07ÀÌÈÆ¿Ł 3-174š

Similar documents
03¹Ú³ë¿í7~272s

09이훈열ok(163-

09È«¼®¿µ 5~152s

DBPIA-NURIMEDIA

06장소영(f2.4)(115~122)ok

04김이현(31~44)ok

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

07이재희(3p)(123~131)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

05서찬양(521~529)ok

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 28(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

02¿ÀÇö¹Ì(5~493s

< B3E2BFF8BAB828C8AFB0E629312E687770>

김기남_ATDC2016_160620_[키노트].key

µµÅ¥¸àÆ®1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

<313920C0CCB1E2BFF82E687770>

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),


04김호걸(39~50)ok

Bluetooth

09권오설_ok.hwp

DBPIA-NURIMEDIA

43-6대지.02성효현ok

歯1.PDF


<23C0B1C1A4B9E65FC6EDC1FDBFCFBCBA E687770>

< C7D0B3E2B5B520C0DABFACB0E8BFAD20B8F0C0C7C0FBBCBAB0EDBBE72020B9AEC1A62E687770>

12이문규

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

14.이동천교수님수정

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

1. Features IR-Compact non-contact infrared thermometer measures the infrared wavelength emitted from the target spot and converts it to standard curr

DBPIA-NURIMEDIA

인문사회과학기술융합학회

02À±¼ø¿Á

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

ksrs07_sop.hwp

433대지05박창용

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

03권동희(17-26)ok

Microsoft Word - KSR2016S168

09구자용(489~500)

11¹ÚÇý·É

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 29(5),

04_이근원_21~27.hwp

<BDC9BEEEBDBA D >

정보기술응용학회 발표

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 29(3),

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

<31335FB1C7B0E6C7CABFDC2E687770>

I

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 1, 23-30,

04-다시_고속철도61~80p

Coriolis.hwp

大学4年生の正社員内定要因に関する実証分析

±èÇö¿í Ãâ·Â

PowerPoint 프레젠테이션

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

레이아웃 1

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

DBPIA-NURIMEDIA

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>

05 목차(페이지 1,2).hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

Journal of Educational Innovation Research 2016, Vol. 26, No. 1, pp.1-19 DOI: *,..,,,.,.,,,,.,,,,, ( )


High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

1

박선영무선충전-내지


135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

WINNER Presentation Template

04±èºÎ¼º

03-16-김용일.indd

서론 34 2

44-3대지.02이광률c

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201

<332EC0E5B3B2B0E62E687770>

Lumbar spine

Microsoft Word - KSR2013A320

10(3)-12.fm

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

<31325FB1E8B0E6BCBA2E687770>

Transcription:

Korean Journal of Remote Sensing, Vol.22, No.2, 2006, pp.153~174 Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Hoonyol Lee Department of Geophysics, Kangwon National University Abstract : The purpose of this paper is to establish the category of SAR(Synthetic Aperture Radar) systems, technologies and application fields, thus to provide the world-wide trend in SAR research and development activities by analysing SAR-related journal papers. This paper presents an analysis result of SAR-related journal papers published from the late 1960s to early 2005. Abstracts and indices of 2665 peer-reviewed, English journal papers published in 243 journals were collected from the Cambridge Scientific Abstracts and classified into the categories according to the system, technique, and application field. Statistics on each category were provided so that one can understand the historical and on-going development in SAR systems, techniques, and a variety of application fields such as land, ocean, cryosphere and atmosphere. This statistical analysis data would be a valuable guideline to establish a future SAR system application and satellite manoeuvering policy in Korea. Key Words : SAR, system, technique, application. hoonyol@kangwon.ac.kr 153

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 154

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers 1. CSA ILLUMINA(http://www.consortia.co.kr/csa) ( license) 2. [Power Search] [Advanced Search] ( ): synthetic aperture radar Specific Databases: AGRICOLA, Aqualine, ASFA, CSA Technology, Environmental Sciences, Meteorological, Oceanic Abstracts Continue to Search. Data Range: Earliest to 2005 Limited to: Journal Articles Only, English Only [Search] 3. [Peer-Reviewed Journals] ( 4145, ) 4. Record # 4145 [Go], record (2839 ). 5. [Save_Print_Email] [Export to RefWorks]. 6. RefWorks, 1-500, 501-1000, 1001-1500, 1501-2000, 2001-2500, 2501-3000. 2-3. 2839. 7. RefWorks (exact close) 2733. Fig. 1. Journal paper collection procedure in CSA ILLUMINA. 155

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Table 1. Analysis Procedure and work plan. 156

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Fig. 2. Distribution of SAR-related journal papers. 157

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Fig. 3. Yearly publication of SAR-related journal papers. 158

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Table 2. Classification Scheme (STAR). STAR Class Sub-class Description Description SEASAT-A 1978(100days), USA, L-HH ERS-1/2 1991-2000(ERS-1), 1995-(ERS-2), EU, C, VV System Technology Application Unrepairable Radarsat-1 JERS-1 Envisat Planetary Sensors Shuttle 1995-, Canada, C, HH 1992-1998, Japan, L, HH 2002-, EU, C, dual pol. radio telescope, Magellan, Cassini SIR-A, SIR-B, SIR-C/X-SAR, SRTM Repairable Airborne Sensors onboard airplane Ground/ISAR GB-SAR, ISAR Simulated SAR simulation ETC ETC Scatterometer, Radiometer, Altimeter, Almaz, Receiving System, etc SAR General visual interpretation Basic Advanced Land SAR Algorithm SAR System/Processor SAR Classification Radarclinometry Radargrammetry InSAR DEM InSAR Coherence DInSAR PSInSAR PolSAR Pol-InSAR Tomography ATI Agriculture Archeology/Subsurface Topography Forestry Geology Geotectonics Hydrology Seismology Soil Volcanology Urban/Manmade Thematic Mapping modelling, parameter extraction focusing, filter, new system Thematic Mapping Shape-from-shading Stereo SAR Interferometry, Phase unwrapping change detection, decorrelation Differential InSAR, surface deformation Permanent Scatterer InSAR Polarimetry Polarimetric and Interferometric SAR 3D modelling Along Track Interferometry agricultural crop, vegetation, trees, but agricultural soil goes to Soil. subsurface penetration, paleo-channel, landmine detection. DEM from InSAR, radargrammetry, and radarclinometry. Slope angle from PolSAR. forest, biomass, vegetation. forest fire, deforestation, but crop goes to agriculture lithology, structural mapping, geomorphology, mineral exploration, lineament. tectonic motion, subsidence, land slide, tectonic strain rivers. lakes, limnology, flood, snow, ice (non-polar) earthquake displacement soil moisture, soil type (natural or agricultural) volcanic morphology, swell, subsidence, lava flow, eruption urban area mapping. Target, building, power line, foliage/snow penetrating target detection. land cover map. Classification of various surface type. 159

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Table 2. Continued. STAR Class Sub-class Description Description Application Ocean Cryosphere Atmosphere Representative or Review paper Wind Surface Wave Internal Wave Current Bathymetry Slick Ship Intertidal/Coastal Glaciers Sea Ice Ice Sheet/Ice Shelf amplitude phase wind speed and direction measurement from capillary or gravity wave by backscattering coefficient. comparison with scatterometer wave caused by wind, bathymetry, tide, etc. wave spectra. waves visible in SAR resolution. surface imprint of internal wave eddies, upwelling, current, frontal system subwater topography from wind/wave/tide pattern oil slick, biological film ship detection, ship wake intertidal zone, coastal zone. glacier motion, Glacier snow cover, glacier retreat/expansion sea ice type, first year ice, multi-year ice, pressure ridge, lead, polynya, floe, Iceberg, sea ice snow cover. continental ice cap, ice stream, ice sheet motion, topography, hingeline of ice shelf, snow on ice sheet/ice shelf weather systems imprinted on ocean surface. Storm, rain, wind, weather front, atmospheric lee wave, marine atmospheric boundary layer, vortex, solitons, atmospheric gravity wave. atmospheric delay or refraction of radar signal by water vapor, ionosphere, etc. representative, exemplary paper recommended for vital reading or review paper Specification Target Vehicle Antenna Carrier frequency Polarization Imaging mode Table 3. SAR Systems (Mode-based). Type Earth or planets stationary, airborne, satellite, shuttle or spaceship monostatic or bistatic X, C, S, L, or P bands single-, dual-, full-polarization (HH, HV, VH, VV) strip, scan, spot, etc Examples: SIR-C/X-SAR: Earth, shuttle, monostatic, L/C/X, full-pol, strip. ERS-1/2: Earth, satellite, monostatic, C, VV, strip SRTM: Earth, shuttle, bistatic, C/X, HH/VV, strip Arecibo Antenna: planet, stationary, monostatic, multibands, multi-pol, strip/spot Magellan, Cassini SAR: planet, spaceship, monostatic, S, HH, strip AIRSAR/TOPSAR: earth, airborne, mono/bi, L/C/P, fullpol, strip 160

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Table 4. SAR Systems (Vehicle-based). Class Sub-Class SAR Systems SAR Systems Characteristics Unrepairable SAR (Satellite and Spaceship) Repairable SAR (Shuttle, Airborne, Ground Systems) 1st Generation 2nd Generation Airborne SEASAT-A (USA, 1978), ALMAZ-1 (Russia, 1991-1993), Magellan SAR (US, 1990-1994, Venus), Cassini SAR (US, 1997-2004-, Titan), ERS-1 (EU, 1991-2000), ERS-2 (EU, 1995-), JERS-1 (Japan, 1992-1998), Radarsat-1 (Canada, 1995-) ENVISAT (EU, 2002), RADARSAT-2 (Canada, 2006s), PALSAR (Japan, 2006s), TerraSAR-X(EU, 2006s), TanDEM-X (EU, 2008s) TOPSAR (JPL, USA), IFSARE (ERIM/Intermap, USA), DO-SAR (Donier,Germany), E-SAR (DLR, Germany), AeS-1 (Aerosensing, Germany), AER-II (FGAN, Germany), C/X-SAR (CCRS, Canada), EMISAR (Denmark), Ramses (ONERA, France), ESR (DERA, UK), etc. single frequency, single polarization, single mode (except Radarsat-1) single freq., dual-pol, multi-mode (s: scheduled) Next Generation LightSAR (US), MicroSAR(EU), Military SAR systems light, constellation, real time multi-frequency, fullpolarization, multi-mode, SIR-A (USA, 1981), SIR-B (USA, 1984), SIR-C/X-SAR (USA, Shuttle Germany, Italy, 1994), SRTM (USA/Germany, 2000) bistatic (SRTM) fairly versatile 161

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Table 5. SAR System Specifications. Sensor Country Mission Band polari Look Antenna size Alt. Swath Peak Resolu Data rate Mission polari Alt. Swath Resolu Data rate Sensor Country period Band zation angle (azimuth (km) (km) Power tion(m) (Mbps) period zation (km) (km) tion(m) (Mbps) (degree) range, m) (kw) SEASAT-A USA 6/1978-, 105 days L HH 20 10.8 2.2 795 100 1 25 110 (5 bps) SIR-A USA 11/1981, 2.5 days L HH 47 9.4 2.2 260 50 1 25 Optical SIR-B USA 10/1984, L HH 15-60 10.8 2.2 224, 257, 30.4 20-40 1.1 25 8.3 days 360 (3-6 bps) SIR-C/ X-SAR ALMAZ-1 ERS-1 ERS-2 JERS-1 Radarsat-1 SRTM USA/ 4/1994, 11 Germany, days Italy Russia EU EU Japan Canada 12 2.9/ L/C/X full 20-55 12 0.7/ 225 12 0.4 15-90, 4.4/1.2/ 90 (4-8 bps) 25 225 1.4 /45(4-6 bps) USA/ 2/2000, HH/ 12 0.7/ 180 (C), C, X 20-60 233 56-225 1.2/1.4 25 Germany 11 days VV 12 0.4 90 (X) 3/1991-, 300 87.5 S HH 20-65 12 1.5 30-45 250 15 2.5 yrs -70 (5 bps, I/Q) 7/1991-2/ 105 C VV 20 10 1 780 100 4.8 25 2000 (5 bps, I/Q) 4/1995-105 C VV 20 10 1 780 100 4.8 25 present (5 bps, I/Q) 2/1992-10 60 L HH 38 12 2.4 570 75 1.3 25 /1998 (3 bps, I/Q) 11/1995-790 85, 105 C HH 20-60 15 1.5 50-500 5 10-100 present -820 (4 bps, I/Q) Envisat EU 2002 C dual 15-45 10 1 800 57-400 0.6-1.3 25 100 Radarsat-2 Canada ca. 2006 C full variable 15 1.5 790-820 20-500 - 3-100 - ALOS (PALSAR) Japan 1/2006 L dual 8-60 8.9 2.9 692 30-350 10-100 120, 240 TerraSAR-X Germany ca. 2006 X dual 20-45 4.8 0.7 515 10-100 2 1-16 300 TanDEM-X Germany ca. 2008 X dual 20-45 4.8 0.7 515 10-100 2 1-16 300 LightSAR L, C. USA - (US SAR) or X full variable - - - - - COSMO- Sky Med Italy - X - - 600 - - - SMART SAR Germany - - - - - - - - - 162

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers 163

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 164

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers 165

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 166

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers 167

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 168

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers 169

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 170

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Fig. 4. Distribution of journal papers related to the SAR Systems. 171

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Fig. 5. Distribution of journal papers related to the SAR Technologies. Fig. 6. Distribution of journal papers related to the SAR Advanced Technologies. Fig. 7. Distribution of journal papers related to the SAR Applications. 172

Investigation of SAR Systems, Technologies and Application Fields by a Statistical Analysis of SAR-related Journal Papers Fig. 8. Distribution of journal papers related to the SAR Application - Land. Fig. 9. Distribution of journal papers related to the SAR Application - Ocean. Fig. 10. Distribution of journal papers related to the SAR Application - Cryosphere. Fig. 11. Distribution of journal papers related to the SAR Application - Atmosphere. 173

Korean Journal of Remote Sensing, Vol.22, No.2, 2006 Ahmed, S., H. R. Warren, D. Symonds, and R. P. Cox, 1990. The Radarsat System, IEEE Transactions on Geoscience and Remote Sensing, 28(4): 598-602. Bamler, R. and P. Hartl, 1998. Topical review synthetic aperture radar interferometry. Inverse Problems, 14: R1 - R54. Brown, W. M., 1967. Synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems, AES-3(2): 217-229. Carrara, W. G., R. S. Goodman, and R. M. Majewski, 1995. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston, MA. Cloude, S. R. and K. P. Papathanassiou, 1998. Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5): 1551 1565. Curlander, J. C. and R. N. McDonough, 1991. Synthetic Aperture Radar Systems and Signal Processing, John Wiley & Sons Inc., New York. Elachi, C., E. Im, L. E. Roth, and C. L. Werner, 1991. Cassini Titan Radar Mapper. Proceedings of the IEEE, 79: 867-????. Gens, R. and J. L. Genderen, 1996. SAR interferometry - issues, techniques, applications. International Journal of Remote Sensing, 17(10): 1803-1835. Ulaby, F. T. and C. Elachi, 1990. Radar Polarimetry for Geoscience Applications, Artech House. 174