0.6754 6.2696 1.901 1.55 MCM-41(373V) 0.0129 1.1205 4.078 0.0738 1.604 3.986 1.02 Ag/MCM-41(373V) 0.0015 0.8999 1.973 0.5520 2.5316 7.234 3.77 Ag/MCM-41(423V) 0.0017 1.2244 3.664 0.6530 2.7064 6.707 1.96 Ag/MCM-41(473V) 0.0338 1.4355 3.559 0.4501 2.5813 5.615 1.61 Ag/MCM-41(473A) 0.0075 1.0824 3.012 0.3002 2.3663 4.740 1.62
ppmp v s d MCM-41p pn n- ˆ 1- Šp l 397 Fig. 5. 1-butene and n-butane adsorption equilibria on Ag/13X, MCM-41 and Ag/MCM-41 adsorbents. 4. 1- Š n- ˆp o l s d e p p MCM-41 p vv~ l AgNO 3 e r rs m. MCM-41 rp n, 13X rm p l l n p p l tlp, pp v lp, n- ˆp p l 1- Šp p v p f 1- Š n- ˆp l n sp p pp p pl., v o l 373 K l} Ag/MCM-41p n q p 1- Š/n- ˆ mp, rkl n p lp pl. Korean Chem. Eng. Res., Vol. 44, No. 4, August, 2006
398 p p o m } s v Fig. 6. The adsorption ratio of 1-butene/n-butane for Ag/13X, MCM-41 and Ag/MCM-41 adsorbents. l l v p vo(2005-e-id11-p-03-010-2005) p k ld. y 1. Son, Y. R., Han, S. S., Park, J. H., Kim, J. N., Cho, S. H. and Lee, T. J., Study on the Adsorption Characteristics of Ethane and Ethylene on Aluminosilica Based Sorbent, HWAHAK KONGHAK, 41(6), 749-755(2003). 2. Padin, J. and Yang, R. T., New Sorbents for Olefin/Paraffin Separations by Adsorption Via p-complexation: Synthesis and Effects of Substrates, Chem. Eng Sci., 55, 2607-2616(2000). 3. Park, Y. K., Jeon, J. Y., Han, S. Y., Kim, J. R. and Lee, C. W., Catalytic Cracking of Naphtha into Light Olefins, HWAHAK KONGHAK, 41(5), 549-557(2003). 4. Eldrige, R. B., Olefin/Paraffin Separation Technology: A Review, Ind. Eng. Chem. Res., 32(10), 2208-2212(1993). 5. Bals, R. J., Vega, L. F. and Gubbins, K. E., Modiling Now Adsorbents for Ethylene/Ethane Separations by Adsorption Via p-complexation, Fluid Phase Equilib., 150-151, 117-124(1998). 6. Nyholm, R. S., Proceedings of the Chemical Society, Proc. Chem. Soc., 273-296(1961). 7. Son, S. J., Choi, D. K., Kim, H. S., Kim, S. H., Kim, S. W. and Hwang, W. S., Separation of Isoprene Compounds via π-complexation in C 5 Mixtures, HWAHAK KONGHAK, 42(4), 420-425 (2004). 8. Ho, W. S., Doyle, Go, Savage, D. W. and Pruett, R. L., Olefin Separations via Complexation with Cuprous Diketonate, Ind. Eng. Chem. Res., 27(2), 334-337(1998). 9. Yang, R. T., Padin, J. and Rege, S. U., Selective Adsorption of Alkenes Using Supported Metal Compounds, U. S. Patent No. 6, 423, 881(2002). 10. Yang, R. T. and Kikkinides, E. S., New Sorbents for Olefin/Paraffin Separations by Adsorption via π-complexation, AICHE J., 41(3), 509-517(1995). 11. Wu, Z., Han, S. S., Cho, S. H., Kim, J. N. and Yang, R. T., Modification of Resin-Type Adsorbents for Ethane/Ethylene Separation, Ind. Eng. Chem. Res., 36(7), 2749-2756(1999). 12. Padin, J. and Yang, R. T., New Sorbents for Olefin/Paraffin Separations by Adsorption via p-complexation: Synthesis and effects of Substrates, Chem. Eng. Sci., 55(14), 2607-2616(2000). 13. Rege, S. U., Padin, J. and Yang, R. T., Olefin/Paraffin Separations by Adsorption: π-complexation vs. Kinetic Separation, AICHE J., 44(4), 799-809(1998). 14. Cho, S. H., Han, S. S., Kim, J. N., Choudary, N. V., Kumar, P. and Bhat, T. S. G., Adsorbents, Method for the Preparation and Method for the Separation of Unsaturated Bydrocarbons for Gas Mixtures, U. S. Patent No. 6, 315, 816(2001). 15. Choudary, N. U., Kumar, P., Bhat, T. S. G., Cho, S. H., Han, S. S. and Kim, J. N., Adsorption of Light Hydrocarbon Gases on Alkene-Selective Adsorbent, Ind. Eng. Chem. Res., 41(11), 2728-2734 (2002). 16. Newalkar, B. L., Choudary, N. V., Kumar, P., Komarneni, S. and Bhat, T. S. G. Biz, S. and Occelli, M. L., Exploring the Potential of Masoporous Silica, SBA-15, as an Adsorbent of Light Hydrocarbon Separation, Chem. Mater., 14(1), 304-309(2002). 17. Newalkar, B. L., Choudary, N. V., Turaga, U. T., Vijayalakshmi, R. P., Kumar, P., Komarneni, S. and Bhat, T. S. G., Biz, S. and Occelli, M. L., Potential Adsorbent for Light Hydrocarbon Separation: Role of SBA-15 Framework Porosity, Chem. Mater., 15(7), 311-328(2003). o44 o4 2006 8k